I. 1 Year Before Talbot, October? . one thing we do in math is tell a story of hiumph, giving the clean, beautiful story. I'm going to pull back the curtain, giving a meandering story of ups i downs i up:	5
Location: MIT ? the Münster - My first conference & first time in Germany!	
Event: Topological Modular Forms confirence is the related pre-confince. I was thinking about two questions, which I	
didn't see were so dosely related: "What happens at Talbot'= "space you can be .vulneable."	
D Computing with Emf C p=3:	
I filled For p>3, Emf _(p) is essentially BP(a>, just as in Jereny's talk. Work of Wilson, Adams, Mangalis, #~0(A	w.
pages ? pages w/ For p=2, have an Adams SS, the Ez-tern of which was extensively sludied by Mahawald ? Davis-Mahawa	
false starts, mistakes, $\frac{1}{2}$ since $H^*(t_{m}f; F_2) = A \otimes F_2$, $A(z) = \langle S_q', S_q^2, S_q^4 \rangle \subseteq A$.	
confusion! For p=3: had very little, but heuristically, should be like ko at 2.	
$\sum_{i=1}^{n} i_i _{i_i} + \frac{1}{2} i_i _{i$	
(d) Understanding hopkins-thiller spectral. What does this have to do w/ Talbot? <u>Everything</u> At MIT, we had an active group <u>of friends</u> . A lot of that is due to	
the careful community-minded work of Nora Ganter. At the conference, we met a group from ND. Nora worked to	
make sure we were all friends (and working in similar spaces). Back in the US, we were all energized. I had	
seen that real mathematicians had to and well-have been and and the att any this iden is she	
seen that "real mathematicians" had focused workshops. Nora pushed me to act on this idea, 3 she	
introduced us to a house MIT owned: Talbot House. Talbot was born!	
introduced us to a house MIT owned: Talbot House. Talbot was born! 	
introduced us to a house MIT owned: Talbot House. Talbot was born! Recall from Lior, Danny, Jerenijs talks: A formal group law our R is a power series $X \pm y = F(x,y) \in \mathbb{R}[[x,y]]$ satisfying These data are representable,	
introduced us to a house MIT owned: Talbot House. Talbot was born! Seed Story Preking up @: Recall from Lior, Danny, Jerenijs talks: A <u>formal group law</u> our R is a power series $X \neq y := F(X, y) \in \mathbb{R}[[X, y]]$ satisfying @ $X \neq 0 = X$	
introduced us to a house MIT owned: Talbot House. Talbot was born! Recking up (2): Recall from Lior, Denny, Jerenijs talks: A formal group law our R is a power series $X \pm y = F(x,y) \in R[[x,y]]$ satisfying (a) $X \pm 0 = X$ (b) $X \pm y = y \pm X$ (c) $X \pm (y \pm z) = (X \pm y) \pm Z$ A homomorphism of fight is a power series $f(x) \in R[[x]]$ s.t. $f(x \pm y) = f(x) \pm f(y)$ (Guillen) MUz carries the only fight $M = univ$.	
introduced us to a house MIT owned: Talbot House. Talbot was born! Picking up (2): Recall from Live, Denny, Jerony's talks: A formal group law our R is a power series $x \pm y = F(x,y) \in R[1\times, y]$ satisfying (2) $x \pm 0 = x$ (b) $x \pm y = y \pm x$ (c) $x \pm (y \pm z) = (x \pm y) \pm z$ A homomorphism of fight is a power series $f(x) \in R[1\times]$ s.t. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the univ shick iso (2) $x \pm (y \pm z) = f(x) \pm f(y)$ (Quillen) MUz carries the univ shick iso (2) $x \pm (y \pm z) = f(x) \pm f(y)$	
introduced us to a house MIT owned: Talbot House. Talbot was born! Tecking up (2): Recall from Lion, Danny, Jerenjs talks: A formal group law our R is a power series $X + y := F(x, y) \in R[[x, y]]$ satisfying (a) $x + 0 = x$ (b) $x + y = y + x$ (c) $x + (y + z) = (x + y) + z$ A homomorphism of fat is a power series $f(x) \in R[[x]]$ s.t. $f(x + y) = f(x) + f(y)$ These data are representable, as is "fage + iso f w/ f'(o)=1" (Quillen) MUx carries the univ fage & MU+MU the univ. shict iso	
introduced us to a house MIT owned: Talbot House. Talbot was barn! Teking up (2): Recall from Lier, Denny, Jereny's talks: A formal group law our R is a power series $x \pm y = F(x,y) \in R[1x, y]$ satisfying (a) $x \pm 0 = x$ (b) $x \pm y = y \pm x$ (c) $x \pm (y \pm z) = (x \pm y) \pm z$ A homoomorphism of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(x)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(x)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(x)$ (Quillen) MUz carries the oniv face to multiplication of fat is a hom $F \to F$. The first char $(R) = p$, then $[p]_p(x) = f(x^p)$ some n . In this case, $f(x) = x_{nx} + \dots$ Allo, geom talks about deformations of objects: Ex : $\frac{1}{2} Z_0^n \longrightarrow Z_0^p$.	
