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0 Talk 0: Introduction (Inna Zakharevich)

References: [Jes68; Dup01; Syd65].

0.1 Scissors congruence

How do we assign a number to area? In ancient Greece, numbers were things
which were associated to lengths, so asking for area to correspond to a number
didn’t really make sense. Euclid defined area as “that which does not change
under decomposition.” In more modern language, we have the following defini-
tion:

Definition 0.1 (Scissors congruence). Two polygons P and Q are scissors
congruent if P = ·∪Pi and Q = ·∪Qi such that Pi ∼= Qi for all i. That is, there
is an isometry gi ∈ Isom(E2) such that giPi = Qi.

Notation. By P = ·∪Pi, we mean that P = ∪Pi and the intersections Pi ∩ Pj
have measure zero.

Theorem 0.2. P and Q are scissors congruent iff area(P ) = area(Q).

Remark 0.3. This theorem tells us Euclid’s notion of area was well-defined.
The forward implication of the theorem is not too bad so we will focus on the
converse.

Proof idea (⇐). First note that it suffices to show that any polygon P is scis-
sors congruent to the rectangle 1× area(P ). Moreover, we can triangulate any
polygon so in fact it suffices to show it when P is a triangle. But we can turn
any triangle into a base×height

2 rectangle like this:

So we just need to show that any rectangle R is scissors congruent to the 1 ×
area(R) rectangle. Finishing this part is left as an exercise.

Challenge. Inna collects different proofs that a rectangle R is scissors congru-
ent to the 1× area(R) rectangle, so if you come up with an interesting one, let
her know.

Remark 0.4. Note that we didn’t need to use all of the isometry group of
E2. Turning the triangle into a rectangle required a 180◦ rotation, and the rest
(including the challenge/finishing the proof) can be done using only translations.
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Exercise 0.5. Figure out the 0-dimensional and 1-dimensional cases.

Question 0.6 (Hilbert’s 3rd Problem). Is scissors congruence a well-defined
notion of volume? That is, if two polyhedra1 have the same volume, are they
scissors congruent? Can we find a counterexample?

The first question to ask is how many cuts we’re allowed to make. If we
allow infinitely many cuts, then the techniques of calculus tell us yes, that two
polyhedra of the same volume are scissors congruent. But what if we only allow
finitely many cuts? In 1901, shortly(!) after Hilbert proposed this problem, it
was answered by his student(!!) Dehn.

Theorem 0.7 (Dehn, 1901). The cube and the regular tetrahedron are not
scissors congruent.

Remark 0.8. To prove this, Dehn constructs something called the Dehn in-
variant D and shows that D(cube) = 0 but D(tetrahedon) ̸= 0.

0.2 The Dehn invariant

Definition 0.9 (Dehn invariant). The Dehn invariant of a polyhedron P is

D(P ) =
∑

edges e

length(e)⊗ angle(e)/π.

Remark 0.10. This invariant D(P ) lives in the tensor product R⊗Z R/Z, but
tensor products were not defined until 1938! In 1965, [Syd65] showed that the
Dehn invariant and volume completely characterize scissors congruence.

Theorem 0.11 (Sydler, 1965). If vol(P ) = vol(Q) and D(P ) = D(Q) then P
is scissors congruent to Q.2

Definition 0.12 (The polytope algebra). Let X be a geometry, usually hyper-
bolic Hn, spherical Sn, or Euclidean En, and let G be a group of isometries, for
example G = Isom(X)). The polytope algebra is defined as

P(X,G) := Z[Polytopes in X]/ ∼

where [P ·∪Q] ∼ [P ] + [Q] and [P ] ∼ [gP ] for all g ∈ G.

Remark 0.13. The first relation lets us decompose elements into smaller pieces
and the second relation lets us consider isomorphism classes under the group
action.

Theorem 0.14. If X is Euclidean, spherical, or hyperbolic, then P and Q are
scissors congruent iff [P ] = [Q] in P(X,G).

13-dimensional polytopes.
2A great reference for this is Jessen’s 1968 paper [Jes68]; he reframes this as a group

theoretic problem.
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Example 0.15 (Non-example). This does not hold if X is taken to be the
hyperbolic plane along with ideal points:

In the picture above, the red triangle can be reached from the blue triangle by
an element of the isometry group (where both triangles have their third vertex
the ideal point at infinity), and so the decomposition into pieces 1, 2, 3 above
implies [2] = [3] in P(X,G). However, 2 cannot be scissors congruent to 3
because no isometry will move the ideal vertices of 2 to the non-ideal vertices
of 3!

Question 0.16 (Generalized Hilbert’s 3rd Problem). Can we understand P(X,G)
for X = En,Sn,Hn and G ≤ Isom(X) a subgroup of isometries?

0.3 Goncharov’s conjecture

In dimensions 3 and 4, we mostly understand what is going on (except maybe
the hyperbolic setting), but in general for dimensions ≥ 5, this is completely
unknown. However, Goncharov had a conjecture which brings K-theory into the
picture, and we will state the special case for H2n+1.

Conjecture 0.17 (Goncharov’s Conjecture). In dimension 2n+ 1, we have 2n
Dehn invariants Di. We can intersect their kernels and map into R via volume,

n⋂
i=1

kerDi
vol−−→ R.

If the Dehn invariants and volume tell us everything about scissors congruence,
the volume map should be injective. Goncharov conjectured that the volume
factored through a somewhat mysterious group:

n⋂
i=1

kerDi (grγn+1K2n+1(C)⊗ ε(n+ 1))−

R

f

vol Br
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where Br is the Borel regulator. We have have the following conjectures
concerning this diagram:

• The map f exists3,

• f is injective, and

• The Borel regulator Br is injective for C.

The Borel regulator is injective in many cases, e.g. if C is replaced with a
number field, although injectivity over C is currently unknown.

We can say a bit more about the mystery group appearing as the image
of f : the ε is a twisting factor; grγn+1 is the grading that comes from the
γ-filtration, which is conjecturally the same as the rank filtration which corre-
sponds to picking out the dimension, and the superscript (· · · )− denotes taking
the −1-eigenspace under the map induced by complex conjugation. Compu-
tational evidence indicates that these conjectures are reasonable and stand a
chance of being true.

0.4 Some ideas behind K-theory

Remark 0.18. The formula for scissors congruence naturally leads us into the
world of algebraic K-theory, where we have the definition for any (commutative)
ring R with unit

K0(R) := Z[finitely generated projective R-modules]/ ∼

where [B] = [A] + [C] for every exact sequence A ↪→ B ↠ C. In particular,
notice that this implies [A] = [A′] if A ∼= A′, so this should be reminiscent of
Definition 0.12.

The goal of K-theory is to construct groups Kn(R) for all n ≥ 0 which contain
useful information about R. We can see already that K0 is not enough: all fields
are the same to K0 since K0(F ) ∼= Z for any field F . We can start to detect the
difference at the level of K1, since K1(F ) ∼= F×, and of course F× will look very
different for different fields.

A breakthrough came when Quillen constructed a space (really, a spectrum)
K(R) and defines Kn(R) := πnK(R). To construct this space, we make two
observations:

• K0(R) has a three-term relation [B] = [A] + [C] which is induced by a

3There is a more general formulation where the index on the K-group can vary.
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triangle instead of just an arc:

That is, K0 is built from loops and hence should be realized as π1 of
something. Thus our K-theory space should be a loop space.

• Our construction relies on the existence of two notions of “smallness.” For
example, kernels and cokernels or inclusions and quotients.

Definition 0.19 (The Q construction). The Q-construction on the exact cate-

gory C = Modf.g.proj(R) of finitely generated projective R-modules gives a new cat-
egory QC whose objects are the objects of C and morphisms generated by monics
and epi-ops in C. This encodes the two ways for one object to be “smaller” than
another object in C. Composition is given by pullback:

X ×Z Y

X Y

Z

Note that for all objects A, we have a loop 0 ↪→ A ↞ 0 and for every exact
sequence A ↪→ B ↠ C we get the picture above.

Definition 0.20 (Q-construction of K-theory).

K(R) := BQC.

Upshot: Quillen is brilliant.

Remark 0.21. With scissors congruence, there is only one way of being smaller:
we have inclusions but not quotients. We introduce a second way for P to be a
subobject of Q:

(1) P ↪→ Q and (2) P ↪→Q,

noting that the only difference is that the arrows are now decorated with differ-
ent colors. These arrows now live in different worlds and cannot be composed.
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The role previously played by kernels and cokernels is now played by com-
plements. We have a commuting rule for the black and blue arrows:

P ∩Q P

Q P ∪Q

Example 0.22. If we have a chain of inclusions P ↪→ Q ↪→R, then this is the
same as P ↪→S ↪→ R for S = (R \Q) ∪ P :

That is, we can swap the colors of the arrows by replacing Q with the object S
whose union (resp. intersection) with Q is R (resp. P ).

We can record this data in the category of n-polytopes under isometric em-
beddings, and try to do K-theory on it. To do this, we develop CGW categories
and a sort of “combinatorial” higher K-theory for them.

Example 0.23. If we restrict to line segments, then we can compute

Ki(segments, translations) ∼= R∧i+1

where the wedge is taken over Z, and

Ki(segments, isom) ∼=
{

R∧i+1

i even,
0 i odd,

where the isometry group is comprised of translations and reflections.
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1 Talk 1 & 2: Scissors Congruence: Classical
and Homological Perspectives (Claire Mirocha)

References: [Jes68; Dup01; Syd65; Sah81; DS82; DPS88].

Outline of topics

1. Classical scissors congruence.

2. The Dehn invariant D. Main reference: [Jes68], Secondary reference:
[Dup01; Syd65].

3. Scissors congruence as homology.

4. The Steinberg module and the Tits building. Main reference: [Ch. 2;
3; Dup01], Secondary reference: [Sah81; DS82; DPS88].

1.1 Classical scissors congruence

Setup and key definitions:

• X is a topological space (usually we’ll take X = Rn, but can also be
Hn,Sn)

• I(X) is the group of isometries of X (note the case I(Rn) = T (n)⋊O(n),
where T (n) is the group of translations.)

• A geometric n-simplex in X is the convex hull of (n+1)-many points in
X, denoted σ = |(a0, . . . , an)|

• A polytope is a finite union of simplices.

• We say that a polytope P decomposes into P ′ and P ′′ (written P =
P ′ ⊔ P ′′) if P = P ′ ∪ P ′′ and the interiors of P and P ′′ are disjoint.

• P and P ′ are G-scissors congruent (written P ∼G P ′) if P =
⊔
i Pi and

P ′ =
⊔
i P

′
i , and for all i, we have Pi = giP

′
i for some g ∈ G.

• The G-scissors congruence group P(G,X) is the free abelian group
generated by classes [P ] for P a polytope in X, with the relations:

(i) [P ] = [P ′] + [P ′′] if P = P ′ ⊔ P ′′

(ii) [P ] = [gP ] for all g ∈ G

1.2 The Dehn invariant

Question 1.1 (Hilbert’s 3rd Problem). Does volume determine scissors con-
gruence for polyhedra of dimension 3?
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Answer 1.2. No. Dehn found an invariant D of scissors congruence which is
zero for the cube and nonzero for the regular tetrahedron, regardless of vol-
ume. Furthermore, the following theorem due to Dehn-Sydler tells us that the
Dehn invariant is not only necessary, but also sufficient (along with volume) to
determine scissors congruence completely:

Theorem 1.3 (Dehn-Sydler). For two polyhedra P and P ′ in Rn, if vol(P ) =
vol(P ′) and D(P ) = D(P ′), then P ∼ P ′.

Remark 1.4. Note that this is not true for X = Sn or X = Hn; in fact volume
may have countable image in R, in these cases! So what is D, then?

Definition 1.5 (The Dehn invariant). TheDehn invariant is a R⊗ZR/Z-valued
map D on polytopes, defined by

P 7→
∑

edges α of P

l(α)⊗Z θ(α)/π

where l(α) and θ(α) are the length and the dihedral angle, respectively, of the
edge α.

Proposition 1.1. The volume map vol : ker(D)→ R is an isomorphism.

Proof sketch. The volume map is injective; this is the content of the Dehn-
Sydler theorem, because if Dehn invariants of two polytopes are equal (and in
fact, both zero), then volume determines the scissors congruence class. The
volume map is surjective due to the fact that we can scale polyhedra in Rn, and
this is a similarity transformation. It is a homomorphism because it is clearly
additive under unions of polyhedra whose interiors are disjoint.

Proposition 1.2. The cokernel of D is the Z-module Ω1
R/Z of Kähler differen-

tials.

Proof sketch. We’re considering the exact sequence

P D→ R⊗Z R/Z↠ coker(D) = (R⊗Z R/Z)/ im(D)→ 0

where P is the free abelian group generated by polyhedra. Jessen shows that
maps R⊗Z R/Z→ V that vanish on im(D), where V is an R-vector space, are
precisely those of the form

ϕ(l ⊗ θ) = ld
sin(θ)

cos(θ)
,

where d is a derivation R→ V . So, in particular, the map R⊗ZR/Z→ coker(D)
is determined by all derivations R→ (R⊗ZR/Z)/ im(D), which is exactly Ω1

R/Z.

See [Jes68] for details.



1.3 Scissors congruence in homological terms 12

1.3 Scissors congruence in homological terms

Remark 1.6. Recall the G-scissors congruence group P(X,G) and its two
relations (i) and (ii). Both of these relations can be expressed in homological
terms:

Proposition 1.3. P(X, {1}) ≃ Hn(C∗(X)/C∗(X)n−1), where C∗(X) is the
simplicial chain complex of X, with generators of Ck(X) being k-simplices
(a0, . . . , ak) for ai a point in X, and boundary map defined by

∂ : (a0, . . . , ak) 7→
k∑
i=0

(−1)i(a0, . . . , âi, . . . , ak))

and Ck(X)n−1 consists of k-simplices of dimension n− 1 or smaller.

Proof. This statement is a homological version of the relation (i) [P ] = [P ′] +
[P ′′] if P = P ′⊔P ′′. To see this, first fix an orientation on X. Then, depending
on whether the ordering on the vertices of a simplex σ give it an orientation
that agrees or disagrees with that of X, we can assign an orientation function ϵ
for simplices, such that ϵ(σ) = ±1, with 1 denoting matching orientations and
−1 denoting differing orientations.

Now, define φ : Cn(X)→ P(X, {1}) by setting its value on a single simplex
σ (and extending linearly) as follows:

φ : σ 7→


[|σ|] if ϵ(σ) = 1 and σ is proper

−[|σ|] if ϵ(σ) = −1 and σ is proper

[|σ|] if ϵ(σ) = 1 and σ is degenerate (not proper)

The idea of the proof is that φ induces an isomorphism on homology:

φ∗ : Hn(C∗(X)/C∗(X)n−1)
∼→ P(X, {1}).

Note that φ vanishes of Cn(X)n−1 by definition of the degenerate case. φ also
vanishes on boundaries ∂Cn+1(X), by a topological argument.

See [Dup01] for details; essentially there exist two decompositions of a sim-
plex σ such that the differently-signed terms in the alternating sum ∂σ also
differ in orientation, so signs cancel and φ sends the sum to 0). φ is surjective
because we can decompose any polyhedron into positively-oriented n-simplices,
and their sum will map to P . Alternatively, φ is a bijection because one may
construct an inverse using the simplicial approximation theorem.

