
FINITENESS PROPERTIES OF MODULI SPACES OF

HIGH-DIMENSIONAL MANIFOLDS

Abstract. These are Mauricio Bustamante’s notes for his talk at the “Viva Talbot!: A
virtual MIT Talbot Workshop retrospective” in 2021.

1. Moduli spaces

Fix a smooth manifold M . The following task is typically given: classify smooth M -bundles
over a CW -complex B up to isomorphism.

Example. (A success story). Suppose M = Rd. Then there is a bijection [exercise]

{smooth Rd-bundles}/iso
∼=←− {rank d-vector bundles over B}/iso

The classification problem is now solved roughly as follows: we construct a “classifying space”
Md and a bijection of sets

[B,Md]→ {rank d-vector bundles over B}/iso

This classifying space is nothing but a Grassmann manifold. In fact, we define

Md,k ' {V ⊂ Rd+k | V is a vector subspace isomorphic to Rd}.

This space is slightly annoying to topologize, so we can think of it instead as

Md,k ' Inj(Rd,Rd+k)/GLd(R)

where Inj(Rd,Rd+k) is the space of injective linear maps from Rd to Rd+k (a.k.a the Stiefel
manifold) and the action of GLd(R) on it is by precomposition. Note that Inj(Rd,Rd+k) can be
seen as a subspace of (Rd+k)d, and the orbit space is naturally given the the quotient topology.

It is customary to write

Md := colim
k
Md,k =: BGLd(R).

The general case is done similarly: we create a “Grassmann-type” moduli space, namely we
define it as the space of embedded submanifolds of Rd+k

MM,k ' {W ⊂ Rd+k | W is a smooth submanifold diffeomorphic to M}

Good luck topologizing this thing (one can, though). So here is an alternative

MM,k ' Emb(M,Rd+k)/Diff(M)

where Emb(M,Rd+k) is the space of smooth embeddings of M into Rd+k with the C∞-topology
and Diff(M) is the (topological) group of diffeomorphisms of M .

The moduli space of d-dimensional closed smooth manfiolds diffeomorphic to M is

BDiff(M) := colim
k
MM,k

There is indeed a correspondence

[B,BDiff(M)]→ {smooth M -bundles over B}/iso
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1.1. (Co)homology and homotopy groups of moduli spaces. This correspondence with
sets of homotopy classes of maps to BDiff(M) is useful if we know something about the homotopy
type of the latter. Now, we don’t expect to have uniform answer for all manifolds M . So
we lower our expectations and ask, what can we say in general about the (co)homology and
homotopy groups of BDiff(M)?

These are the most important invariants for geometric purposes:

(1) H∗(BDiff(M)) is the ring of characteristic classes of smooth M -bundles (by the Yoneda
lemma).

(2) π∗(BDiff(M)) is the set (actually group) of isomorphism classes of smooth M -bundles
over spheres.

Knowing these invariants is important not only for the classification problem posed above, but
also for discovering new manifold topology phenomena and defining new invariants. For example:

• H∗(BGLd(R)) ∼= Z⊕ · · · ⊕Z⊕Z/2⊕ · · · ⊕Z/2. Thanks to this calculation we can derive
a bunch of things about bordism groups and prove the signature theorem.
• π4(BGL4(R)) ∼= Z⊕Z. This calculation was the first step in Milnor’s discovery of exotic

7-spheres.

But again, we don’t really expect to give “a calculation” of the cohomology and homotopy
groups of BDiff(M) for all manifolds. Nevertheless, here is something that holds for a very
large class of manifolds and that could serve as an input to make computations for a specific M .

Theorem 1.1 (B–Krannich–Kupers). Let M be a closed connected oriented smooth manifold of
dimension d = 2n ≥ 6. If π1(M) is finite, then for all k ≥ 2 the groups πk(BDiff+(M)) and
Hk−1(BDiff+(M);Z) are finitely generated.