introduced us to a house MIT owned: Talbot House. Talbot was born! Teking up (2): Recall from Liver, Durny, Jerny's talks: A formal group law our R is a power series $X \ddagger y = F(x,y) \in R[[x,y]]$ satisfying (a) $x \ddagger 0 = x$ (b) $x \ddagger y = y \ddagger x$ (c) $x \ddagger (y \ddagger z) = (x \ddagger y) \ddagger z$ A homomorphism of fight is a power series $f(x) \in R[[xi]]$ s.t. $f(x \ddagger y) = f(x) \ddagger f(x)$ (Quillen) MU's carries the univ A homomorphism of fight is a power series $f(x) \in R[[xi]]$ s.t. $f(x \ddagger y) = f(x) \ddagger f(x)$ (Quillen) MU's carries the univ (b) $x = \sqrt{x} = nx$ (x') is a horn $F \rightarrow F$. The ff char (R) = p, then $[p]_{p}(x) = f(x^{2})$ some n. In this case, $f(x) = \sqrt{x} + \dots = nx$ (x') is a horn $F \rightarrow F$. The ff char (R) = p, then $[p]_{p}(x) = f(x^{2})$ some n. In this case, $f(x) = \sqrt{x} + \dots = 1$ Alg. geom talks about deformations of objects: $\overrightarrow{F} \longrightarrow F$ (c) $a = 1$ $\overrightarrow{F} = \overrightarrow{F} = \overrightarrow{G} = \overrightarrow{G} = (x + 1) \rightarrow T$	
introduced us to a house MIT owned: Talbot House. Talbot was barn! Teking up (2): Recall from Lier, Denny, Jereny's talks: A formal group law our R is a power series $x \pm y = F(x,y) \in R[1x, y]$ satisfying (a) $x \pm 0 = x$ (b) $x \pm y = y \pm x$ (c) $x \pm (y \pm z) = (x \pm y) \pm z$ A homoomorphism of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(y)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(x)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(x)$ (Quillen) MUz carries the oniv face to multiplication of fat is a power series $f(x) \in R[1x]$ st. $f(x \pm y) = f(x) \pm f(x)$ (Quillen) MUz carries the oniv face to multiplication of fat is a hom $F \to F$. The first char $(R) = p$, then $[p]_p(x) = f(x^p)$ some n . In this case, $f(x) = x_{nx} + \dots$ Allo, geom talks about deformations of objects: Ex : $\frac{1}{2} Z_0^n \longrightarrow Z_0^p$.	

This universal definite interits an action of $End(\Gamma)$ in particular of $Aut(\Gamma) \leftarrow \frac{Danny}{hlar}$.