Proposition 1.4.
P(X,G) ≃ H0(G,P(X, {1})).

Proof. This statement is a homological version of the relation (ii) [P ] = [gP ]
for all g ∈ G; in other words it is the “G” part of “G-scissors congruence”. We
can see this directly from the relation on P(X,G), and the definition of group
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homology.4 Recall that group homology Hi(M,G) can be defined as the ith
left-derived functor of the functor that sends a G-module M to its coinvariants
MG := M/⟨m − gm⟩g∈G. So, H0(G,P(X, {1})) is precisely the coinvariants
of the group action of G on P(X, {1}), and this agrees with our definition of
P(X,G) as P(X, {1})/⟨[P ]− [gP ]⟩g∈G.

Definition 1.7 (The Steinberg module). The Steinberg module of X is the
I(X)-module

St(X) := Hn(C∗(X)/C∗(X)n−1)

Remark 1.8. Above in 1.3, we had a group isomorphism φ∗ : P(X, {1}) →
Hn(C∗(X)/C∗(X)n−1), but this was not quite an isomorphism of I(X)-modules,
which is what we have for St(X). This is because φ introduces a twist by
determinant. That is, we’ll denote a twisted action of I(X) on Cn(X) by

g · (a0, . . . , an) := det(g)(ga0, . . . , gan).

In other words, we transform a polytope as usual by the isometry of X, and we
also multiply by the determinant of g (which denotes whether it is orientation-
preserving or orientation-reversing). Then one can check that the following
diagram commutes:

Cn(X) P(X, {1})

Cn(X) P(X, {1})

φ

gtwist· g·

φ

Thus P(X, {1}) ≃ St(X)t as I(X)-modules, where (−)t denotes the twisted
action.

Proposition 1.5. Combining our results, we have that

P(X,G) ≃ H0(G,St(X)t).

Upshot 1.9. The takeaway here is that we can talk aboutG-scissors congruence
groups as the “homology of a Lie group made discrete.” In other words, P(X,G)
is the coinvariants of the Steinberg module St(X)t under the action ofG = I(X),
where we ignore the topology of G.

1.4 The Steinberg module is the homology of the Tits
building

Remark 1.10. Above, we showed that the Steinberg module is of interest
because its coinvariants are precisely the G-scissors congruence groups. Next,
we will see that the Steinberg module itself has a topological origin, as the
homology of a space called the Tits building.

4In fact, we only need degree 0
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Definition 1.11 (The Tits building). The Tits building T (X) of a vector
space X is the geometric realization of the poset of proper, nonzero subspaces
of X, ordered by inclusion. Its vertices are proper nonzero subspaces of X, and
a set of (k + 1)-many vertices forms a k-simplex precisely when the vertices Vi
form a flag V• = V0 ⊂ V1 ⊂ · · · ⊂ Vk+1.

Definition 1.12 (The link of a vertex). For a poset T , define the link of a
vertex t by

Lt := {s ∈ T | s < t or s > t}.

Example 1.13. The Tits building T ((Z/2Z)3) consists of 14 vertices and 21
1-simplices:

Theorem 1.14 (Solomon-Tits). For X = Rn, the Tits building T (X) is a
wedge sum of (possibly infinitely many) (n− 2)-spheres.

Proof. We will use induction on n = dim(X). Note that when n = 1, T (X) = ∅,
because there are no proper nonzero subspaces to form the vertices. We will use
n = 2 as a more instructive base case, for we have:

{Flags of proper nonzero subspaces of X} ↔ {Lines through 0 in X}

So vertices are precisely lines through the origin, and there are no k-simplices for
k ≥ 1. Thus we have T (X) ≃

∨
S0, a wedge sum of (infinitely many) 0-spheres.

For the inductive step, our hypothesis is that T (Rk) ≃
∨
Sk−2, for all

k < n; we’ll denote X := Rk. First, fix any line l ⊂ X. Then, define

Y := T (X) \ {(n− 1)-dimensional subspaces not containing l}.

Note that Y is contractible; see below for a schematic drawing, or [Qui73] for a
full topological proof of this claim. Collapsing Y to a point within X yields a
wedge sum of coned-off links |Lt|, where t is a vertex, in particular an (n− 1)-
dimensional subspace that does contain l.
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A key observation: the link |Lt| consists of all subspaces of t, so

|Lt| ≃ |T (Rn−1)| ≃
∨
Sn−3,

by our induction hypothesis – note that we allow |Lt| ≃ ∗ for an empty wedge
sum. Thus, we have:

|T (X)| ≃ |T (X)|/Y ≃
∨∑

(|Lt|) ≃
∨
Sn−2

Corollary 1.14.1. T (X) has nonzero homology only in degree n − 2; we will
see that this homology is isomorphic to St(X).

Example 1.15. Let’s look at an explicit example, for X = (Z/2Z)3. We will
show that T ((Z/2Z)3) ≃ S1. Because the field here is finite, the 3-dimensional
vector space yields a Tits building with finitely many vertices; it is depicted
below as a graph with 14 vertices. Fixing a vertex l := ⟨e1⟩, we can define Y ,
which in this case is a maximal tree in the graph T (X). Contracting Y leaves
a wedge sum of 8 circles.
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Remark 1.16. Now, it remains to see not just that T (X) has nonzero homology
only in degree n − 2, but also that this homology is indeed isomorphic to the
Steinberg module St(X). The claim is the following:

Theorem 1.17.

Hn−1(T (X)) ∼= St(X) := Hn(C∗(X)/C∗(X)n−1)

Remark 1.18. Note that homology has suddenly shifted from degree n− 2 to
n − 1 in the statement above; this is an artifact of whether we define the Tits
building to consist of simplices of flags of proper nonzero subspaces (as Quillen
does, and as we’ve done above), or whether we “force” flags to include either
{0} or X, which induces a shift in homological degree (as Dupont does).

Proof. Omitting the technical details relating to these differing conventions,
[Dup01] shows that the above isomorphism is induced by the map

h : Cn(X)→ Cn−1(X)

(a0, . . . , an) 7→
∑

permutations
π of {0,...,n}

sign(π)(Uπn−1 ⊂ · · · ⊂ Uπ0 ),

where the image is a sum of (n− 1)-simplices with Uπi := ⟨aπ(i+1),...,aπ(n)
⟩.



1.4 The Steinberg module is the homology of the Tits building 17

Example 1.19. We’ll write out an example of the map h above for n = 2.
Consider the 2-simplex σ = (a0, a1, a2) ∈ C2(R2):

We have the sum:

h(σ) = (⟨a2⟩ ⊂ ⟨a1, a2⟩) (π = 012)

− (⟨a2⟩ ⊂ ⟨a0, a2⟩) (π = 102)

− (⟨a1⟩ ⊂ ⟨a2, a1⟩) (π = 021)

− (⟨a0⟩ ⊂ ⟨a1, a0⟩) (π = 210)

+ (⟨a1⟩ ⊂ ⟨a0, a1⟩) (π = 201)

+ (⟨a0⟩ ⊂ ⟨a2, a0⟩) (π = 120)

∈ Cn−1(T (X))

Note that h commutes with the natural I(X) actions on simplices.
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3 Talk 3: Rational Structures (Oliver Wang)

Reference: [Dup01, Chapter 4].

3.1 The translational scissors congruence group

Remark 3.1. To motivate translational scissors congruence groups, let us first
consider the case where X = En. The isometry group of X decomposes as a
semidirect product Isom(En) ∼= Rn ⋊On where Rn acts by translation and On
acts by linear isometries. The scissors congruence group P(X, Isom(En)) can
be expressed as iterated coinvariants as follows.

P(X, Isom(En)) ∼= H0(Isom(En);P(X, {1}))
∼= H0(On;H0(Rn;P(X; {1})))

As before, we regard Rn and On as discrete groups. Recall that

P(X; {1}) ∼= Hn

(
C•(X)

C•(X)n−1

)
where

• Cq(X) = Z[(q+1)-tuples of points in X],

• Cq(X)n−1 = Z[(q+1)-tuples of points in a proper affine-linear subspace of X].

Note that Cq(X)/Cq(X)(n−1) = 0 when q ≤ n − 1. In particular, P(X; {1}) is
the cokernel of the map

Cn+1(X)

Cn+1(X)n−1
→ Cn(X)

Cn(X)n−1
.

For any discrete group G and any Z[G]-module M ,

H0(G;M) ∼=M ⊗Z[G] Z

where Z has the trivial action. Since tensoring is left exact,

H0 (Rn;P(X, {1})) ∼= H0

(
Rn;

C•(X)

C•(X)n−1

)
∼= H0

(
C•(X)/Rn

C•(X)n−1/Rn

)
.

Everything in this picture except for the orthogonal group can be generalized to
finite dimensional vector spaces over a characteristic zero field. This motivates
the following definition:

Definition 3.2 (Translational scissors congruence groups). Let F be a charac-
teristic 0 field and let V be an n-dimensional F vector space. The translational
scissors congruence group of V is

PT (V ) := Hn

(
C•(V )/V

C•(V )n−1/V

)
.

Question 3.3. What is the structure of PT (V )?
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3.2 Group homology

Remark 3.4. Recall that the homology of a group with coefficients in a Z[G]-module
M is defined to be

H∗(G;M) := TorZ[G]
∗ (Z,M) = H∗(P• ⊗Z[G] M)

where P• is a projective resolution of Z by Z[G]-modules. The standard res-
olution is the free resolution C•(G) of Z by Z[G]-modules given by Cq(G) =
Z[G]q. The differentials are the typical alternating sums. Note that when
X = G this coincides with the definition of the chain complex C•(X) above. It
is sometimes convenient to use bar notation to work with this complex. This
is given by the following identification:

g[|g1|g2| · · · |gq] := (g, gg1, gg1g2, · · · , gg1g2 · · · gq).

Definition 3.5 (Eilenberg-Zilber map). The Eilenberg-Zilber map is the
map of chain complexes given by

EZ : C•(G)⊗ C•(G)→ C•(G×G)

g[g1| · · · |gp]⊗ g′[g′1| · · · |g′q] 7→
∑

(p,q)−shuffles σ

sign(σ)(g, g′)[hσ(1)| · · · |hσ(p+q)],

where h1 = (g1, 1), · · · , hp = (gp, 1), hp+1 = (1, g′1), · · · , hp+q = (1, g′q).

Remark 3.6. Geometrically, we may interpret the Eilenberg-Zilber map as
triangulating the product of two simplices. Suppose G = R and consider the
element 0[1]⊗ 0[1] ∈ C1(R)⊗ C1(R). We can compute

EZ(0[1]⊗ 0[1]) = (0, 0)[(1, 0), (0, 1)]− (0, 0)[(0, 1)].

Unpacking the bar notation, we obtain

EZ((0, 1)⊗ (0, 1)) = ((0, 0), (1, 0), (1, 1))− ((0, 0), (0, 1), (1, 1)).

This should be interpreted as saying that the product [0, 1] × [0, 1] can be tri-
angulated as the union of the simplices with vertices ((0, 0), (1, 0), (1, 1)) and
((0, 0), (0, 1), (1, 1)).
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Remark 3.7. If G is abelian then addition is a group morphism. Composing
with EZ yields the Pontryagin product, making H∗(G) into a graded commuta-
tive ring:

H∗(G)⊗Z H∗(G) H∗(G×G) H∗(G)
EZ +G

Λ

Observation. Note:

• H0(G) ∼= Z.

• H1(G) ∼= G is G is abelian.

• If G is torsionfree, then there is an isomorphism
∧•

ZH1(G)→ H∗(G).

• If U is a Q-vector space, then there is an isomorphism
∧•

QU → H∗(U).

The main takeaway is that for Q-vector spaces U ,

H∗(C•(U)/U) ∼=
∧•

Q
U.

3.3 The Structure of PT (V )

Remark 3.8. Our goal is to compute

Hn

(
C•(V )/V

C•(V )n−1/V

)
.

For a vector space U , define the chain complex C̃•(U) to be the augmented
chain complex

C̃•(U) := · · · → C2(U)→ C1(U)→ C0(U)→ Z

where Z is the term in degree −1. We want to consider the following double
complex:

Ap,q :=


C̃q(V )/V p = −1⊕
(U0⊇···⊇Up)∈T (V )p

C̃q(Up)/Up p ≥ 0.

The horizontal maps Ap,q → Ap−1,q are constructed from the face maps in the
Tits building, and the vertical maps Ap,q → Ap,q−1 come from the differentials

in the complex C̃•(Up).



3.3 The Structure of PT (V ) 21

The double complex is pictured below, where we note that the Z in the
bottom left corresponds to the index (−1,−1):

C2(V )/V
⊕

T (V )0
C2(U0)/U0

⊕
T (V )1

C2(U1)/U1

⊕
T (V )2

C2(U2)/U2)

C1(V )/V
⊕

T (V )0
C1(U0)/U0

⊕
T (V )1

C1(U1)/U1

⊕
T (V )2

C1(U2)/U2

C0(V )/V
⊕

T (V )0
C0(U0)/U0

⊕
T (V )1

C0(U1)/U1

⊕
T (V )2

C0(U2)/U2

Z
⊕

T (V )0
Z

⊕
T (V )1

Z
⊕

T (V )2
Z

∼= ∼= ∼= ∼=

If we take the horizontal homology first, we obtain the following E1-page.

C2(V )
V /C2(V )n−1

V
0 0 0

C1(V )
V /C1(V )n−1

V
0 0 0

0 0 H1(T (V )) H2(T (V ))

0 0 H1(T (V )) H2(T (V ))

∼= ∼=

It follows that the differentials on E2 vanish and there are no extension
problems. We see that the homology of the double complex is

Hk(A•,•) = Hk+1

(
C•(V )

V
/
C•(V )n−1

V

)
,

noting the degree shift. If we take the vertical homology of A•,• first, we end
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up with the following E1 page:

H2(V )
⊕

T (V )0
H2(U0)

⊕
T (V )1

H2(U1)
⊕

T (V )2
H2(U2)

H1(V )
⊕

T (V )0
H1(U0)

⊕
T (V )1

H1(U1)
⊕

T (V )2
H1(U2)

0 0 0 0

0 0 0 0

This yields a spectral sequence

E2
p,q =

{
H̃p(T (V ); ΛqQg) q > 0

0 q = −1, 0
⇒ Hp+q+1

(
C•(V )/V

C•(V )n−1/V

)
where ΛqQg is a certain local system associated to (U0, · · · , Up) 7→

∧q
Q Up.

Remark 3.9. Consider the dilation operator µa : V
·a−→ V , multiplication by

an integer a > 1 on V . For any U ⊆ V , this induces a chain endomorphism
C•(U)/U⟲ and thus a morphism of spectral sequences. On E1

p,q =
⊕∧•q

Up,
this induces x 7→ xaq. One can show that for r > 1 this produces a diagram
commuting with the differentials which ultimately forces dr = 0.

Theorem 3.10. An analysis of the above spectral sequence yields the following
conclusions:

• H∗

(
C•(V )/V

C•(V )n−1/V

)
is a Q-vector space and thus so is PT (V ).

• There is a splitting

PT (V ) ∼=
⊕

1≤q≤n

H̃n−q−1

(
T (V ); ΛqQg

)
into aq eigenspaces for µa.

