Perspectives on Nonabelian Hodge theory

Viva Talbot!

Tasos Moulinos

Université de Toulouse

Classical Hodge theory

Let (X, g) be a Riemannian manifold Let

$$\Omega^{\bullet}_X = C^{\infty}(X) \xrightarrow{d} \Omega^1_X \xrightarrow{d} \dots$$

The presence of a metric allows for one to define an adjoint operator $\delta:\Omega^\bullet\to\Omega^{\bullet-1}$

Definition

Let $\Delta = \delta d + d\delta$. This is the *Laplacian*. A differential n-form is *harmonic* if $\Delta \omega = 0$.

Theorem (Hodge theorem)

There is an isomorphism

$$H^n(X,\mathbb{R})\cong H^n_{dR}(X)\cong \mathcal{H}^n(X),$$

where the right hand side denotes the real vector space of harmonic *n*-forms.

Remark

One therefore has harmonic representatives for de Rham cohomology classes.

Now let's assume that X is a smooth projective complex variety (more generally one may assume X is Kähler but in this talk we can just take that to mean the above.)

The complex structure on the tangent bundle gives rise to a decomposition of complexified differential forms

$$\Omega^n_X \otimes \mathbb{C} = \bigoplus_{p+q=n} \Omega^{p,q}_X$$

with $\Omega^{p,q} = (\Omega^{1,0}_X \wedge ... \wedge \Omega^{1,0}_X) \wedge (\Omega^{0,1}_X \wedge ... \wedge \Omega^{0,1}_X)$

In local holomorphic coordinates $(z_1, ... z_j)$, $\Omega_X^{1,0}$ consists of forms $\omega = \sum c_j dz_j$; meanwhile $\Omega^{0,1}$ consists of forms $\omega = \sum c_j d\overline{z}_j$

Additionally the de Rham differential decomposes as

$$d = \partial + \overline{\partial}$$

with $\partial: \Omega^{p,q} \to \Omega^{p+1,q}$ and $\overline{\partial}: \Omega^{p,q} \to \Omega^{p,q+1}$

Definition

One has a refined notion of harmonic forms. There will be formal adjoints $\partial^*, \overline{\partial}^*$. One defines Δ_d , Δ_∂ and $\Delta_{\overline{\partial}}$ analogously to above.

The Kahler identities state that $\Delta_d = 2\Delta_{\partial} = 2\Delta_{\overline{\partial}}$, hence the condition of being harmonic is equivalent.

Theorem *There exists a decomposiion*

$$H^n(X,\mathbb{C})\cong \bigoplus_{p+q=n} H^{p,q}(X)$$

where $H^{p,q}(X) = H^p(X, \Omega_X^q) = \mathcal{H}^{p,q}(X)$. The latter is the vector space of harmonic forms of degree (p,q).

Remark

This data gives rise to the notion of a "pure Hodge structure of weight n". This is equivalent to a finite decreasing filtration on a complex vector space $F^{p+1} \subset F^p \subset \dots$ together with a conjugate filtration s.t. $F^p(H) \cap \overline{F^q(H)} = H^{p,q}$

The striking fact here is that we are mixing data from topological setting $(H^n(X, \mathbb{C}))$, the smooth setting $H^n_{dR}(X)$ and the decomposition into harmonic forms, which uses the holomorphic (or complex algebro-geometric) structure.

Nonabelian Hodge theory can be viewed as a categorification of this interplay of ideas. To see what we mean by this let's first recall a (rudimentary) version of the Riemann-Hilbert correspondence:

Theorem

There is an equivalence of categories:

{Local systems of complex vector spaces on X } \simeq { complex vector bundles on X with a flat connection }

Recall, the left hand side can be thought of as representations $\rho: \pi_1(X) \to GL_n(\mathbb{C})$ and the data of the right hand side is pair (E, ∇) , with a connection $\nabla: E \to E \otimes \Omega^1_X$ such that $\nabla^2 = 0$ and

$$abla(rs) = sd(r) + \nabla(s)r$$
 Leibniz rule

Thus we are led to thinking about complex $\pi_1(X)$ -representations, and bundles with flat connection. In fact, this motivates our notion of nonabelian cohomology " $H^1(X, GL_n(\mathbb{C}))$ ". This can be thought of as the space of representations $\rho : \pi_1(X) \to GL_n(\mathbb{C})$ (we'll be a bit more precise later)

How to make sense of the decomposition into $H^p(X, \Omega^q_X)$?

Answer: Vector bundle with "Higgs field" This is a pair (E, θ) , where E is a holomorphic bundle, and $\theta : E \to E \otimes \Omega^1_X$ is an \mathcal{O}_X -linear map with $\theta \wedge \theta = 0$.