$\underline{Thm}\left(Goess-Hopkins-Miller\right) There is an essentially unique functor (k,F) \mapsto E(k,\Gamma) \in Comm w/$
$\pi_{*}\left(E(k,F)\right) = E(k,F)_{*} \leftarrow E(\mathbb{F}_{p^{n}},\mathbb{F}_{honde}) = E_{n} has an action of G_{n} = Gal_{\mathbb{F}_{p}}(\mathbb{F}_{p}) \times Af(r)$
(Devinatz-Hopkins) $L_{K(n)} S^{\circ} \xrightarrow{\simeq} E_{n}^{hG_{n}} \leftarrow Lior talked about this as a Gal extension$
If $G \subseteq G_n$ is finite, the $EO_n(G) := E_n^{hG}$. Have a Homotopy Fixed Point SS:
$E_{a}^{s,t} = H^{s}(G_{j}, \pi_{t} E_{n}) \Rightarrow \pi_{t-s} EO_{n}(G). \qquad KU \Rightarrow KO$
ordinary group cohomology
<u>Carbon</u> :
$f_{i} (G , p) = 1, $
$\frac{ \mathbf{G} _{\mathbf{p}}}{ \mathbf{G} _{\mathbf{p}}} = \mathbf{I}_{\mathbf{s}}$ $\frac{ \mathbf{G} _{\mathbf{p}}}{ \mathbf{H}_{\mathbf{k}}e_{\mathbf{s}} _{\mathbf{s}}} = \mathbf{I}_{\mathbf{s}}$ $\frac{ \mathbf{G} _{\mathbf{p}}}{ \mathbf{H}_{\mathbf{k}}e_{\mathbf{s}} _{\mathbf{s}}} = \mathbf{I}_{\mathbf{s}}$ $\frac{ \mathbf{G} _{\mathbf{p}}}{ \mathbf{H}_{\mathbf{k}}e_{\mathbf{s}} _{\mathbf{s}}} = \mathbf{I}_{\mathbf{s}}$ $\frac{ \mathbf{H}_{\mathbf{k}}e_{\mathbf{s}} _{\mathbf{s}}}{ \mathbf{H}_{\mathbf{k}}e_{\mathbf{s}} _{\mathbf{s}}} = \mathbf{I}_{\mathbf{s}}$ $\frac{ \mathbf{H}_{\mathbf{k}}e_{\mathbf{s}} _{\mathbf{s}}}{ \mathbf{H}_{\mathbf{k}}e_{\mathbf{s}} _{\mathbf{s}}} = \mathbf{I}_{\mathbf{s}}$
$ (\pi_{\widehat{*}} E_{n})^{2} H^{*}(G; \pi_{e} E_{n})^{2} H^{*}(G; \mathbb{Z}_{p}) $
$\frac{Problem}{Problem}$ What is the action of G or $\pi_* E_n$?
This is where I was in ⁶ 04 at the first Talbot. It was like how so many have described: I felt
like port of a real community. CD, JNKF, AH ³ I decided this should be a recurring evolt
⇒ NSF grant. Our first allunpt was a hot mess. But Chris Stark gave incredible, detailed feedback.
No booge, no pills First, not all G show up:
$\underline{Thm} (Hewith) (p \text{ odd}) G \subseteq Aut(F_{Hub}) \Rightarrow have a split exact sequence$
$\underbrace{\operatorname{Inv}}_{\{1,1,2,\dots\}} (p \text{ add}) G \cong \operatorname{Hor}(\mathcal{G}_{(1,1,1,1)}) \xrightarrow{\rightarrow} \operatorname{have} a \operatorname{split} \operatorname{exact} \operatorname{sequence}$ $\underbrace{\{1,3,\dots,C_p, \dots,G,\dots,C_q,\dots,S_1\}}_{\text{where}} 0 p^{-1}(p^{-1}) \mid n \xrightarrow{\frac{1}{2}} (2,p) = 1.$
$\Rightarrow H^*(G; \pi_* E_n) \cong (H^*(C_{p^r}; \pi_* E_n))^{C_{p^r}} N_{ow} \text{Aut}(\Gamma) \text{ has another description}$
$- \prod (C_3, n * L_n) - (\prod (C_p, n * L_n)), \text{Now} \text{nor} (C) \text{nos} \text{another outscription}$
$\mathcal{O}_{n} = \underbrace{\mathbb{W}(\mathbb{F}_{p^{n}})}_{\mathbb{Z}_{p^{n}}} \overset{\langle S \rangle}{\underset{Sa = a^{*}S}{}} S^{n} = p \qquad \text{lift of } F_{nob}. \qquad \overset{1}{3} \operatorname{Aut}(\Gamma) \cong (\mathcal{O}_{n})^{\times}$
Thm (Devinatz-Hopkins) O Thee is a equivariant map
$\mathcal{O}_{n} \xrightarrow{\pi_{2}} \mathbb{E}_{n} \xrightarrow{s} \operatorname{Sym}(\mathcal{O}_{n})[\Delta']_{\mathfrak{I}} \xrightarrow{\cong} \pi_{*} \mathbb{E}_{n}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

③ Up to associated graded, we can do this!