• H̃p

(
T (V ); ΛqQg

)
= 0 for p+ q < n.

Example 3.11. What are these eigenspaces? The unit square is a aq eigenvec-
tor for a = q = 2:
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Remark 3.12. The groups H̃p(−) in Theorem 3.10 are similar to reduced ho-
mology in the sense that they are the homology groups of an augmented chain
complex. However, H̃0(−) and H̃−1(−) need not vanish. Indeed, H̃−1(T (V ); Λng)
consists of the an eigenvectors and Example 3.11 shows that these eigenvectors
exist.

Theorem 3.13. The map ΛqQg → ΛqFg given by changing the field induces an
isomorphism

H̃n−q−1

(
T (V ); ΛqQg

) ∼=−→ H̃n−q−1 (T (V ); ΛqFg) .

Using that Un−q has dimension at most q − 1, there is a containment

PT (V ) ⊆
⊕∧q

F
Un−q−1

∼=
⊕

F,

and Hadwiger invariants

PT (V )→
⊕∧q

F
Un−q−1 →

⊕∧q

F
Un−q−1 → F

Slogan 3.14. In order to understand PT (V ), one should study volumes, mea-
sures, and integration on subspaces of V .
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4 Talk 4: Hyperbolic Low-dimensional Theo-
rems (Aurel Malapani)

References: [DPS88], [DS82, p. 82], and [Dup01].

4.1 Hyperbolic scissors congruence and the Bloch-Wigner
sequence

Remark 4.1. Outline for the talk:

• Hyperbolic space and the half-plane model.

• The extended hyperbolic place, P(H), and P(∂H).

• The Bloch-Wigner spectral sequence.

4.2 Hyperbolic space

Definition 4.2 (The half-space model). The half-plane model of hyperbolic
space is defined as

Hn :=
{
[x1, · · · , xn] ∈ Rn

∣∣∣ xn > 0
}
,

which just excludes one axis. Geodesics are lines or circles with endpoints on
Rn−1, and ∂Hn = Rn ∪ {∞}. We define Hn := Hn ∪ ∂Hn.

Definition 4.3 (Hyperbolic scissors congruence groups). P(Hn) is the free
abelian group on symbols [P ] where P ↪→ Hn is a polytope in Hn with relations

• [P ] = [P ′] + [P ′′] when P ′ ⊎ P ′′ = P , and

• [P ] = [gP ] for all g ∈ G := Isom(Hn).

Theorem 4.4 (Zylev). If [P ] = [Q] in P(Hn) then P,Q are scissors congruent.

Example 4.5. Recall from Example 0.15 that this does not hold for Hn, as
exemplified by the following picture:
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Theorem 4.6 ([DS82], Theorem 2). The inclusion Hn ↪→ Hn induces an iso-

morphism P(Hn)
∼=−→P(Hn).

Proof sketch. Write

P(X) ∼= H0(G; St(X)t) where St(X) = H̃n−1(τ(X);Z).

For any ideal point p ∈ ∂Hn, let τ(Hn, p) be the Tits complex of flags containing
p, and note that St(Hn) = H̃n−2.

Lemma 4.7. There is a short exact sequence of G-representations

St(Hn) ↪→ St(Hn)↠
∐
p∈Hn

St(Hn, p).

The proof follows from considering the long exact sequence for the pair
T (H̄), T (H)). Taking the long exact sequence in homology, it suffices to show

Hk

G, ∐
p∈∂Hn

St(Hn, p)t
 = 0, k = 0, 1.

It turns out that this is zero for all k. By Shapiro’s lemma, one can write

Hk

G, ∐
p∈∂Hn

St(Hn, p)t
 ∼=−→H∗(Sim(n− 1),St(Rn−1)).

One can conclude using the Hochschild-Serre spectral sequence for

1→ T (n− 1)→ Sim(n− 1)→ Sim0(n− 1)→ 1,

where Sim0 denotes similarities fixing the origin.

Remark 4.8. We would like to define P(∂Hn), but it is not clear how to do
this. For example, we can take a triangle whose vertices live in ∂Hn, act by
translation, and get a triangle whose vertices are not ideal points:

So we copy the homological definitions, defining G := Isom(Hn)|∂Hn
and

P(∂Hn) := H0(G; St(∂Hn)t), C•(∂Hn)/C•(∂Hn)n−1.

Explicitly, this is the free Abelian group on (n + 1)-tuples on exact sequences
of ideal points a := (a0, · · · , an) with the following relations:
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• a = 0 iff it lies in a hyperplane

•
∑

(−1)i(a0, · · · , âi, · · · an) = 0.

• (ga0, · · · , gan) = det(g)a.

Proposition 4.1 (DS82 3.7). There is an exact sequence

H1(On,St(Sn−1)t)→ P(∂Hn)→ P(∂Hn)↠ H0(On;St(Sn−1)t).

Proof. Similar to the previous theorem, but use a different short exact sequence:

St(∂Hn) ↪→ St(Hn)↠
∐
p∈Hn

St(Hn, p),

noting that the last term is now over only interior points.

Example 4.9. It turns out that P(H2)
∼=−→P(H2). In this case, ∂H2 = R∪{∞},

G = PSL2(R)⋊ C2, and G↷ H2 by[
a b
c d

]
x =

ax+ b

cx+ d

where C2 acts by −1. In this case, P(∂H2) ∼= Z, and we get a short exact
sequence

Z ↪→ P(H2)↠ R/PZ

and P(H2) ∼= P(H2) ∼= R, where the second isomorphism is via area.

4.3 Bloch-Wigner and P(H3)

Remark 4.10. Using the upper half-space model for H3 yields G ∼= PSL2(C)⋊
C2, identifying ∂H3 ∼= CP1. Then C2 acts by z 7→ −z and PSL2(C) acts by[

a b
c d

]
z =

az + b

cz + d
.

Let PC denote the coinvariants of the action on ∂H3. We get a new relation:

• a = 0 iff it lies in a hyperplane

•
∑

(−1)i(a0, · · · , âi, · · · an) = 0.

• (ga0, · · · , gan) = a.

For any a ∈ H3, there is a g ∈ G such that

a = g(∞, 0, 1, z), z :=
a0 − a2
a0 − a3

· a1 − a3
a1 − a2

∈ C \ {0, 1} .
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Theorem 4.11 (Bloch-Wigner). There is an exact sequence

Q/Z α
↪−→ H3(SL2(C))

F−→ PC
γ−→
∧2

C× ↠ K2(C)
∼=−→H2(SL2(C);Z).

Remark 4.12. Some things to note:

• Elements in K2(C) are written in brackets {a, b} due to the isomorphism

KM (C)
∼=−→K2(C).

• δ(a ∧ b) = {a, b}.

• α is induced by

Q/Z→ SL2(C)

z 7→
[
z 0
0 z−1

]
.

• β[g1|g2|g3] = (∞, g1∞, g1g2∞, g1g2g3∞)

• γ {z} = z ∧ (1− z).5

Theorem 4.13 (DS82 5.1). We can define PF in a similar way for any field F.
When F is algebraically closed, PF is a divisible group.

Theorem 4.14. For H3,

P(∂H3)
∼=−→P(H3)

∼=−→P(H3),

so the Bloch-Wigner sequence deeply relates to all of these groups.

Remark 4.15. The Bloch-Wigner dilogarithm can be realized as a map out of
the Bloch group PC.

Remark 4.16. Are there any links to hyperbolic 3-manifolds of the form X =
H3/Γ? Jonathan’s answer: ask Daniil Rudenko!

5Proving this involves a hypercohomology spectral sequence, and γ is an awful transgression
map.
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5 Talk 5: The Polytope Algebra (Kyle Huang)

References: [McM89], [Goo14].

Remark 5.1 (Motivation). The polytope algebra generalizes the polytope groups
of previous talks, but with extra structure:

• Keeps track of lower dimensional data (what Johnathan calls the cutting
“sawdust”) .

• Many nice results hold and are proven analogously.

• Interesting/useful in many fields:

– Discrete geometry: one direction of the g-theorem,

– Tropical geometry,

– Toric geometry: Chow groups of toric varieties,

– K-theory: what we’re talking about today!

Also has a more topological flavor, and is used to prove generalized and refined
Dehn invariants (Goodwillie).

Definition 5.2 (The polytope algebra). Let P denote the free abelian group
of polytopes on Rd. Consider the relations

1. [P ∪Q] + [P ∩Q] = [P ] + [Q], and

2. [P + t] = [P ] for any translation t ∈ Rd.

The polytope algebra Π is the quotient of P by the above relations.

Example 5.3. An example of an element x ∈ Π is

x = 3[∆] + 2[□]− [line segment].

Elements of Π can also represent more general geometric objects than the poly-
tope group, for example manifolds without boundary by subtracting the bound-
ary.

Proposition 5.1. Due to Sallee, item 2 can be replaced by

[P ] + [P ∩H] = [P ∩H−] + [P ∩H+],

where H is a hyperplane and H−, H+ are the half-spaces on either side of H.

Proof idea. Consider P ∩Q and induct on the number of facets.

Question 5.4. What is the multiplicative/algebra structure on the polytope
algebra?



5.1 Endomorphisms 29

Definition 5.5 (Multiplicative structure on the polytope algebra). For [P ], [Q] ∈
Π, define their product to be

[P ] · [Q] = [P +Q] := {a+ b | a ∈ P, b ∈ Q},

an operation called the Minkowski sum. Proving the distributivity relation
x(y + z) = xy + xz uses the scissors congruence relation in the definition of Π.

Example 5.6. One should be careful about extending Minkowski sums to arbi-
trary elements of Π. For example if we have two points in R1 like 0, 1 and a line
segment [0, 2] then their Minkowski sum is not [0, 3] – instead it is [0, 2]+ [1, 3]!

Remark 5.7. Note that this is a commutative product with unit a singleton
point, and thus we have the structure of a commutative unital ring. What other
structures can we discover?

5.1 Endomorphisms

Remark 5.8. If φ : Rd → Rd is an affine map, then there is an induced algebra
endomorphism

φ̂ : Π→ Π

[P ] 7→ [φ(P )]

We defined ϕ on representatives, so we simply need to check that it behaves
nicely with respect to the equivalence relations and also the product structure
of Minkowski sums.

Corollary 5.8.1. For every λ ∈ R≥0, there is a dilation map

·λ : Rd → Rd

which yields an algebra endomorphism ·λ : Π→ Π.

Remark 5.9. The important point is that we start with something which is
affine. There is a grading on the polytope algebra which makes it almost graded-
commutative.

5.2 Filtration and rational structure

Remark 5.10. First define Π0 to be sums of points in Rd, and note that Π0 ≃ Z
since all points in Rd are equal via translation.

Lemma 5.11. Let Z1 be the ideal generated by [P ]− 1 for P ̸= ∅. Then Π has
a decomposition Π = Π0⊕Z1. Furthermore, Z1 is the kernel of dilation by zero
∆(0) : Π→ Π.

Proof. McMullen uses a claim6 here that valuations (morphisms out of Π to an
abelian group) are invariant on simplices of the same dimension, via the claim
in section 5.1 about endomorphisms, since there exists an affine isomorphism
bringing a k-simplex to any other k-simplex. The outline is as follows:

6To me, dubious.
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1. Prove for simplices, i.e. that ∆(0)([∆]− 1) = 0.

2. Extend to polytopes since every polytope is triangulable, hence a sum
(with Z-coefficients) of simplices of various dimensions.

The claim is used to show that that ∆(0) is equal on same-dimensional simplices.
So we can apply a hyperplane cut to any k-simplex to reduce the dimension,
then use induction.

Lemma 5.12.
([P ]− 1)r = 0 for r > d

Remark 5.13. They prove something much more general about canonical sim-
plicial dissections, but I believe the lemma can be reached much more quickly
via a direct geometric argument inspired by an argument in Ehrhart theory us-
ing inclusion-exclusion. To formalize, one could possibly use the discussion in
the paper on characteristic functions. The alternate proof is as illustrated in
the following example:

Example 5.14. Let d = 2, r = 3. First note that in general P k = kP , i.e.
that k-fold Minkowski sum is equal to its k-th dilate. Then we can tile (d+1)P
with smaller dilates of P via inclusion-exclusion, as illustrated in the following
picture when d = 2 and P is a unimodular right triangle:

Definition 5.15. Let Zr be the ideal in Π generated by elements of the form
([P ]− 1)r.
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Remark 5.16. Observe that Zr ⊆ Zr1 . This gives us a filtration

Π : Z0 ⊃ Z1 ⊃ Z2 · · · ⊃ Zd+1 = 0

where the last term is zero and the filtration is finite by a separate lemma.

5.3 Rational structure

Remark 5.17. The following lemma will be useful in proving the existence of
a rational structure on Π. Loosely speaking, it lets us travel down the fibration
and use induction:

Lemma 5.18. Let x ∈ Zr, then ∆(n)x− nrx ∈ Zr+1.

Proof. Suppose x = ([P ]− 1)r. Given the previous lemma 5.12 note that

∆(n)([P ]− 1) =

n∑
k=1

(
n

k

)
([P ]− 1)k.

Taking rth powers of both sides, we see that

∆(n)([P ]− 1)r = (∆(n)([P ]− 1))r =

n∑
k=1

(
n

k

)
([P ]− 1)k,

where the first equality is because ∆(n) is an algebra morphism. On the right
hand side, note that all but one term is clearly in Zr+1, so the only case we
need to be careful about is k = 1. However,((

n

k

)
([P ]− 1)

)r
= nrx,

which concludes the proof.

Lemma 5.19. Z1 is torsion-free.

Proof. Let x ∈ Z1 such that nx = 0 where n ∈ Z̸=0. It suffices to show that
x = 0.

∆(n)x− nr−1nx ∈ Zr+1 =⇒ ∆(n)x ∈ Zr+1.

Since x = ∆(n−1)∆(n)x ∈ Zr+1, something we can show that x is in Zm for
m≫ 0, which implies that x = 0 because the filtration is finite.

Lemma 5.20. Z1 is divisible.

Proof. Let x ∈ Z1, m ≥ 2 an integer. We will induct. Our base case is x ∈ Zd.
Then

x = ∆(m)∆(m−1)x = mmd−1∆(m−1)

and hence we have found m−1x.
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6 Talk 6: Assemblers (Brandon Shapiro)

References: [Zak16] and [Zak].

6.1 Sieves and sites

Remark 6.1. In Talk 0, Inna talked about K-theory as a way to encode finite
decompositions. We talked about the three-term relation B = A + C which
shows up in multiple settings: Classical K-theory focuses mostly on R-modules,

R-modules Short exact sequences A→ B → C
Finite sets Inclusions A→ B ← C = B \A
Varieties A→ B ← C = B \A7

Polytopes A→ B ← C = B \A

but we want to focus more on the other rows which are more combinatorial.
Assemblers give us a formalism within which we can do this.

Assumption: Throughout, we will assume C is a category with pullbacks.8

Note that it is not enough to just have pair of inclusions – we need them to
be “complementary” in the sense that they “cover” the middle object. We need
a way to express what this means in the language of category theory.

Definition 6.2 (Sieves). A sieve on C ∈ C is a full subcategory of C/C closed
under precomposition.

. . . A

. . . C

. . . B

Any collection of morphisms {Ai → A}i∈I generates a sieve on A ∈ Ob C.