Remark

This structure arose first in the work of Hitchin, in studying self-duality equations on Riemann surface, motivated by ideas from particle physics (analogous version of Higgs fields describe the Higgs boson) One has a notion of harmonic bundle which interpolates between Higgs bundles and flat bundles

Definition

A harmonic bundle on X is a smooth complex vector bundle E with differential operators ∂ and $\overline{\partial}$ along with algebraic (or holomorphic) operators $\theta, \overline{\theta} \in H^0(X, \operatorname{End}(E) \otimes \Omega^1)$.

Construction

One can fix a (Hermitian metric) so that $\partial + \overline{\partial}$ is a unitary connection and $\theta + \overline{\theta}$ is self adjoint. Next, one sets $D = \partial + \overline{\partial} + \theta + \overline{\theta}$ and $D'' = \overline{\partial} + \theta$.

With the above conditions, (E, D) is a vector bundle with flat connection and $(E, \overline{\partial}, \theta) = (E, D'')$ is a Higgs bundle with $\theta \wedge \theta = 0$.

Remark

- The operator $\overline{\partial}$ defines a holomorphic structure on the complex bundle *E* (follows by the Koszul-Malgrange theorem) so that we do get a holomorphic bundle.
- Given a bundle with flat connection D one uses the presence of the Hermitian metric K to decompose D = ∂ + ∂̄ + θ + θ̄. Out of this one builds D["]_K = θ + ∂̄ which is the needed data for the Higgs structure. One then needs to solve (D["]_K)² = 0.
- In the reverse direction, given a Higgs bundle, one again uses the metric to define D_K = ∂_K + θ_K. Finally one sets D = D' + D_K["] = ∂ + ∂̄ + θ + θ̄. In order to obtain a bundle with flat connection, one must show (D_K)² = 0.

The celebrated Hodge theorem states the following:

Theorem (Simpson)

Let X be a smooth complex projective variety. Then:

- there is a natural equivalence between categories of harmonic bundles on X and semisimple flat bundles (or reps of π₁(X)).
- There is a natural equivalence between categories of harmonic bundles and direct sums of stable Higgs bundles with vanishing Chern class.
- The resulting correspondence between representations and Higgs bundles can be extended to an equivalence between the categories of all π₁(X) representations and semistable bundles with vanishing Chern class.

Remark

(Semi-)Stability here means that for every coherent subsheaf $F \subset E$, deg(F)/rk(F) < deg(E)/rk(E). (resp. \leq) This, along with the vanishing of ch_1 and ch_2 is precisely the condition needed for $D^2 = (\partial + \overline{\partial} + \theta + \overline{\theta})^2$ to vanish. In the other direction the associated tensor vanishes only if the bundle with flat connection is semi-simple,

Remark

Some history] The first part of the theorem is due to Corlette and Donaldson, using the work of Eells and Sampson. The second part is a generalization of the theorem of Narasimhan and Seshadri (when $\theta = 0$, following work of Uhlenbeck-Yau and Hitchin and Beilinson-Deligne (and others...)

How can one view this in the light of the classical Hodge correspondence? In the classical case we have the decomposition

$$H^1(X,\mathbb{C})\cong H^0(X,\Omega^1)\oplus H^1(X,\mathcal{O}_X).$$

Instead now, one studies the nonabelian cohomology set " $H^1(X, GL_n(\mathbb{C})$ " (which as we shall see is really to be thought of as an moduli space/stack...)

$$H^1(X, GL_n(\mathbb{C})) = H^1(X, GL_n(\mathcal{O}_X) \oplus H^0(X, End(E) \otimes \Omega^1_X))$$

The holomorphic bundle is specified by a cocycle corresponding to the first summand, and the operator θ is an element of $H^0(X, End(E) \otimes \Omega^1_X)$.

Let (V, D) be a bundle with flat connection. To this, one can associate the de Rham complex:

$$A^{\bullet}_{dR}(V) = A^{0}(V) \xrightarrow{D} A^{1}(V) \xrightarrow{D} A^{2}(V) \to \dots$$

where $A^n(V)$ is the global sections of the smooth bundle $V \otimes \Omega_X$. Meanwhile, let $(E, \theta, \overline{\partial})$ be a Higgs bundle. To this one associates the Dolbeaut complex:

$$A^{ullet}_{Dol}(E) = A^0(E) \xrightarrow{D''} A^1(E) \xrightarrow{D''} A^2(E) \to \dots$$

(where $D'' = \theta + \overline{\partial}$)

Proposition

Suppose (V, D, D'') is a harmonic bundle (so that it corresponds to a flat bundle and a Higgs bundle). Then there are equivalences

$$A^{\bullet}_{dR}(V) \simeq (\ker(D), D'') \simeq (H_{dR}(V), 0)$$
$$A^{\bullet}_{Dol}(V) \simeq (\ker(D), D'') \simeq (H_{Dol}(V), 0)$$

Remark

The above can be viewed as a formality result for the relevant complexes, which arises from the harmonic structure.

A key aspect of the nonabelian Hodge correspondence lies in the correspondence of associated moduli spaces.