Remark. The case k = 1, that is π1(BDiff+(M)) = π0(Diff+(M)) = { diffeomorphisms of
M}/isotopy, was done by Sullivan (for π1(M) = 0) and Triantafillou (for π1(M) finite). In fact
they show that the mapping class group is a group commensurable with an arithmetic group. In
particular it is of type F∞.

In this talk we will discuss the strategy that leads to the proof of this theorem. But first, we will
discuss briefly what’s the situation in low dimensions, and how people could have approached
this problem in the 70’s and 80’s.

2. What do we know in low dimensions?

The conclusion of Theorem 1.1 holds true in dimensions 2 and 3. Let us only discuss finite
generation of the homotopy groups of BDiff(M).

Dimension 2. The only case to look at is S2. In this case Smale proved that the inclusion
SO(3) ↪→ Diff(S2) is a homotopy equivalence, and so must be the induced map BSO(3) →
BDiff(S2).

Dimension 3. The case of S3 is similar to that of S2. For Hatcher showed that the inclusion
SO(4) ↪→ Diff(S3) is a homotopy equivalence. By Perelman’s work, the remaining cases are orbit
spaces of isometric finite group actions on the round 3-sphere. For these spherical 3-manifolds,
Bamler and Kleiner showed that the analog of Hatcher and Sullivan’s result for spheres is true
in more generality: for any Riemannian metric g on S3/G of constant sectional curvature = 1,
they show that the inclusion

Isom(S3/G, g) =: Isom(S3/G) ↪→ Diff(S3/G)

is a homotopy equivalence.
Therefore

BIsom(S3/G) ' BDiff(S3/G).

So we have that

πk(BDiff(S3/G)) ∼= πk(BIsom(S3/G)) ∼= πk−1(Isom(S3/G))
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Now observe that since Isom(S3/G) is a compact Lie group, then π0(Isom(S3/G)) is a finite
group and π1(Isom(S3/G)) is a finitely presented group. For the higher homotopy groups, we
look at the identity component Isom0(S

3/G). This is a simply connected compact Lie group
and hence its homology groups are finitely generated. Therefore its homotopy groups are finitely
generated by a result of Serre.

Dimension 4. The theorem fails in dimension 4. Baraglia showed that for a K3-surface K
(which is simply-connected) the group π2(BDiff(K)) has infinite rank.

3. High-dimensions in the 70-80’s

Waldhausen showed1 that the algebraic K-theory (let’s say space) of M splits as

A(M) = K(S[ΩM ]) ' Ω∞Σ∞M+ ×Wh(M)

and furthermore that Ω0Wh(M) ' BP(M), where BP(M) is the classifying space of stable
pseudoisotopies of M , which is defined as the colimit of the maps

· · · → BP (M ×Dk)→ BP (M ×Dk+1)→ · · ·
and P (M) is the topological group of diffeomorphisms of M × I which restrict to the identity
on M × {0} ∪ ∂M × I.

On the other hand, Igusa showed that the map

BP (M)→ BP(M)

is about d/3-connected2. The passage from BP (M) to BDiff(M) is essentially through surgery
theory, the understanding of the space of homotopy automorphisms of M and something known
as the Hatcher spectral sequence.

All these ingredients can be combined with a theorem of Betley which asserts that the homotopy
groups of A(M) are finitely generated if π1(M) is finite, to conclude that the homotopy groups
of BDiff(M) are finitely generated in degrees up to roughly d/3.

That’s as much as we can say by this method.

4. High-dimensions after Galatius–Randal-Williams and Goodwillie–Klein–Weiss

To improve on what people did in the 80’s, we will use three results:

(1) Galatius–Randal-Williams and Friedrich [GRW-F]. They show that if M is a
compact smooth manifold of dimension d = 2n ≥ 6 with finite fundamental group, then
• Hk(BDiff∂(M#Wg)), where Wg = #gSn × Sn, becomes independent of g for g

large, i.e. these groups exhibit homological stability.
• The stable homology is isomorphic to the homology of a homotopy quotient of a

component of the infinite loop space Ω∞0 MTθ of a certain Thom spectrum.
Putting together these two facts one can show that, under some additional conditions on
the connectivity of the inclusion ∂(M#Wg) ↪→M#Wg, the groups Hk(BDiff∂(M#Wg))
are finitely generated if π1(M) is finite, provided g � k.