Definition 6.3 (Pullbacks of sieves). For f : B → C and some sieve S on C,
define f∗S by pullback

...
...

...
...

f∗C1 f∗C2 C1 C2

B C

f f

f

8The pullback assumption is not necessary but makes things easier to think about.
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Definition 6.4 (Grothendieck topologies). A Grothendieck topology on C
consists of collections J(C) of sieves (called “covering sieves”) for each object
C such that

– For all S ∈ J(C) and f : B → C, f∗S ∈ J(B),

– For all S ∈ J(C) and T a sieve on C, if f∗T ∈ J(Ci) for all Ci
f−→ C in S,

then T ∈ J(C),

– C/C ∈ J(C), where C/C is generated by idC : C → C.

Definition 6.5. A closed9 assembler is a category C with a Grothendieck
topology such that

– C has an initial object ∅ and the empty sieve covers it, and

– All morphisms in C are monic.

Example 6.6. (Polytopes) Let Gn be the assembler with

– Objects: n-dimensional closed polytopes in R∞ (not necessarily connected
and also including ∅),

– Morphisms: inclusions-after-isometry (includes choice of isometry)

– Grothendieck topology: {Ai → A}i∈I generate a cover when A = ∪iAi.

LetO be the assembler of all polytopes (not necessarily closed) in any dimension,
with similar morphisms and topology.

Note that there is no condition for A = ∪iAi in this definition that the cover
is disjoint or intersections have measure 0. The next definition introduces this
idea.

Definition 6.7 (Disjoint covers). A cover is disjoint if it generated by {Ai →
A}i∈I such that the square

∅ Ai

Aj A

is a pullback for all i ̸= j.

Example 6.8. In O this manifests as disjointness, and in Gn this means the
intersection is not n-dimensional and thus has measure 0.

9This means C has pullbacks. Without the pullback assumption, there is an extra axiom
in the definition of assembler.
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6.2 K-theory of assemblers and scissors congruence

Remark 6.9. To get a K-theory of assemblers, we want a space (really, a
spectrum) K(C) for an assembler C, and then we can define the K-groups as
Ki(C) := πiK(C). Normally in K-theory, we need to be able to not only decom-
pose things but also combine them, which motivates the next definition.

Definition 6.10 (Formal sums). A formal sumX over C consists of a finite set
I and for all i ∈ I an object Ai of C which is non-initial. WriteX = (I, {Ai})i∈I).
There are two different kinds of morphisms between formal sums (I, {Ai}) and
(J, {Bj}):

• (monic) move: (I, {Ai}i∈I)↣ (J, {Bj}j∈J) is an inclusion f : I ↪→ J along
with Ai ∼= Bf(i) for all i ∈ I,

• weak equivalence: (I, {Ai}i∈I)
∼−→ (J, {Bj}j∈J) is a surjection f : I ↠ J

along with a disjoint cover {Ai → Bj}i∈f−1(j) for all j ∈ J .

When J is a singleton, a weak equivalence is given by a disjoint cover {Ai →
B}i∈I .

Definition 6.11 (Scissors-congruent objects). Objects A and B in C are scis-
sors congruent if there exist weak equivalences

(I, {Ai}i∈I)
∼−→ (∗, A),

(I, {Bi}i∈I)
∼−→ (∗, B)

such that Ai ∼= Bi for all i ∈ I.

Remark 6.12. This captures the idea that A and B can be decomposed into
“the same” (isomorphic) collection of smaller pieces.

Definition 6.13 (K-theory of an assembler). If C is a closed assembler, define

K(C) := Ω |wS•C| .

Remark 6.14. We will see that wS•C is a simplicial category. Then |wS•C|
is the realization of the diagonal simplicial set [n] 7→ NnwSnC, and Ω denotes
taking the loop space.

The space K(C) is therefore constructed as an example of Waldhausen K-
theory, making it automatically an infinite loop space (aka a loop spectrum).
This definition of K(C) is presented in [Zak], where Inna shows it to be equivalent
to the original definition given in [Zak16].

Remark 6.15. So what is wSnC?

• Objects: n-tuple of spans of formal sums which we think of as the “cofi-
brations”:

X0
∼←− •↣ X1

∼←− •↣ . . .
∼←− •↣ Xn

Basically, we want to think of the monics ↣ as cofibrations but to do so
we need to invert weak equivalences.
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• Morphisms: natural transformations of these diagrams whose components
are weak equivalences:

X0 • X1 • . . . • Xn

X ′
0 • X ′

1 • . . . • X ′
n

∼ ∼

∼

∼

∼

∼

∼

∼ ∼

∼ ∼ ∼

We require the squares of weak equivalences to be pullbacks and that
all the squares commute (in the category whose morphisms (I, (Ai)) →
(J, (Bj)) are given by functions f : I → J and disjoint covers {Ai →
Bj}i ∈ f−1(j) for all j ∈ J).

In terms of the scissors congruence story, each • contains the pieces we have cut
an object up into, the weak equivalences encode this cutting, and the monics
reassemble the pieces into a part of another object. This defines a K-theory and
fits into other K-theory frameworks, e.g. Waldhausen K-theory.

Proposition 6.1. K0(C) ∼= Z[ObC]/ ∼ where [A] =
∑
i[Ai] for any disjoint

cover {Ai → A}i.

Remark 6.16. Note that weakly equivalent objects are identified. This recovers
what we want K-theory to be: disjoint covers are treated as sums.

Example 6.17. If C = ∅ → ∗ where ∗ → ∗ is the only cover, then K(C) ≃ S,
the sphere spectrum. The formal sums look like finite sets, so we recover the
K-theory of finite sets.

Example 6.18. K0(Gn) recovers the scissors congruence group of n-dimensional
polytopes and K0(O) is isomorphic to the scissors congruence group of all poly-
topes.

Remark 6.19. We can do generalized operations on assemblers to get a cofiber
sequence

K(D)→ K(C)→ K(C \ D)
for suitably defined assemblers C,D plus some conditions. Specifically, we ask
that D is subassembler of C, and every morphism D → C in C (for D ∈ ObD
and C ∈ Ob C) belongs to a disjoint cover of C. It turns out C \D is also an
assembler, essentially the complement of D in C with the initial object added
back in.

We can apply this to O, which has a filtration given by

O0 ↪→ O1 ↪→ · · · ↪→ O

where On contains polytopes of dimension ≤ n. Applying the cofiber sequence
above, we get cofiber sequences

K(On−1)→ K(On)→ K(Gn),

which can help us compute scissors congruence groups of polytopes.
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Remark 6.20. “What have we discussed might be called “combinatorial” K-
theory, as opposed to algebraic K-theory. For instance, we cannot do K-theory
of rings this way, since there’s no good Grothendieck topology on R-modules.

What have we discussed might be called “combinatorial” K-theory, as op-
posed to algebraic K-theory. For instance, we cannot do K-theory of rings this
way, since there’s no good Grothendieck topology on R-modules. However, most
of the homotopical tools for algebraic K-theory (e.g. cylinder functors) will not
work here, and familiar statements like “every morphism is a cofibration up to
weak equivalence” are no longer true.
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7 Talk 7: Grothendieck Ring of Varieties (Michael
Montoro)

Reference: [NS11], [Bor15], and [Nic09].

7.1 Definitions

Let S be a fixed Noetherian scheme. Denote IsoS to be the isomorphism classes
of finite type separated S-schemes.

Definition 7.1 (Grothendieck ring of varieties). The Grothendieck ring of
varieties K0(VarS) = ⟨IsoS⟩/ ∼ is the free abelian group generated by isomor-
phism classes of S-varieties, modulo the relation [X] = [Y ]+ [X \Y ], where Y is
a closed subscheme of X, a representative of a class in IsoS . The ring structure
on K0(VarS) is given by [X] · [Y ] = [X ×

S

Y ].

Notation. If S = Spec k for a field k, we will denote K0(Vark) := K0(VarS). The
Lefschetz motive is L := [A1

S ].

Remark 7.2. K0(VarS) has the following properties.

1. [∅] = 0 and [S] = 1.

2. [PnS ] = 1 + L+ L2 + · · ·+ Ln, which can be shown inductively.

3. [Xred] = [X], so we can assume that the varieties are reduced.

4. Given a map f : T → S, we have induced maps

K0(VarS)
f∗

−→ K0(VarT )

K0(VarS)
f!←− K0(VarT )

given by

f∗([X]) = [X ×
S

T ],

f!([Y ]) = [Y |S ].

Definition 7.3 (Piecewise isomorphic varieties). We say that two S-varieties
X and Y are piecewise isomorphic if there exist locally closed subvarieties
{Xi}i∈I of X and {Yj}j∈Jof Y such that X =

⋃
iXi, Y =

⋃
j Yj , and there is

a bijection σ : I → J such that Xi
∼= Yσ(i).

Notation. Denote
K0(VarS)[L−1] =MS .

Why should we care about this? K0(VarS) is “the universal home for additive
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invariants”: Suppose we have a map f : IsoS → A for a commutative ring A. If
this map takes disjoint union to addition, and fiber products to multiplication,
then F factors through K0(VarS).

Example 7.4. The following are all additive invariants:

1. For k = Fq, the point counting map, which counts the number of Fq-
rational points on a variety,

2. For k = C, the Hodge characteristic,

3. Euler characteristics of finite type schemes over algebraically closed fields,
or ℓ-adic Galois representations.

7.2 Zeta functions

The Hasse–Weil zeta function is the generating function

Z(X, t) =
∑
n≥0

|Divn(X)| tn =
∏
x∈Xcl

(1− tdeg(x))−1,

where Divn(X) is the set of effective 0-divisors of degree n (formal sums of n
closed points up to multiplicity), and Xcl denotes the set of closed points in X.
This is defined on equivalence classes of varieties, so we have

Z([X], t) =
∑

[Divn(X)]tn ∈ K0(Vark)[[t]].,

where we view Divn(X) =
∧n

X as an S-scheme. We’d like to interpret this
as some kind of motivic integral, mimicking the fact that for p-adic integration
you want to rewrite the zeta function as an integral.

Definition 7.5 (Jet bundles). Let X be a variety over a field k, with fixed pure
dimension d. The nth jet bundle of X is

Ln(X) = Hom(Spec(k[t]/tn+1), X).

This is a variety since Ln is a representable functor. Note that L0(X) = X, and
L1(X) is the tangent bundle of X, i.e. the k[t]/(t2)-points of X.

Consider the inverse limit

L∞(X) = lim←−Ln(X) ∼= Hom(Spec k[[t]], X).

This is also a representable functor. We call it the infinite jet bundle (or
infinite jet scheme) of X.

To define an integral over L∞(X), we need to define the measure. Assume
X is smooth. We have maps

L∞(X)
πn−−→ Ln(X).
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Let C = π−1
n (Cn) be the preimage of a constructible set Cn ⊂ Ln(X) (i.e., Cn

is the union of finitely many locally closed sets). Then we define the measure

µ(C) = [πn(C)]L−d(n+1) ∈M∥.

Let f : X → A1
k be a map defining a hypersurface in X. The motivic zeta

function is

Zmot(f, s) =

∫
L∞(X)

L−ordtf ·s =
∑
i≥0

µ(ordtf
−1(i)) · L−is ∈ µk[[L−s]].

By taking t = L−s, we recover the ordinary zeta function. Here ordt denotes
the t-order.
Upshot : the Grothendieck ring of varieties is the world in which motivic inte-
gration takes place, and there are relations between motivic integrals and zeta
functions. The construction of motivic integrals was motivated by Kontsevich’s
proof that birationally equivalent Calabi–Yau varieties have the same Hodge
numbers.

7.3 The ring structure of K0(Vark)

Remark 7.6. K0(Vark) is a badly behaved ring:

• K0(Vark) is infinite,

• K0(Vark) is not Noetherian (Liu–Sebag ’10),

• K0(Vark) is not an integral domain (Poonen ’02),

• K0(Vark)/L ∼= Z[SB], where SB denotes stably birational equivalence
classes of k-varieties (birational after multiplication by a large projective
space),

• L is a zero divisor over C (Borisov ’18). Borisov constructs varieties X,Y
over C such that

[X](L2 − 1)(L− 1)L7 = [Y ](L2 − 1)(L− 1)L7

but [X] ̸= [Y ].



40

8 Talk 8: Annihilator of the Lefschetz Motive
(D. Zack Garza)

Reference: [Zak17]

8.1 Background and Motivating questions

Remark 8.1. Let’s begin by getting a sense of where we are and where we are
headed:

• Yesterday we discussed classical scissors congruence.

• The main theme of today is going from scissors congruence to K−theory;
that is, how can we encode and detect scissors congruence in the language
of K−theory? One approach we’ve seen uses assemblers to enrich the
classical Grothendieck group to a spectrum, and we’ve seen how classical
motivic measures can be formulated in this setting.

• Tomorrow and for the next few days, we’ll be studying how to go from
K−theory back to scissors congruence; that is, what kind of cut-and-paste
information is encoded in K0 and higher Ki? We will discus enriching mo-
tivic measures, generalizing assemblers to other cut-and-paste problems,
and working towards topological approaches to a generalized variant of
Hilbert’s 3rd problem.

Although we are now likely familiar with most of the objects that will appear
here, there are some subtle differences in conventions that are worth highlight-
ing:

Definition 8.2 (Varieties). Let k be a field and Vark be the category of vari-
eties over k, which we will take to mean reduced separated schemes of finite-type
over the point Spec k. We will say two varieties X,Y are isomorphic if and
only if they are isomorphic in Schk, and will denote this by X ∼= Y .

Warnings 8.3. There is a subtlety in the definition of the category of schemes:
a morphism (and hence an isomorphism) of schemes (X,OX)→ (Y,OY ) is not
simply a morphism of arbitrary ringed spaces, which would be a pair (F, ϕ)
where F : X → Y is a morphism of spaces and ϕ : OY → F∗OX is a morphism
of sheaves, where F∗ denotes the direct image. Instead, they are defined as maps
fi : Ui → Vi defined on open affine covers {Ui = SpecRi} , {Vi = SpecSi} of X
and Y respectively where each fi is induced by a morphism of rings Si → Ri.
Equivalently, morphisms of schemes can be characterized as morphisms of locally
ringed spaces.

Definition 8.4 (Stratified spaces). LetX be a topological space, and for U, V ⊆
X, write Y = U

⊎
V for the internal disjoint union, which indicates that U and

V may not necessarily be disjoint but that their intersection U ∩ V is measure
zero (which for example occurs if the intersection is lower-dimensional). A
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stratification of X is the data of a (internally disjoint) partition of X into
locally closed subspaces X =

⊎
i∈I Xi indexed by a poset (I,≤). The subspaces

Xi are referred to as strata, and we additionally require that for each j ∈ I,

Xj ⊂
⊎
i≤j

Xi,

i.e. the closure of Xj in X is contained in the union of lower-index strata.

Definition 8.5 (The Grothendieck ring of varieties). Let Sp be a category of
spectra – concretely, one can take the category of symmetric spectra of simplicial
sets along with its stable model structure with levelwise cofibrations. Let Vk to
be the assembler whose objects are the objects of Vark and whose morphisms
are closed inclusions of varieties, or equivalently locally closed embeddings of
schemes. Since the field k will be fixed in the statements of most theorems, we
will suppress the base field and write V.