Let's recall what this is exactly. Let $F : \operatorname{CAlg}_k^0 \to \operatorname{Gpd}$ be a functor from the category of discrete commutative k-algebras to the category of groupoids. Then this functor is representable by scheme/space/stack if there exists some scheme scheme/space/stack X for which $Hom_C(\operatorname{Spec}(A), X) \simeq F(A)$. These are typically required to satisfy some gluing condition (*descent*).

Basic motivation for stacks: the functors are valued in groupoids (eventually we would like them to be valued in ∞ -groupoids, i.e. the slogan "points have non-trivial automorphisms...)

Example

Quotient stacks: X a scheme with action by a group scheme G. We define X/G as the realization of the groupoid (ultimately we might as well say "simplicial object")

 $X \coloneqq X \times G...$

Remark

Other (more specific) notions of quotients are relevant here. There exist a notion of *GIT* quotient (geometric invariant theory) written X//G. IN nice enough cases, this exists as an object in the original category (schemes or algebraic spaces). Locally, this is of the form (Spec(R^G)). It is the quotient of the "semi-stable-points". Often suffices for the moduli problems related to non-Abelian Hodge theory. **Construction (Betti moduli space)** Let Γ be a finitely generated group. One defines representing scheme paramertizing representations $R(\Gamma, n) = Map(\Gamma, GL_n)$ sending

 $A \mapsto Hom(\Gamma, GL_n(A))$

The reductive group GL_n acts on $R(\Gamma, n)$ and we let

 $\mathcal{M}(\Gamma, GL_n) := R(\Gamma, n)/GL_n$

denote the quotient stack. Now set, $\mathcal{M}_B(X, n)$ for $\Gamma = \pi_1(X^{an})$.

Construction (de Rham Moduli space)

Fix a point $x \in X$. One defines the de Rham moduli scheme, $R_{dR}(X, n)$ which assigns to a scheme Y the set of isomorphism classes of vector bundles of rank n with flat connection (V, D) and a "frame" $\alpha : V|_{x} \cong \mathbb{C}^{n}$. Once again, this admits an action by the algebraic group GL_{n} and one defines the quotient stack $\mathcal{M}_{dR}(X, n) = R_{dR}(X, n)/GL_{n}$

Construction (Higgs moduli space)

Finally, one constructs the moduli space of Higgs bundles. One denotes $R_{Dol}(X, x, n)$ to be the moduli scheme of semistable Higgs bundles with vanishing Chern classes and frame at x. Again, this has a GL_n action, with respect to which we take the quotient stack

$$R_{Dol}(X, x, n)/GL_n = \mathcal{M}_{Dol}(X, n)$$

Remark

In fact, originally the moduli spaces that were taken were not the quotient stacks; they were constructed using GIT. These are algebaic spaces. These moduli spaces are the associated coarse moduli spaces for the relevant quotient stacks (they represent the functors π_0 of the stacks). The points of these moduli spaces parametrize semi-simple objects

The identifications at the level of moduli spaces/stacks are rather subtle. First, as a consequence of the Riemann-Hilbert correspondence, one has:

Proposition

There are isomorphisms of associated complex analytic spaces and the analytifications of the moduli spaces (stacks):

 $R_{dR}(X,n)^{an} \simeq R_B(X,n)^{an}, \ \mathcal{M}_{dR}(X,n)^{an} \simeq \mathcal{M}_B(X,n)^{an}$

Theorem

The correspondence provides an isomorphisms between underlying sets of points of $M_{dR}(X, n)$ and $M_{Dol}(X, n)$, as the points of the spaces. This in particular gives homeomorphisms of underlying topological spaces $M_{DR}(X, n)^{top} \simeq M_{Dol}(X, n)^{top}$.

A particularly interesting facet of the theory is the $\mathbb{C}^*\text{-}action$ that arises on the category of Higgs bundles.

Construction Define a \mathbb{C}^* action on the category of semistable Higgs bundles with vanishing Chern class

 $(E,\theta)\mapsto (E,t\theta)$

Via the equivalence of categories, we can transport this to an action on semi-simple flat bundles.

As a consequence, the the moduli space $\mathcal{M}_{Dol}(X, n)$ acquires a \mathbb{G}_m -action.

Proposition

Semisimple flat bundles fixed by the action of $\mathbb{C}^* = \mathbb{G}_m$ are exactly those which underlie complex variations of Hodge structure.

Conjecture

A representation ρ of π_1 is rigid if any nearby representation (in $R_B(X, n)$ is conjugate to it. Simpson's motivicity conjecture states that ρ is a direct factor in the monodromy representation of a motive (i.e a family of varieties over X)

Recent work of Esnault-Groechenig making progress towards this conjecture, by finiding a model over integers, and then studying the p-curvatures of the relevant connections modulo p. Utilize characteristic p versions of NAH due to Ogus-Vologodsky, and more recent works of Lan-Sheng-Zuo in the p-adic setting.