(2) Goodwillie–Klein–Weiss [GKW]. They show that if Md and Nd are compact mani-
folds with boundary, and if M can be built from a disk by attaching handles of index
≤ d− 3 then

Emb(M,N) ' lim(T1 ← T2 ← · · · )
where T1 = Bun(TM, TN) is the space of bundle isomorphisms between the tangent
bundles of M and N , and the maps Tk → Tk−1 are fibrations whose fibers Lk are certain
section spaces of a fiber bundle whose base space and fiber are made out of configuration
spaces of k points in M and N . The point is that layers Lk have an explicit enough
description to conclude, by an inductive argument, that if π1(M) and π1(N) are both
finite, then the homotopy groups πk(Emb(M,N)) are finitely generated.

1Actually a complete proof appeared in 2012 by Waldhausen–Jahren–Rognes.
2Conjecturally this is not optimal. Manuel Krannich has shown that rationally this map is about d connected

for all 2-connected compact manifolds.
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(3) The Kupers–Weiss fiber sequence.
Throughout we fix a d-dimensional compact smooth manifold M and a codimension

0 submanifold N ⊂ ∂M of its boundary, and we thicken it to an N × I ⊂ M , where
I = [0, 1].

The Weiss fiber sequence expresses BDiff∂(N×I) as the difference between BDiff∂(M)
and B Emb

∼=
∂/2(M), where Emb

∼=
∂/2(M) is the topological monoid of self-embeddings of

M which are the identity on a neighborhood of ∂M − int(N), and are isotopic (through
such embeddings) to a diffeomorphism that is the identity on a neighborhood of ∂M .
More precisely, the Weiss fiber sequence is

(1) BDiff∂(N × I)→ BDiff∂(M)→ B Emb
∼=
∂/2(M).

In order to obtain (1) we set V := M − int(N × [0, 1]). The boundary of V decomposes
as

∂V = (∂M − int(N)) ∪ ∂1V
for some other manifold ∂1V .

We will use the notation ∂/2 = ∂M − int(N). By the isotopy extension theorem3,
restriction gives rise to a fibration

Diff∂(M − int(V ))→ Diff∂(M)→ Embext
∂/2(V,M)

where the last term is the space of embeddings of V into M which restrict to the inclusion
on ∂/2 and are isotopic to an embedding that extends to a self-diffeomorphism of M .
Observe that the fiber of this fibration is exactly Diff∂(N × I). The base of the fibration
can be identified with Emb

∼=
∂/2(M) because V and M are isotopy equivalent. In total,

we get a fibration sequence

Diff∂(N × I)→ Diff∂(M)→ Emb
∼=
∂/2(M)

which deloops to (1) as all the maps are compatible with the operation of composition.

It turns out that one can use the operation “stacking in the interval direction” to give a unital
topological monoid model for BDiff∂(N × I), and a right BDiff∂(N × I)-module model for
BDiff∂(M). This gives rise to a delooping of BDiff∂(N × I) and yields a delooped Weiss fiber
sequence (established by A. Kupers)

(2) BDiff∂(M)→ B Emb
∼=
∂/2(M)→ B2 Diff∂(N × I)

This sequence is the result of a more general fact: if X is a simplicial or topological right
A-module, for A some path-connected unital topological monoid, then there is a fibration
sequence of the form

X → X �A→ BA.

3It is perhaps safer to apply the isotopy extension theorem to proper embeddings. So one should change V by
another isotopy equivalent manifold V ′ such that ∂V ′ = ∂/2. For example V ′ = M − int(N) × I.
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In our case, X = BDiff∂(M) and A = BDiff∂(N × I). The most involved step is to identify
BDiff∂(M) �BDiff∂(N × I) with B Emb

∼=
∂/2(M). This can be done by showing that there is a

weak homotopy equivalence

BDiff∂(M) �BDiff∂(N × I)→ B Emb
∼=
∂/2(M)× ∗ �BDiff∂(N × I)→ B Emb

∼=
∂/2(M).