Let K(V) be its associated K-theory spectrum. The group K0(V) := π0K(V)
has a ring structure and can be shown to coincide with the Grothendieck
ring of varieties as in Michael’s talk. We will write elements in this ring using
square brackets, so if X is a variety, [X] denotes its equivalence class in K0(V).

Definition 8.6 (The Lefschetz motive and its annihilator). The class of the
affine line A1 := A1

k in K0(V) is referred to as the Lefschetz motive and
denoted

L := [A1
k] ∈ K0(V),

where we suppress the dependence on the base field k. Since this is simply an
element of a ring, we can define its annihilator in the usual way as

Ann(L) := ker(K0(V)
·L−→ K0(V)),

where ·L is the map induced by the morphism of assemblers

F : V → V
X 7→ X×

k

A1
k

Fact 8.7. It is an exercise in commutative algebra that L is a ring-theoretic
zero divisor in K0(V) if and only if Ann(L) = 0. A first step toward understand-
ing equations in a ring might be understanding its zero divisors, and several
motivating problems and conjectures concern whether or not L in particular is
a zero divisor. As a convention, we will frame questions about zero divisors in
terms of triviality of annihilators. Of particular interest will be when Ann(L)
is trivial as one varies the ground field k.

Example 8.8 (Working with L). We saw in talk 7 how to work with certain
elements in K0(V) and some formulas involving L. One can show the following
identities:

• [Gm] := [An \ {0}] = L− [pt],
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• [P1] = L+ [pt],

• For E → X a rank n vector bundle10, [E ] = [X] · [An] = [X] · Ln.

The last example shows that K0(V) does not distinguish between trivial and
nontrivial bundles. [Bor15] profitably uses this fact and similar computations to
prove that a cut-and-paste conjecture of Larsen-Lunts fails, which conjecturally
has applications to rationality of motivic zeta functions.

Definition 8.9 (Birational varieties). Two varieties X,Y are birational if
and only there is an isomorphism of φ : U

∼−→V of nonempty dense11 open
subschemes. Note that φ need not extend to a well-defined function on all of X
and Y , and does not generally imply X ∼= Y .

Remark 8.10. It is a standard convention to denote such a birational morphism
defined on U ⊆ X and V ⊆ Y as X99KY ; here I will use the suggestive nota-

tion X
∼
99K Y as a reminder that birational varieties are meant to be “almost”

isomorphic. Why is this? In equations, a birational morphism φ is given not
by polynomial equations but rather by rational functions, which allows denom-
inators and introduces poles or a branch locus – generally in the complements
X \ U and Y \ V respectively. These exceptional singular loci are meant to be
“small” in some sense.

This weakened notion of isomorphism turns out to be the right way to study
the minimal model program, an active area of current research which aims
for a full classification of varieties up to some notion of equivalence, along with
an understanding of particularly nice12 “minimal” representatives in each class.
This is of course an extremely difficult problem, but moving into the world of bi-
rational morphisms yields a much more tractable problem since the exceptional
loci can often be stratified and cut into smaller pieces to study.

Definition 8.11 (Stable birationality). Two varieties X,Y are stably bira-
tional if and only if there is a birational isomorphism

X × PN ∼
99K Y × PM

for some N,M large enough.

Remark 8.12. Many interesting invariants of birational geometry are in fact
stable birational invariants. Some examples include:

• The Hodge number

h0,1(X) = dimCH
0,1(Xan)

whereXan as the analytic space associated toX andHp,q(Xan) := H0(Xan; Ω1
Xan),

10Here, a vector bundle over a variety X means a Zariski-locally trivial fibration over X
with fibers isomorphic to An.

11In fact, any nonempty open subset U ⊆ X is automatically dense in X in the Zariski
topology.

12Smooth, or singular with very well-understood singularities.
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• the (analytic) fundamental group π1(X
an), and

• the zeroth Chow group CH0(X).

A recent exposition of other applications of stable birationality is given in
[Voi16].

Definition 8.13 (Piecewise isomorphisms). Two varieties X,Y are piecewise
isomorphic if and only if there exist stratifications X =

⊎
i∈I Xi and Y =⊎

i∈I Yi with each Xi
∼= Yi. Since we will be working with several notions of

isomorphism, we will denote piecewise isomorphisms by X ∼=
pw
Y .

Remark 8.14. This definition of a piecewise isomorphism is meant to capture
the notion of cut-and-paste equivalence of varieties. To see how this relates to
K-theory, note that if X and Y are piecewise isomorphism, then their classes are
equal in K0(V). On the other hand, if X and Y are birational, it is not generally
the case that their classes are equal in K0(V). However, if there is a birational
morphism X 99K Y defined on U ⊆ X and V ⊆ Y and one additionally requires
that X \ U ∼= Y \ V , then X and Y are in fact piecewise isomorphic and thus
have equal classes in K0(V).

There are two broad motivational questions we would like to consider:

Question 8.15 (Motivating question 1). When is the canonical ring localization
morphism K0(V)→ K0(V)[1/L] injective? In particular, when can equations in
the localization be pulled back to valid equations in the original ring?

More philosophically, what does equality in K0(V) actually mean geomet-
rically? What geometric information is the Grothendieck ring capturing, and
what conclusions can be drawn from equations in this ring?

Question 8.16 (Motivating question 2). When is Ann(L) nonzero?

Remark 8.17. [Zak17] poses and answers several structural questions as a way
to shed light on these:

Fact 8.18. There is a filtration on K0(Vk) such that the associated graded is

gr nK0(V) = im

 Z
[
X
∣∣∣ dimX ≤ n

]
([X] = [Y ] + [X\Y ])

ψn−→ K0(V)

 .
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Question 8.19 (Structural question 1, Gromov). If U, V ↪→ X with X \ U ∼=
X \ V , how far are U and V from being birational? If X = Y , can every
birational automorphism ϕ : X

∼−→ X be extended to a piecewise isomorphism
ϕ̃ : X ∼=

pw
X? This can equivalently be restated as a question about injectivity of

the maps ψn above, where failure of injectivity at a particular n indicates extra
relations in K0(V) coming from classes of higher-dimensional varieties.

Conjecture 8.20 (A cut-and-paste conjecture of Larsen-Lunts). If [X] = [Y ]
is an equality the Grothendieck ring K0, then there is a piecewise isomorphism
X ∼=

pw
Y .

Remark 8.21. This conjecture is now known to be false – Borisov and Karzhe-
manov construct counterexamples for fields k that embed in C, and [Zak17]
shows that this additionally fails for a wider class of convenient13 fields.

Conjecture 8.22. This is almost true, and the only obstructions come from
Ann(L).

Conjecture 8.23. For certain varieties, equality [X] = [Y ] in the Grothendieck
ring implies that X,Y are stably birational.

Remark 8.24. For the second motivating question, why might one care about
this particular ring-theoretic property? Recall that this condition is equivalent
to the injectivity of the map ·L, so one answer is that having a nonzero annihila-
tor allows cancellation of L in equations. Thus computations like the following
can be carried out:

[X] ·L = [Y ] ·L =⇒ ([X]− [Y ]) ·L = 0
Ann(L)=0
=⇒ [X]− [Y ] = 0 =⇒ [X] = [Y ],

and so equality “up to a power of L” implies honest equality. A separate mo-
tivation comes from the purely algebraic fact that the localization morphism
R→ S−1R for a multiplicative set S is injective precisely when S does not con-
tain zero divisors, and so if Ann(L) = 0 then K0(V) ↪→ K0(V)[1/L] is injective.

The latter ring appears in conjectures concerning rationality of motivic zeta
functions ζX(t). The recent paper [LL20] exhibits a K3 surface X in such that
ζX(t) is not rational over K0(V), and discuss the possibility of its rationality as
a formal power series in K0(V)[1/L] instead.

Answer 8.25. [Bor15] and [Kar14] partially answer this question by showing
that L generally is a zero divisor, witnessed by explicit constructions of elements
that are equal in K0(V) but not piecewise isomorphic, thus yielding nontrivial
elements in Ann(L). Seemingly coincidentally, their construction also produces
elements in kerψn, and so a natural question is whether or not this is actually
a coincidence at all.

Proposition 8.1 (Borisov). The cut-and-paste conjecture of Larsen and Lunts
is false.

13This is a technical condition to be described later.
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Proof. This is proved in [Bor15, Theorem 2.13]. There is a certain pair of
“mirror” varieties XW and YW

14 which are provably not birational and for
which stable birationality would imply birationality. One starts with an equality
in K0(V), and toward a contradiction supposes that equality in the Grothendieck
ring implies piecewise-isomorphism. Several properties of bundles over these
varieties are used to make the following series of computations:

[XW ]
(
L2 − 1

)
(L− 1)L7 = [YW ]

(
L2 − 1

)
(L− 1)L7

=⇒ [GL2(C)× C6 ×XW ] = [GL2(C)× C6 × YW ]

=⇒ GL2(C)× C6 ×XW
∼=
pw

GL2(C)× C6 × YW if Larsen-Lunts is true

=⇒ XW ×GL2(C)× C6 ∼
99K YW ×GL2(C)× C6

=⇒ XW
∼Stab
99K YW i.e. XW , YW are stably birational

=⇒ XW
∼
99K YW ,

concluding that XW and YW are birational, a contradiction.

Question 8.26. How and why are Ann(L) and kerψn related? [Zak17] gives a
precise answer.

8.2 Outline of Results

Slogan 8.27. The following are some slogans for what’s shown in [Zak17], to
give you some feeling for what might be true:

• Theorem A: There is a stable (filtered) homotopy type K(V) whose asso-
ciated graded spectrum gr K(V) is simpler than the the associated graded
ring gr K0(V).

• Theorem B: The associated spectral sequence15 is an obstruction theory
for birational automorphisms extending to piecewise isomorphisms, and
the spectral sequence detects kerψn for various n.

• Theorem C: The motivating questions 1 and 2 are precisely linked: ele-
ments in Ann(L) yield elements in ker(ψn).

• Theorem D: There is a partial characterization of Ann(L) in terms of
varieties satisfying certain equations in K0(V) which are not piecewise
isomorphic.

14Roughly speaking, these are smooth derived-equivalent Calabi-Yau threefolds, see the
Pfaffian-Grassmannian correspondence.

15That is, the spectral sequence naturally associated to a filtered spectrum. How exactly
this is constructed is spelled out in [Zak17, Section 2].
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• Theorem E: K0(V) mod L completely captures stable birational geom-
etry: there is an isomorphism of abelian groups16

K0(V)/ ⟨L⟩ ∼= Z[SB],

where SB is the set of stable birational equivalence classes of varieties.

Moreover, a main conclusion is that elements in Ann(L) always produce ele-
ments in kerψn. We’ll now look at these theorems in more detail.

8.3 Theorems and proof sketches

Theorem 8.28 ([Zak17] Theorem A). There is a homotopical enrichment of
K0(V) with a simple associated graded. Let

• V(n) be the nth filtered assembler of V generated by varieties of dimension
d ≤ n,

• Autk k(X) be the group of birational automorphisms of the variety X,

• Bn be the set of birational isomorphism classes of varieties of dimension
d = n.

There is a spectrum K(V) such that K0(V) := π0K(V) coincides with the previ-
ously defined Grothendieck group of varieties, and V(n) induces a filtration on
K(V) such that

gr nK(V) =
∨

[X]∈Bn

Σ∞
+ BAutk k(X),

with an associated spectral sequence

E1
p,q =

∨
[X]∈Bn

(πpΣ
∞BAutk k(X)⊕ πpS)⇒ Kp(V)

Remark 8.29. Note that the p = 0 column converges to K0(V).

Proof.
• Define V(n.n−1) = Vardim=n

k ∪ {∅}, the varieties of dimension exactly n.

• Use [Zak17, Theorem 1.8] to extract cofibers in the filtration and identify
the associated graded:

16This result was previously known, and the significance is that this can now be proved
using homotopy-theoretic techniques.
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K(V)

...

K(V(n)) K(V(n−1))

K(V(n−1)) K(V(n−1,n−2))

...

K(V(2)) K(V(2,1))

K(V(1))

Fil gr

• Finish by a magic computation:

K(V(n,n−1)) ≃ K̃(V(n,n−1))

≃ K(C)

≃ K

( ∨
α∈Bn

CXα

)
≃
∨
α∈Bn

K(CXα
)

∼=
∨
α∈Bn

Σ∞
+ BAutkk(Xα) Zak17a

:=
∨
α∈Bn

Σ∞
+ BAut(α),

where

• K̃(V(n,n−1)): the full subassembler of irreducible varieties.
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– Why the reduction works: general theorem [Zak17, Theorem 1.9]
on subassemblers with enough disjoint open covers

• C ≤ V(n,n−1): subvarieties of some Xα representing some α, as α ranges
over Bn.

– Why the reduction works: apply [Zak17, Theorem 1.9] again

• CXα
is the subassembler of only those varieties admitting a (unique) mor-

phism to Xα for a fixed α.

– Why the reduction works: each nonempty variety admits a mor-
phism to exactly one Xα representing some α – otherwise, if X 7→
Xα, Xβ then Xα and Xβ are forced to be birational (the morphisms
are inclusions of dense opens) implying α = β

• Aut(α) := Autk k(X) for any X representing α ∈ Bn.

Note that much of this proof amounts to repeated application of dévissage.

Theorem 8.30 ([Zak17] Theorem B). There exists nontrivial differentials dr
from column 1 to column 0 in some page of E∗ ⇐⇒ ∪n kerψn ̸= 0 (ψn has
a nonzero kernel for some n). More precisely, φ ∈ Autkk(X) extends to a
piecewise automorphism if and only if dr[φ] = 0 ∀r ≥ 1.

Remark 8.31. Before proving this result, it is helpful to look at the actual
spectral sequence. The following is the the E1 page:
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q

...
...

Filn K0(V(n,n−1)) K1(V(n,n−1)) · · ·

Filn−1 K0(V(n−1,n−2)) K1(V(n−1,n−2)) · · ·

...
...

...

Fil0 K0(V(1,0)) K1(V(1,0)) · · ·

π0 π1 p

d1

dn

To identify the terms, one carries out a short computation:

Kp(V(n,n−1)) := πpK(V(n,n−1))

≃ πp
∨
α∈Bn

Σ∞
+ BAut(α)

∼=
⊕
α∈Bn

πpΣ
∞
+ BAut(α).

Now using that πpΣ
∞
+ BG is Z for p = 0 and Gab ⊕ C2 for p = 2, we have the

following:
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q

...
...

Filn
⊕

α∈Bn
Z

⊕
α∈Bn

Aut(α)ab ⊕ C2 · · ·

Filn−1

⊕
α∈Bn−1

Z
⊕

α∈Bn−1
Aut(α)ab ⊕ C2 · · ·

...
...

...

Fil0
⊕

α∈B0
Z

⊕
α∈B0

Aut(α)ab ⊕ C2 · · ·

π0 π1 p

d1

dn

Lemma 8.32 ([Zak17] Lemma 3.2). Note that there is a boundary map ∂ coming
from the connecting map in the LES in homotopy of a pair for the filtration. If
φ ∈ Aut(α) for α ∈ Bq is represented by φ : U → V then

∂[φ] = [X \ V ]− [X \ U ] ∈ K0(V(q−1))

Proof of lemma.