When $G = C_p r$, $\mathcal{O}_n \cong W(\mathbb{F}_p n)[\mathcal{Z}_p r] \oplus \mathcal{V}_p^{r-1}(p-1)$ ~/ \mathcal{X} , a gen of G_p' , acting
as Zpr - multiplication: very nice representation! Indica (ZZ [Cp]/ZL)
Cor Thre is a Leibnitz-Voltaire SS
$H^*(C_{p^r}; Sym(\mathbb{Z}_{p}[\mathbb{Z}_{p^r}])^{\otimes m}) \Rightarrow H^*(C_{p^r}; \pi_* E_n).$
I spert years banging my head against this! Shifted focus back to 2 No progress! Telt like a failure
III. Talbot 2007: time as a flat circle - 6mf w/ Hopkins. Mike & I talked
at length, and since my now husband was still in Boston, we made plans
to talk over the summer. Doug Raverel was visiting ? =>
Theorem Thre is a G-equivariant lift
$Q_n \pi_{-2} E_n$
$\mathcal{O}_n/\rho \longrightarrow \pi_2 \tilde{E}_n/\rho, m^2$
$\underline{C_{or}} \forall T_* E_n \cong Sym \left(\mathcal{O}_n \right) \left[\underline{\Lambda}' \right]_{\underline{I}}$ understandable effect in $H^*(G; -)$.
This wasn't written up. The results here showed you can access the E_2 -term of the ANSS for $E(k,F)$.
Thus (Raverel) For $p \ge 5$, $\beta_{pi/pi}$ does not survive the ANSS for the sphere. This is seen in the HFPSS for E_{p-i}^{hCp} : All $\beta_{pi/pi} \mapsto non$ perm cyclus! \longrightarrow Fails for $p = 2,3$.
So want to look for higher height theories (& the bigger groups):
2 4 C8 Danny gave a beautiful talk about what is
3 6 Cq. trickly in the case p=2: How can we control.
the HFPSS? How do we prove it?
Like Mauricio described, this reframe question changed my research trajectory. We dodged the
FINE MALICIO DESMIDENS THIS LEMANCE ARESING CHANGED WIT LESCALON MOTECIARY. ME MOUGED THE

question, moving to				⁷ 9	enuim	Ľ.	Le.	" . Coi	nplet	lete" stabl			Wpg .		not Bore			el). I've been			. work	working he			٩	decade !			0 0 0				
•			And																												0	was.	•
•			. coly																														t.
•	• • N	hat	Kups		در ده	ning	Ь	acK	ore	fu	fri	ends	ľ.	r.	made	. 0	. 4	na,	Com	unity	0	that	. we	hav	e . all	. b.	₩.	he	. toge	the.	•	•	0
•		•			•			•	•	•	•	•	•	•	•	•		•				•	•	• •		•	•	•	•		•	•	
•	•		• •																														
	•		• •																														
			• •																														
•	•																																
•	•		• •																														
	•		• •																														
			•••																														
•	•																																
			• •																														
•	•		• •																														
•	•		•••																														
	•																																
•	•		• •																														
			• •																														
			• •																														
			• •																														
		•							•	•	•	•	•		•	•			•	•	•	•	•			•	•		•				
•	• '	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	• •	•	•	٠	•	•	• •	•	•	•
•			• •																														
•			• •																														
•		•	• •		•	•		•	•			•	•	•	•		•	•	•		•		•		•	•	•		•		•	٠	•
•	•	٠	• •		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	• •	•	•	•	•	•	• •	•		•
•	•		• •																														
•	•		• •																														
•																																	
		•	• •			•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•			•	
•			• •																														
•			• •																														
•			• •																														
•			• •																														
		•				•		•	•	•	•		•		•	•	•	•	•			•	•	• •		•	•	•	•			•	•
•	•	•	• •		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•		•
•	•	•	• •	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	• •	٠	0	•	•	•	• •	•	۰	•