In the end this also follows from the isotopy extension theorem.

5. The strategy to prove Theorem 1.1

We will only discuss here finite generation of the higher homotopy groups.
Firstly we pick a handle decomposition of M and write M≤2 for the codimension 0 submanifold

of M consisting of handles of index ≤ 2. Let K denote the closure of the complement of M≤2.
By restricting a diffeomorphism of M to M≤2 we obtain a fibration4

Emb(M≤2,M)→ BDiff∂(K)→ BDiff(M)

Observe that from [GKW] the homotopy groups of the fiber are finitely generated. Thus, from
the long exact sequence in homotopy groups, we see that it suffices to show that the homotopy
groups of BDiff∂(K) are finitely generated.

To analyze the latter we use a Weiss fiber sequence

BDiff∂(∂K × I)→ BDiff∂(K)→ B Emb
∼=(K)

We can apply [GKW] to the base space to conclude that its homotopy groups are finitely
generated. So it suffices to show that BDiff∂(∂K × I) has finitely generated homotopy groups.
Notice that it’s just ok to show that all the homotopy groups of B2 Diff(∂K × I) are finitely
generated. But this is a simply connected space and by a theorem of Serre its homotopy groups
are finitely generated if and only if its homology groups are so. We will try to show this instead.
The first thing to notice is that the boundary of K does not change if we “stabilize it by Wg’s”.
So we can use the following Weiss fiber sequence

BDiff∂(K#Wg)→ B Emb
∼=(K#Wg)→ B2 Diff∂(∂K × I)

Now [GRW-F] should imply that the homology groups of the fiber are finitely generated as
long as g is very large (which is ok to assume here). But it’s more subtle than this. Since
there is a nonempty boundary which is not necessarily highly connected, [GRW-F] identifies the
stable homology with a homotopy quotient of a component of the infinite loop space of the MT
spectrum. This actually creates a major difficulty with this argument and it took us several
pages to go around it. But I will omit the details here. We will just carry on assuming that the
desired groups are finitely generated, but at least you know that I am lying to you at this point.

Having said that, a straightforward spectral sequence argument now tells us that the homology
groups of B2 Diff∂(∂K × I) are finitely generated if those of B Emb

∼=(K#Wg) are.
What we know about B Emb

∼=(K#Wg) is that its homotopy groups are finitely generated, by
[GKW]. How do we conclude anything about its homology groups? Here is a general fact:

Fact. Let X be a path-connected space such that π1(X) is a group of type F∞ and its
higher homotopy groups are finitely generated. Then the homology groups of X are finitely
generated. �

Because of this, we are left to show that π1(B Emb
∼=(K#Wg)) = π0(Diff∂(K#Wg)) is a group

of type F∞. To do this one can extract, from the bottom of the long exact sequence of the Weiss
fiber sequence, an extension of groups

1→ A→ π0(Diff∂(K#Wg))→ π0(Emb
∼=(K#Wg))→ 1

where A is an abelian group.

4I should pick some components of the space of embeddings for that to be a fiber sequence, but I will not worry
about it here.
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We would like to argue as follows: since K#Wg has finite fundamental group, Triantafillou’s
result (see the Remark at the end of Section 1) implies that the mapping class group of K#Wg

is commensurable with an arithmetic group. Therefore A would be a finitely generated abelian
group (by a result of Malcev) and therefore π0(Emb

∼=(K#Wg)) would be a group of type F∞
(Because in an extension of groups, if the leftmost and middle terms are of type F∞ so must be
the rightmost term). But this argument breaks here: Sullivan and Triantafillou’s arithmeticity
results are unknown for manifolds with boundary. This is very sad. So we had to tweak the
argument to avoid having to use such inexistent arithmeticity result (which by the way, it would
be wonderful if somebody proves it). I will not explain how we did it here, though. But you
should not feel disappointed, I have just explained to you the “backbone” of the proof. The
other tricks and details will be revealed only to true manifold topologists.
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