• In general, x ∈ K1(V(q,q−1)) corresponds to the following data: X a variety,
a dense open subset with two embeddings F and G, the two possible

complements, where {Xi} is a covering family over X where
⋃
i

Xi is a

dense open subset of X, and the complements are of dimension at most
q − 1:

Y = X \ im(F )

⋃
iXi X

Z = X \ im(G)

G

F

• [Zak17, Prop. 3.13] shows that for this data,

∂[x] = [Z]− [Y ] ∈ K0(V(q−1))
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• For φ, we can represent it with the data:

Y = X \ im(ιU )

U X

V Z = X \ im(ιV ◦ φ)

ιU

φ
ιV

• One can then conclude

∂[φ] = [Z]− [Y ] = [X \ V ]− [X \ U ].

Proof of theorem B ( =⇒ ). Suppose φ extends to a piecewise automorphism.

• Then [X \ U ] = [X \ V ] ∈ K0(Vq−1) since X \ U ∼−→X \ V by assumption

• By lemma 3.2 above,

∂[φ] = [X \ V ]− [X \ U ] = 0

• [Zak17, Lemma 2.1] shows that d1 and higher dr are built using ∂, so
∂(x) = 0 =⇒ dr(x) = 0 for all r ≥ 1, yielding a permanent boundary.

Proof of theorem B, (⇐= ). Suppose dr[φ] = 0 for all r ≥ 1.

• Since in particular d1[φ] = 0, we have

[X \ U ] = [X \ V ] ∈ K0(V(q,q−1)),

since d1 = ∂ ◦ p for some map p.

• An inductive argument allows one to write X = Ur ⊎X ′
r = Vr ⊎ Y ′

r where

Ur ∼=
pw
Vr, dimX ′

r, dimY ′
r < n− r, ∂[φ] = [Y ′

r ]− [X ′
r]

• Take r = n to get

dimX ′
n,dimY ′

n < 0 =⇒ X ′
n = Y ′

n = ∅ and X = Un = Vn

• Then

∂[φ] = [∅]− [∅] = 0 =⇒ φ extends.



8.3 Theorems and proof sketches 52

Remark 8.33. A general remark on why ∂[φ] = 0 implies it extends:

• ∂[φ] measures the failure of φ to extend to a piecewise isomorphism:

∂[φ] = 0 =⇒ [X \ V ] = [X \ U ] =⇒ ∃ψ : X \ V ∼=
pw
X \ U

• If additionally U ∼= V then φ ⊎ ψ assemble to a piecewise automorphism
of X.

Theorem 8.34 ([Zak17] Theorem C). Let k be a convenient field, e.g. ch k =
0. Then L is a zero divisor in K0(V) =⇒ ψn is not injective for some n. In
other words, for k convenient,

Ann(L) ̸= 0 =⇒
⋃
n

kerψn ̸= ∅.

Proof of theorem C.

• Strategy: contrapositive. Suppose kerψn = 0 for all n. There is a cofiber
sequence

K(V) ·L
↪−→ K(V) ℓ−→→K(V/L)

where V/L is a “cofiber assembler” [Zak17, Def 1.11].

• Take the associated lon exact sequence to identify ker(·L) with coker(ℓ):

...

K1(V) K1(V) K1(V/L)

K0(V) K0(V) K0(V/L)

·L ℓ

∂

·L ℓ

• Reduce to analyzing

coker(E∞
1,q → Ẽ∞

1,q)

where Ẽ is an auxiliary spectral sequence.

• Suppose all α extend, then all differentials from column 1 to column 0 are
zero.
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• The map Er → Ẽr is surjective for all r on all components that survive
to E∞.

• All differentials out of these components are zero, so E∞ ↠ Ẽ∞.

• Then K1(V)
ℓ−→→K1(V/L), making 0 = coker(ℓ) = ker(·L) so L is not a

zero divisor.

Theorem 8.35 ([Zak17] Theorem D). Suppose that k is a convenient field.
If χ ∈ Ann(L) then χ = [X]− [Y ] where[

X × A1
]
=
[
Y × A1

]
but X × A1 ̸∼=

pw
Y × A1.

Thus elements in Ann(L) give rise to elements in
⋃
n≥0

kerψn.

Proof of theorem D.

• Let χ ∈ ker(·L) and pullback in the LES to x ∈ K(V(n)/L) where n is
minimal among filtration degrees:

...

K1(V(n−1)) K1(V(n)) K1(V(n)/L) ∋ x

K0(V(n−1)) K0(V(n)) K0(V(n)/L)

χ 0

·L ℓ

∂

·L ℓ

• Write ∂[x] = [X]− [Y ] with X,Y of minimal dimension.

• By [LS10],

[X × A1] = [Y × A1] =⇒ dimX + 1 = dimY + 1

=⇒ dimX = dimY = d

Claim 8.36. d is small: d < n− 1.

Note that we’re done if this claim is true: proceed by showing X and Y are
not piecewise isomorphic by showing kerψn is nontrivial by a diagram chase.
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Proof of claim. The proof boils down to a diagram chase, which roughly goes
as follows:

1 2

[X]− [Y ] ̸∈ im ∂(n−1) L([X]− [Y ]) ̸= 0

K1(V(n−1)/L) K0(V(n−2)/L) K0(V(n−1))

4

K1(V(n)/L) K0(V(n−1)/L) K0(V(n))

in−1
∗ ([X]− [Y ]) ∈ im ∂(n) 0

3

∂(n−1)

∂(n)

in−1
∗

·Ln−1

·Ln−2

in−1
∗

1. [X]− [Y ] ̸∈ im(∂) by the minimality of n for x, noting ∂[x] = [X]− [Y ].

2. By exactness im ∂ = ker(·L), so L([X]− [Y ]) ̸= 0.

3. By choice of n, i∗(L([X] − [Y ])) ∈ im ∂ = ker(·L) in bottom row, so
L([X]− [Y ]) = 0 in bottom-right.

4. Commutativity forces L([X]− [Y ]) ∈ ker in−1
∗ .

Thus L([X]− [Y ]) corresponds to an element in kerψn.

Theorem 8.37 ([Zak17] Theorem E). There is an isomorphism

K0(VC)/ ⟨L⟩
∼−→Z[SBC] ∈ Z-Mod.

Remark 8.38. Proof: omitted.

8.4 Closing Remarks

Remark 8.39. What we’ve accomplished: establishing a precise relationship
between questions 1 and 2.

Question 8.40. Some currently open questions:

• What fields are convenient?



8.4 Closing Remarks 55

• What is the associated graded for the filtration induced by ψn?

• Is there a characterization of Ann(L)?

• (Interesting) What is the kernel of the localization K0(V)→ K0(V)[ 1L ]?

• Does ψn fail to be injective over every field k?

Conjecture 8.41. There is a correction to Question 1 cpncerning kerψn which
may be true: let X,Y be varieties over a convenient field with [X] = [Y . Then
there exist varieties X ′, Y ′ such that

• [X ′] ̸= [Y ′]

• [X ′ × A1] = [X ′] · L = [Y ′] · L = [Y ′ × A1]

• X
∐
X ′ × A1 ∼=

pw
Y
∐
Y ′ × A1

Remark 8.42. If the conjecture holds, if X,Y are not birational but are stably
birational, then the error of birationality is measured by a power of L.

Contingent upon this conjecture, one might hope to show

[X] ≡ [Y ] modL =⇒ X
∼Stab
99K Y,

so that the equality in the quotient ring completely captures stable birational
geometry.
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9 Talk 9: SW-categories (Eunice Sukarto)

Reference: [Cam19].

9.1 Recollections

Remark 9.1. Let k be a field and Var/k be the category of finite type separated
schemes over Spec k, and recall

K0(Var/k) = Z
[{

[X]
∣∣∣ X ∈ Var/k

}]
/ ∼

where the relations are given by [Y ] = [X] + [Y \ X] for closed immersions
X ↪→ Y . Inna constructs a spectrum for this using assemblers, but an issue is
that it is hard to map out of this spectrum.

Our goal is to construct K(Vark), a spectrum with the property that π0(K(Var) =
K0(Vark). That way we can define Kn(Vark) = πnK(Vark). Today we’ll con-
sider Jonathan’s construction: a different construction of the spectrum, and an
additivity theorem which provides a delooping and plays a role in exhibiting an
E∞ structure.

Slogan 9.2. K-theory is the universal machine that splits cofiber sequences.

Remark 9.3. For Var/k, what are the cofiber sequences? Cofibrations will be
closed immersions, and cofiber sequences will be pushouts along the terminal
object. We want X ↪→ Y ← Y \X, but the Waldhausen construction doesn’t

necessarily go through. The idea is to use subtraction sequences ↪→ • ◦← instead
of cofibration sequences used in the Waldhausen construction.

First let us review the classical Waldhausen S•-construction. In a later
talk we’ll see that this appropriately generalizes both algebraic K-theory and
Quillen’s Q-construction.

9.2 Waldhausen’s S•-construction

Remark 9.4. Input: a Waldhausen category C with a zero object, cofibrations
↪→, and weak equivalences

∼−→ such that pt ↪→ X is a cofibration, isomor-
phisms of C are both cofibrations and weak equivalences, and the induced map
of pushouts of the following two rows are weak equivalences:

D C E

D′ C ′ E′

∼ ∼∼

The output is K(C), the algebraic K-theory spectrum, where π0(K(C)) = K0(C).
The general blueprint is to first construct a space where π1 is K0, then take
loops to shift. The complex is as described as follows:
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• 0-simplices: pt

• 1-simplices: for all X, pt
X−→ pt

• 2-simplices: for each X ↪→ Y ↠ Y/X, a triangle

pt

pt pt
Y

XY \X

• If we have

X Y Z

Y/X Z/X

Z/Y

⌟

• Since

Z = X + Z/X = X + (Y/X + Z/Y )

Y + Z/Y = (X + Y/X) + Z \ Y,

we’ll force these to be homotopic with a 3-simplex:

•

• •

•

Z X

Z/X

Y

Z/XY Y/X

and similarly, for any sequence X1 ↪→ X2 ↪→ · · · ↪→ Xn we get an n-simplex
capturing such a relationship.

To formalize this, define an arrow category Ar[n] whose objects are pairs
(i, j) with 0 ≤ i ≤ j ≤ n with morphisms (i, j) → (i′, j′) iff i ≤ i′, j ≤ i′. Let
SnC ≤ Fun(Ar[n],C) be the full subcategory where consecutive horizontal maps
are cofibration sequences and the squares form pushouts. Below is a diagram
for S3C:
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pt • • • •

pt • • •

pt • •

pt •

pt

⌟ ⌟ ⌟

⌟ ⌟

⌟

Define S•Č to be the simplicial category [n] → SnC whose faces and de-
generacies are obtained by inserting/deleting identities. Define wSnC to be the
simplicial subcategory generated by weak equivalences, and define the bisimpli-
cial set w·S•C = {NwS•C}. The algebraic K-theory space is defined as

K(C) := Ω|w·S•C|.

The additivity theorem implies K(C) is an infinite loop space and thus a spec-
trum.

Remark 9.5. For the S̃• construction the input will be a category with subtrac-
tion (i.e. subtraction sequences and pullbacks) and outputs a spectrum K(C).
Some categories that this applies to: subtraction categories and SW categories,
where a product structure on the category yields an E∞ structure on the spec-
trum.

Remark 9.6. Categories with subtractions have the following data:

• Initial objects ∅,

• Cofibrations ↪→,

• Fibrations
◦→,

• Pullbacks that satisfy base change,

• Isomorphisms which are both cofibrations and fibrations

• Subtraction sequences satisfying some nice properties, e.g. A→ A
∐
B ←

B. Denote this ↪→ ◦→.

Example 9.7. Sch/X ,Var/X are subtraction categories, where cofibrations are
closed immersions and fibrations are closed immersions.

Definition 9.8 (Subtractive categories). A subtractive category is a cate-
gory with subtractions such that the following squares exists and are Cartesian:
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• •

• •

⌟

Remark 9.9. Examples include Sch/X ,Var/X , but not smooth schemes since
pushouts can introduce singularities.

Remark 9.10. To a subtractive category C we can define a category F+
1 C

whose objects are subtraction sequences and morphisms are cartesian squares.
Note that F+

1 is itself subtractive, and functors (X ↪→ Y
◦← Z) → X,Y, Z

respectively which takes in a from F+
1 C→ C.

Definition 9.11. SW-categories: Subtractive Waldhausen categories plus con-
ditions, e.g. isomorphism are weak equivalences and compatibility with sub-
traction sequences. Then we can define the S̃• construction – let Ãr[n] be the
arrow category where every rectangle with ∅ in the bottom-left is a Cartesian
square:

∅ • • • •

∅ • • •

∅ • •

∅ •

∅

o o o o

o o o

o o

o

Here we define the morphisms to be morphisms in Fun(Ãr[n],C) such that
the top row squares are cartesian. From this we get that S̃•C is a subtractive
category with levelwise fibrations/cofibrations/subtraction sequences, and [n]→
S̃nC ∈ sCat is a simplicial category. We can let K(C) = Ω|w·S̃•C|. One can check
that π0K(C) = K0(C). Moreover, as S̃•C is itself a subtractive Waldhausen
category we can let

K(C)(ℓ) =
∣∣∣N (wS̃• · · · S̃•C)

∣∣∣
where the S̃• construction is applied ℓ times.

Remark 9.12. Explicitly S̃
(ℓ)
• C ≤ Fun(Ãr[n1] × · · · Ãr[nk],C) is a subcategory

such that each slide is valid for all but one ni and restrictions to top rows for
each Ãr[ni] are Cartesian. We get sequence of spaces K(C)(k) for k ∈ Z≥0 which
assemble to a symmetric sequence (i.e. we have an Sk action on each K(C)(k))
which assemble to a spectrum.
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Theorem 9.13 (Additivity). The map

(s, q) : F+
1 C→ C× C

X ↪→ Y ←↩ Z 7→ (X,Z)

induces a homotopy equivalence of simplicial sets S̃•(F
+
1 C) ≃ S̃•C× S̃•C.

Remark 9.14 (Delooping). We want ΩK(C)(n) → K(C)(n + 1). For X• a
simplicial object, there is path fibration PX• → X0 by taking the constant
path, as in the following diagram:

X· PX0

X0

∼

And we also have a diagram

X1 X1 X1 ...

X1 X2 X3 ...

X0 X1 X2 ...

= = =

s21s1=

s1
s1,s2

d1,d2

d0 d0 d0

... ...

Applying this to X• = wS̃•C ∈ sCat, we get a sequence whose composite is
constant and whose middle term is contractible:

wS̃•C→ PwS̃•C→ w·C.

This yields a map |N (wC)| → Ω
∣∣∣N (wS̃•C)

∣∣∣, which is not necessarily a weak

equivalence but becomes such after another application of S•.

Remark 9.15. We are interested in lifting the classical setting of maps K(Vark)→
R for R some spectrum. We’ll try to lift classical motivic measures to morphisms
of spectra K(Var/k)→ R.

Definition 9.16 (W -exact functor). A W -exact functor C → W from a SW
category to a Waldhausen category, is a pair F! and F

! where

F! : cof(C)→W

F ! : fib(C)op →W

where the ”op” is to account for our fibrations going the wrong way, such that
F!(X) = F !(X), base change is satisfied, and subtractive sequences are sent to
cofibration sequences.
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Such a W -exact functor induces a map wS̃•C → wS•W for simplicial sets
and hence a map of spectra K(C) → K(W). We end with a few illustrative
examples:

Example 9.17 (The unit map). Let FinSet∗ be the category of pointed finite
sets. Then the Barratt-Priddy-Quillen theorem gives that K(FinSet∗) = S,
so the K-theory of FinSet∗ is the sphere spectrum. We want to find a map
S → K(Vark), and we have the map

FinSet∗ → Vark

[n] 7→
∐

0≤i≤n

Spec(k)

One can check that this is an op-W functor, hence we get a map K(FinSet∗)→
K(Vark) which is the unit map for the E∞-structure.

Example 9.18 (The point-counting map). We have a point-counting map

Vark → FinSet∗

X 7→ |X(k)|

where X(k) denotes the k-points of X. We can likewise check this is W -exact
and hence we get an induced map on K-theory. Moreover, combined with the
previous example, the following diagram commutes:

K(Vark) K(FinSet∗)

K(FinSet∗)

id

Given that K(FinSet∗) = S we see that

K(Vark) = S ⊕ ”something else”
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10 Talk 10: Derived Motivic Measures (Aidan
Lindberg)

Reference: [CWZ; BGN21].

10.1 Setup

Remark 10.1. We have a spectrum K(Vk); we’ll consider maps out of this
to detect nontrivial homotopy groups. We have several examples of motivic
measures:

Example 10.2. The point measure

VFq
→ FinSet

X 7→ X(Fq)

where FinSet is the category of finite sets. This induces a map

K0(VFq
)→ K0(FinSet),

and one of our goals will be to lift this to a morphism of spectra to make them
derived motivic measures.

Example 10.3. Let V×
k be the category of varieties over k equipped with an

automorphism. There is a functor

V×
C → ho(Chb(Q))

X 7→ Cc
•(X(C);Q),

whereX(C) is the associated analytic space, ho(ChbQ) is the homotopy category
of bounded chain complexes of Q-modules, and the map is taking compactly
supported singular cochains. One can recover the compactly supported Euler
characteristic χ as a map on K0 sending X to χ(X) :=

∑
i∈Z dimHi(X(C);Q).

Example 10.4. One can take the action of Frobenius on ℓ-adic cohomology to
obtain a functor

V×
Fq
→ hoChb(Aut(Qℓ))

X 7→ Frobq ↷ RΓc(XF̄q
;Qℓ),

which is an ℓ-adic version of the Euler characteristic.17 Applying K0 gives an
associated zeta function.

Remark 10.5. There is a category Motk which any “nice” (additive) invariant
of Vk should factor through. This is a dg-category, and taking the perfect
objects and applying the Waldhausen construction yields a K-theory. Note
that existence of Motk is partially conjectural, although we do have its derived
category.

17This can be thought of as giving continuous Galois representations.
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Remark 10.6. For C a Waldhausen category we can associate the spectrum
K(C). Note that Vk is a SW category, so the arrows go the wrong way, and thus
we want a map K(CSW)→ K(CW).

10.2 W -exact functors

Definition 10.7 (W -exact functors). Let C be an SW category and D be a
Waldhausen category. Then a weakly W -exact functor F : C→ D is a triple
F = (F!, F

!, Fw) where

1. F! : cof(C) → D, where cof(−) is the subcategory generated by cofibra-
tions,

2. F ! : fib(C)op, where fib(−) are “complement” maps Z Y◦ in sub-
traction sequences

X Y Zi ◦ ,

3. Fw :W (C)→W (D) where W (−) denotes the weak equivalences,

4. F! = F ! = Fw on all objects.

5. Certain cartesian squares are sent to cartesian squares:

X Z F (X) F (Z)

Y W F (Y ) F (W )

j

j!

i

◦
i!

◦

i! (i′)!

j̃!

j!

F

6. Subtraction sequences X Y Y \Xi ◦j are sent to cofiber se-
quences:

F (X) F (Y )

F (∅) F (Y −X)

i!

j!

⌟

Proposition 10.1. W -exact functors induces maps K(C)→ K(D).

Remark 10.8. Goal: construct W -exact functors Vk → C for appropriate C.

Example 10.9. Let Vcpt
k be the SW category whose objects are open em-

beddings X X◦ with X proper and morphisms are commuting squares

involving f, f . Morphisms are cofibrations if f, f are closed embeddings, and
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complements if f is an open embedding and f is a closed embedding, and take
weak equivalences to be isomorphisms. A sequence

(Z → Z) (X → X) (U → U)◦

is a subtraction sequence if Z X U◦ is subtraction sequence in

Vk and im(U → X) =
(
X \ Z

)
, and this makes Vcpt

k a SW category. Note that

there is a forgetful map Vcpt
k → Vk where (X → X) 7→ X.

Warnings 10.10. A functor to just the homotopy (or derived) category is
insufficient to induce a map on K-theory!

Theorem 10.11. Let k ↪→ C be a subfield and let Chb(R) for R a commutative
ring be the category of bounded chain complexes which are homologically finite.
Let [Cc(−;R)] denote the class of R-valued singular cochains in the homotopy
category hoChb(R). Then the functor

Vk → Chb(R)
op

X 7→ [Cc(X;R)]

admits a model as a span of weakly W -exact functors:

Vcpt
k

Vk Chb(R)
op

U,∼ G

Note that G will be defined in the proof, and this produces a factorization of the
functor above.

Proof. • Define G(X,X) := Csing(X,X \X)

• Note

G! : fib(Vcpt)→ Chb(R)
op

(Z,
(
Z)

ϕ−→ (X,X)
)
7→ ϕ∗.

where ϕ is a closed embedding, and

G! : cofib(Vcpt)→ Chb(R)
op(

(Z,Z)
ψ−→ (X,X)

)
7→ Extension by zero

where ψ is an open embedding.
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• Check that U induces an equivalence on K-theory, see [CWZF19][Lemma
2.21] on derived ℓ-adic zeta functions).18

Theorem 10.12. If k is a subfield of C then Ki(Vk) ̸= 0 for infinitely many i.
In particular K4s−1(Vk) ̸= 0 for all positive s.

Brief sketch of proof. Use the W -exact functor of the previous theorem to get
a nonzero map K4s−1(Vk)→ K4s−1(Z) whose image is nonzero.

Question 10.13. It has been shown that K(Vk) = S⊕K̃(Vk) and S = K(FinSet).
Do there exist classes that do not come from the image of S under the E∞ ring
structure?19

Remark 10.14. [BGN21] constructs classes of infinite order in K(Vk).

18In fact, U is exact.
19Why 4s − 1? This has something to do with the orthogonal group and the

J-homomorphism.
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11 Talk 11: Higher Algebraic K-theory (Danika
Van Niel)

Reference: [Wei13, p. IV.7] and [Wal85, §1.3 and 1.9].

Our exposition will closely follow the history of K-theory.

Lower algebraic rings K0,K1,K2

K-theory groups A (1957–1967)
rings +-construction
A (Quillen, 1971 [Qui71])

Higher algebraic small exact Q-construction
K-theory categories E (Quillen, 1972 [Qui73]) e.g. schemes

Waldhausen S•-construction
categories C (Waldhausen, 1978 [Wal85]) e.g. Top

Definition 11.1 (K0, due to Grothendieck). Let A be an associative, unital
ring and P(A) the monoid (under ⊕) of isomorphism classes of finitely generated
projective A-modules. Define

K0(A) := Gr(P(A)),

where Gr denotes the Grothendieck group, i.e. the group completion of a
monoid.

Example 11.2. If F is a field, then P(F ) ∼= N since vector spaces up to
isomorphism are classified by dimension, and thus K0(F ) ∼= Z.

Definition 11.3 (K1, due to Bass-Schanuel). For A an associative unital ring,
define

K1(A) := GL(A)/E(A),

where GL := colimnGLn(A) and E(A) is generated by certain elementary ma-
trices.

Remark 11.4. The next K-group K2(A) was defined by Milnor, but we will
not go into the details here. The point is that higher K-theory should generalize
these existing definitions.

11.1 Quillen’s +-construction and Q-construction

Remark 11.5. We first start with the +-construction. We want a space K(A)
such that π1K(A) ∼= K1(A). We know π1 BGL(A) ∼= GL(A), so to get the
quotient K1(A) we glue in appropriate cells so that the fundamental group of
K(A) is what we want and

H∗(K(A),M) ∼= H∗(BGL(A),M)



11.1 Quillen’s +-construction and Q-construction 67

for any Z[K1(A)]-module M . Quillen does this using the +-construction to get
a space BGL(A)+ and defines

K(A) := BGL(A)+, Ki(A) := πi BGL(A)+

for i > 0.

After defining the ±construction, Quillen defined a more generalized con-
struction.

Remark 11.6. Recall that a small category C is a category such that Ob C and
HomC are set-sized. An exact category is a pair (E , S) where E is an additive
category20 and S is a family of sequences in E of the form

0→M ′↣M ↠M ′′ → 0 (∗)

such that E is a full subcategory of some abelian category A, plus some con-
ditions. Recall this means A has kernels and cokernels, monomorphisms are
kernels, and epimorphisms are cokernels; fullness of E in A means Ob E ⊆ ObA
and for all objects X,Y , E(X,Y ) = A(X,Y ). The idea of an exact category
is that we think of (∗) as an exact sequence in E . In (∗), the arrows ↣ are
called admissible monomorphisms and the arrows↠ are called admissible
epimorphisms.

Example 11.7. For a ring A, isoP(A) is a small exact category where the
objects are the same and the only morphisms are isomorphisms.

Remark 11.8. Let E be a small, exact category. Define the generators ofK0(E)
to be isomorphism classes of objects in E with the relation [M ] = [M ′] + [M ′′]
for all sequences (∗). To form the higher K-groups, we define a new category
QE . The objects of QE are the objects of E , but a morphism from X to Y in
QE is a span21

X ↞M ↣ Y.

Definition 11.9 (Quillen Q-construction). For E a small, exact category, define

K(E) := ΩBQE , Kn(E) := πn+1BQE for n ≥ 0.

Theorem 11.10 (+ = Q). For A a unital, associative ring,

K+
n (A)

∼= KQ
n (P isoP(A)),

where K+ indicates the use of the +-construction and KQ indicates the use of
the Q-construction.

20This means there is a 0 element, a map E × E → E, and for all objects X,Y the hom set
E(X,Y ) is an abelian group.

21Really, an equivalence class of them, where the middle object is given only up to isomor-
phism.



11.2 Waldhausen’s S•-construction 68

Remark 11.11. To prove this, Quillen uses another construction called the
S−1S construction for symmetric monoidal categories. Quillen shows the fol-
lowing:

• For S := isoP(A), one has ΩBQP(A) ≃ BS−1S, and

• BS−1S ≃ Z× BGL(A)+.

Thus
πn(ΩBQ(P(A))) ∼= πn(BS

−1S) ∼= πn(BGL(A)+)

for all n > 0, which relates the Q-construction to the +-construction.

11.2 Waldhausen’s S•-construction

We have now seen that the + and Q constructions agree where they overlap. A
few years later, Waldhausen defined an even more general construction.

Remark 11.12. Waldhausen uses the S•-construction to define higher K-theory
for Waldhausen categories, which are categories with cofibrations (↣) and weak
equivalences (

∼−→). In a Waldhausen category, we have access to cofibration
sequences

A↣ B ↠ B/A := coker(A↣ B).

The S•-construction builds a simplicial Waldhausen category

S•C = {S0C S1C S2C · · · }

where each SiC is a Waldhausen category. Then the nerve of this simplicial
category is a bisimplicial set, and we restrict to the bisimplices whose vertical
morphisms are all weak equivalences. The realization of the resulting object is
denoted |wS•C| and we define

K(C) = Ω |wS•C| and Kn(C) = πn+1(|wS•C|).

Like the “+ = Q” theorem, there is an “S• = Q” theorem. Every small exact
category E can be viewed as a Waldhausen category whose cofibrations are the
admissible monomorphisms and whose weak equivalences are the isomorphisms.
To emphasize this second point, we will use iS•E to denote wS•E .

A key tool in comparing iS•E to the Q-construction is the following:

Definition 11.13 (Segal’s edgewise subdivision). The edgewise subdivision
of a simplicial set X• is another simplicial set Xe

• with Xe
n = X2n+1. The map

[n] 7→ [2n+ 1] is given by sending

0 < 1 < · · · < n to n′ < · · · < 1′ < 0 < 1 < · · · < n.
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Geometrically, for small n it looks like the following:

Theorem 11.14. For X• a simplicial set, there is a natural homeomorphism

|X•| ∼= |Xe
• | .

Remark 11.15. We want to compare Se•E to Q•E, where QnE = NnQE . Let
s•E denote the simplicial set of objects of S•E . Seeing s•E as a simplicial
category in the trivial way, we have maps

sekE = s2k+1E → QkE .

Let’s see how this works for small k.

For k = 0:
se0E = s1E Q0E

A1 A1,

For k = 1:
se1E = s3E Q1E

A23

A12 A13 A2

A1 A2 A3 A12 A3

For k = 2:
se3E = s5E Q2E

A45

A34 A35

A23 A24 A25 A3

A12 A13 A14 A15 A13 A4

A1 A2 A3 A4 A5 A23 A14 A5
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In fact, se•E → Q•E is simplicial and surjective. We can extend this map
iSe•E → iQ•E which is a levelwise equivalence of categories, and thus geomet-
rically realizes to a homotopy equivalence. Finally, we use the “swallowing
lemma” to show |iQ•E| ≃ BQE . Thus

|iS•E| ≃ |iSe•E| ≃ |iQ•E| ≃ BQE

and so πn+1(|iS•E|) ∼= πn+1(BQE), which shows the two constructions agree.
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12 Talk 12 : CGW-categories (Chloe Lewis)

Reference: [CZ18].

Remark 12.1. Recall from Talk 0 that one of the key observations for building
K-theory was that there were two ways for an object to be smaller than another,
which we indicated using different colored arrows:

P ↪→ Q and P ↪→Q.

a In the context of trying to understand K-theory of varieties, we have things
like

X ↪→ Y ←↩ Y \X,

but the second arrow is going the wrong way. So how can we do K-theory here?
The idea is to generalize exact categories to CGW categories and develop

a K-theory in this context so that our favorite K-theory theorems and construc-
tions still work. Before Campbell-Zakharevich worked on CGW categories and
their K-theory, they separately developed different ways of building the K-theory
of varieties (using subtractive categories and assemblers, respectively).

Upshot 12.2. We can use CGW categories to show that the K-theories of
Campbell and Zakharevich coincide for Vk the category of varieties over a field
k:

KC(Vk) ≃ KZ(Vk).

12.1 CGW categories

Definition 12.3 (Double categories). A double category C is two categories
M and E with the same objects, ObM = Ob E . We denote the morphisms of

M as A↣ B and the morphisms of E as A B . The double category C
also comes with distinguished squares

A B

C D

□

Definition 12.4 (CGW categories). A CGW category is a double category
C along with

• An isomorphism of categories ϕ : isoM→ iso E ,

• Two equivalences of categories, c : Ar□M→ Ar△E and k : Ar□E → Ar△M.

Here Ar□M is the category whose objects are arrows ofM, A B ,
and whose morphisms are distinguished squares. The category Ar△E is
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slightly different, with objects A→ B and morphisms commuting squares
in E whose top horizontal arrow is an isomorphism,

A ∼= A′

C D

.

The categories Ar□E and Ar△M are formed analogously. We use k and c
to build kernels and cokernels.

These must satisfy the following axioms:

Z) Zero: there is an object ∅ which is initial in bothM and E ,

I) Isomorphisms: for any isomorphism f : A B , we have distin-

guished squares

A B

C D

ϕ(f)

f

□ id

id

and etc.

M) Monics: all morphisms inM and E are monic,

K) Kernels: for all g : A B , write k(g) = gk : Ag/k ↣ B. Then the
square

∅ A

Ag/k B

□ g

gk

is distinguished.

C) Cokernels: dual statement as above for c,

A) K0 is abelian: for all objects A,B there is an object X such that

∅ A

B X

□ and

∅ B

A X

□ .

We think of X as “A⊕B”.

Example 12.5. Any exact category is CGW, where we setM to be admissible
monomorphisms and E to be (admissible epimorphisms)op. The distinguished
squares are stable squares (squares which are both pushouts and pullbacks). If

A → B is an epimorphism, then we get a morphism B A in E and we
define k to send this to the monomorphism



12.2 K-theory of CGW categories 73

ker(A→ B) A .

Similarly, if C ↣ D is inM then define c to take it to

coker(C ↣ D) D ,

the opposite of the epimorphism D → coker(C ↣ D).

Example 12.6. Finite sets are CGW but not exact – note that ∅ is initial but
not terminal. In this case,M = E are the inclusions and □s are stable squares.
Both c and k send an inclusion A ↪→ B to the inclusion B \A ↪→ B.

Example 12.7. Varieties over k (or schemes of finite type) are CGW. Here,
M is closed immersions, E is open immersions, and □s are pullbacks:

X Y

W Z = im(f) ∪ im(g)

f

g

12.2 K-theory of CGW categories

Lemma 12.8. A span A B C
f g

gives a square

A B

D C

f

□ g .

Remark 12.9. An important theorem is that we can do the Q-construction on
CGW categories. For a CGW category C, the objects of QC are the objects of
C and morphisms are spans. We define

K(C) = ΩBQC.

We can check that K0(C) ∼= Z[Ob C]/ ∼ where ∼ indicates [D] + [B] = [A] + [C]
whenever there is a square

A B

D C

f

□ g

in C. Recall the following:

Theorem 12.10 (Quillen’s dévissage for abelian categories). If an inclusion of
abelian categories A ↪→ B is “nice” and for all B ∈ B there is a filtration

∅ = B0 ⊆ B1 ⊆ · · · ⊆ Bn = B

such that Bi/Bi−1 ∈ A, then K(A) ≃ K(B).
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Remark 12.11. We built CGW categories in analogy to exact categories, and
there is a similar analogy for abelian categories, called ACGW, which are like
CGW categories with “pushouts.” There is also something called pre-ACGW,
and the theorem is that dévissage holds for (pre-)ACGW categories.

Theorem 12.12 (Dévissage 2.0). Suppose A ↪→ B is a “nice” inclusion of
(pre-)ACGW categories and for all B ∈ B there is a filtration

∅ = B0↣ B1↣ · · ·↣ Bn = B

such that B
C/Bi−1

i ∈ A. Here B
C/Bi−1

i is the object fitting into the square

∅ B
C/Bi−1

i

Bi−1 Bi

□

which is given by the lemma. Then K(A) ≃ K(B).

Remark 12.13. For example, Vk is pre-ACGW and Schft (the category of
schemes of finite type) is ACGW. From the dual statement of dévissage 2.0, we
get K(Vk) ≃ K(Schft). We can also do the S•-construction on CGW categories,
where SnC consists of

∅ C01 . . . C0n

∅ . . . C1n

. . .
...

Cnn

and K(C) ≃ Ω |S•C|. Similarly, we can also do the scissors-Waldhausen con-
struction from Talk 9; Schft is both ACGW and scissors-Waldhausen.

12.3 Comparing Campbell’s and Zakharevich’s K-theory
of varieties

Remark 12.14. The big theorem is that the K-theory of varieties built using
Inna’s assemblers coincides with the K-theory of varieties built with Jonathan’s
version of the S•-construction.

Theorem 12.15.
KZ(Vk) ≃ KC(Vk).
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Sketch of proof. The idea of the proof is to use helper CGW categories:

KC(Var/k)
∼−→ KC(Schft)

∼−→ KC(C) ∼← KZ(Var/k),

where the first equivalence follows from dévissage and the second equivalence is
difficult. The category C is a helper category SchftW . For the difficult arrow,
the idea is to filter by dimension,

KC(Schft) = hocolim
n≥0

KC(Schft,n),

and to look at (somewhat large) diagrams of categories involving more helper
categories.

Upshot 12.16. The main takeaway is that we don’t need exact categories to
do K-theory – one just needs two notions of what it means to be an inclusion
and the standard tools and machinery of K-theory still hold.



76

13 Talk 13: FCGW-categories (Lucy Grossman)

Reference: [SS21].

13.1 (-)CGW Categories

We have been introduced to the concept of a double category in Talk 12, and in
this talk we will introduce a variation on this theme. The following notion will
be especially useful in what is to follow:

Definition 13.1 (Double isomorphisms). Let C = (M, E) be a double category.
We say C has double isomorphisms if the following are present:

• A groupoid of functors I

M I E

providing isomorphisms.

• Given a commuting square

· ·

· ·
f

g

f ′

g′

there exists a unique square

· ·

· ·
f

g

f ′

g′

and vice versa where f denotes both theM-morphism and the E-morphism
from the previous criterion.

• The analogous condition for E-morphisms and E--squares.

Remark 13.2. Recall that double categories come with squares relating E--morphism
toM-morphisms. In this talk, such squares will be called pseudo-commutative
or mixed squares. These provide one arrow category of interest, but two others
are integral to the the definition of the variation of CGW categories we will
define:

Definition 13.3 (The triangle arrow category). For C = (M, E) a double cat-
egory, denote by Ar△M the category with

• Objects: The morphisms ofM.
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• Morphisms: For A B
f

and A′ B′f ′

objects in Ar△M, take
HomAr△M to be commutative squares of the form

A B

A′ B′

f

f ′

One likewise defines Ar△E . The next definition generalizes this to arbitrary
categories:

Definition 13.4 (Good squares). Let A be a category. A class of good
squares, denoted ArgA, is the following subcategory:

• Objects: The morphisms of A.

• Morphisms: Commuting squares of morphisms in A, which are depicted
by diagrams of the form

· ·

· ·
g

Each of these morphisms is called a good square.

Remark 13.5. Note that this definition generalizes Definition 13.3, since we
now use all morphisms in A in our squares rather than just those in a particular
subcategory of the double category. We are now prepared to define a version of
CGW categories equipped with good squares:

Definition 13.6 (g-CGW categories). A g-CGW category is a double category
C = (M, E) along with the following:

• A class of good squares ArgM inM and a class of good squares ArgE in
E .

• Equivalences of categories

k : Ar⟲E → ArgM

and
c : Ar⟲M→ ArgE

such that the following properties hold:
(Z)M and E have initial objects, and those initial objects agree.
(M) All morphisms inM or E are monic.
(G) Both Ar△M ⊆ ArgM ⊆ ArxM and Ar△E ⊆ ArgE ⊆ ArxE where ArxA
stands for the pullback squares in any category A.
(D) k sends a pseudo-commutative square to Ar△M if and only if c sends
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a pseudo-commutative square to Ar△E . The squares resulting from this are
distinguished squares depicted as

A B

C D.

□

(K) Corresponding to everyM-morphism there is a distinguished square of the
form

∅ B/A

A B

□ c(f)

f

and to every E-morphism, a distinguished square of the form

∅ A

B\A B

□ g

k(g)

where ∅ denotes the (shared) initial object.

Remark 13.7. To augment intuition, one may think of B/A as a cokernel and
B\A as a kernel. To relate this definition back to that of the CGW categories
introduced in Talk 12, consider the double subcategory of C whose morphisms
are distinguished squares. This can be shown to form a CGW category. One
may also check that any regular CGW category satisfying the axioms (D) and
(K) in the g-CGW category condition is indeed a g-CGW category with good
squares given by the morphisms of Ar△M and Ar△E , where all squares are
distinguished.

Remark 13.8. The examples introduced previously for CGW categories are
also examples of g-CGW categories. There is also a large collection of examples
formed by to-be defined finitely extensive categories. The structure of such a
category is well exhibited by the example of finite sets, so we will first present
that example in order to gain some intuition before defining finitely extensive
categories in general.

Example 13.9. Let FinSet denote the category of finite sets. It may be viewed
as a double category with M = E = {injective functions of sets}. To see the
structure of a g-CGW category on FinSet, let both the good and the pseudo-
commutative squares be pullback squares, and the initial object be the empty
set. Since E = M, one may define k and c to take an injective map A → B
to the map B\A. Distinguished squares are determined by this data, and thus
trace out pushout squares corresponding to objects of E andM.

Definition 13.10 (Finitely extensive categories). A category A is finitely
extensive if it has finite coproducts obeying the following:
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• Monic coproduct inclusions.

• Any cospan of the form

A A ⊔B B

has a pullback given by ∅:

∅ A

B A ⊔B.

• For any morphism X → A ⊔B, there exist pullback squares of the form

Y X Z

A A ⊔B B

where X ∼= Y ⊔ Z.

Remark 13.11. Notice that many of the common categories that have cropped
up as examples are finitely extensive categories, such as finite sets, small cat-
egories, and topological spaces. In the mould of the example above of FinSet,
it turns out that any finitely extensive category can be viewed as a g-CGW
category.

Example 13.12. Let A be a finitely extensive category. The g-CGW structure
on A is defined as follows:

• M = E = {coproduct inclusions}.

• Pseudo-commutative and good squares are pullback squares.

• k and c take a coproduct inclusion to the opposite coproduct inclusion,
called the complementary coproduct inclusion – i.e. in the cospan

A A ⊔B B

both k and c would take

A A ⊔B to A ⊔B B .

• The distinguished squares are of the form

A A ⊔B

C ⊔A C ⊔A ⊔B,

which is validated by checking the g-CGW axioms.
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One may show that (Z), (M), (G), (D), and (K) hold here.

Example 13.13. Another is the category Var/k of algebraic varieties, which
forms a g-CGW category with

• M = {closed immersions}, E = {open immersions}.

• Pseudo-commutative and good squares are pullback squares.22

• Distinguished squares are pullback squares of the form

A B

C D

□ f

g

such that im f ∪ im g = D.

One may again check that the axioms of a g-CGW category hold for this setup.

Definition 13.14 (⋆-CGW categories). A ⋆-CGW category is a g-CGW
category fulfilling as well the axioms

(GS) TheM-square

· ·

· ·
g

f

h

k

is a good square from f to k if and only if it is such from g to h. The
analogous axiom holds for E-squares.

(⋆) Let

C A B

be a diagram inM. Consider the category of good squares, with objects
good squares like

A B

C D

g

and morphisms maps D D′ that commute over B and C. If this
category is non-empty, then it has an initial object D = B ⋆A C, and the
induced maps

B/A B ⋆A C/C

and
C/A B ⋆A C/B

22Note that varieties are closed under pullbacks.
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are isomorphisms. This statement for the case of the first of these two
isomorphisms is depicted as

A B B/A

C B ⋆A C B ⋆A C/C.

g ∼=

The analogous relationships hold for E-diagrams.

(PO) The category ofM good squares corresponding to a diagram

C A B ]

is nonempty.

Crucially, this does not have to hold for E-diagrams.

(PBL) Pullback lemma: if the the exterior square in the following diagram is a
pseudo-commutative square, then so is the left square.

A B C

A′ B′ C.

The analogous statement holds for E-morphisms and -compositions.

(POL) Pushout lemma: if the exterior square in the following diagram is a good
square, then so is the right square.

A B D

C B ⋆A C E.

The analogous statement holds for E-morphisms and compositions in the
cases where the ⋆-pushout (from (⋆)) exists.

The asymmetry with respect to E-morphisms andM-morphisms in this defini-
tion is key. To foreshadow, it gives a more restricted category of which one can
describe the K-theory of common examples.

Example 13.15. Extensive categories, already seen to be g-CGW categories,
can also be considered as ⋆-CGW categories where for each span

C ⊔A A A ⊔B

the corresponding ⋆-pushout is the triple coproduct C ⊔B ⊔A.
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Remark 13.16. This previous example means that many common examples
such as finite sets and topological spaces can also be framed in terms of the
structure of ⋆-CGW categories. The asymmetry in the definition of ⋆-CGW
categories is encapsulated by the following example.

Example 13.17. Consider Var/k, the category of varieties over k. This is
a g-CGW category, and can be interpreted as a ⋆-CGW category by setting
⋆-pushouts as pushouts of varieties. Again withM-morphisms as closed immer-
sions and E-morphisms as open immersions, one notices that while axiom (PO)
holds for closed immersions, it does not for the E-morphisms since pushouts of
open immersions of varieties do not generally exist.

13.2 K-theory

As indicated in Talk 12, one may look at both Quillen’s Q-construction and
Waldhausen’s S•-construction of K-theory for CGW categories. One of the
advantages of the latter is that it tracks homotopical data via weak equivalences.
It would thus be nice to have a S•-construction recognizing the structure of
⋆-CGW categories, as well. To implement this, we require some notion of weak-
equivalence in the context of ⋆-CGW categories.

Definition 13.18 (Acyclic structure on a ⋆-CGW category). Let C be a ⋆-CGW
category. An acyclicity structure on C is a class of objects of C known as
acyclic objects such that the following axioms are satisfied.

(IA) Any initial object in C is an acyclic object.

(A23) Let

A B C

be a kernel-cokernel pair. A, B, and C satisfy a two-out-of-three property
with respect to acyclicity: if any two of them are acyclic objects, then so
is the third.

Remark 13.19. Recall from homological algebra the notion of acyclicity: for
F : P → Q a functor, the F -acyclic objects are those p ∈ Ob(P) such that
the right derived functors of F on them vanish. Acyclic objects can be shown
to form a full subcategory of the ⋆-CGW category C and some morphisms of
such objects will play the role of weak equivalences there.

Definition 13.20 (FCGWA categories). Let C be a ⋆-CGW category and W
its full subcategory of weak equivalences. The pair (C,W) is called an FCGWA
category: a functorial CGW category with acyclics.

Definition 13.21 (ECGW functors). Let (C,W) and (C′,W ′) be two FCGWA
categories. An ECGW functor, F : (C,W)→ (C′,W ′), is a functor of ⋆-CGW
categories that preserves acyclic objects.
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Definition 13.22 (Weak equivalences in ECGW categories). Let C be an
ECGW category. An M-morphism is a weak equivalence if its cokernel is
acyclic and an E-morphism is a weak equivalence if its kernel is acyclic.

Remark 13.23. Proceeding we will only cite some major results relating to
K-theory that hold in the context of ⋆-CGW categories, and suggest reading the
primary reference for details.

There is a notion of delooping, as seen in the following theorem:

Theorem 13.24 (Delooping). The K-theory of (C,W) a CGW category forms
a spectrum K(C,W).

We also have a notion of fibrations:

Theorem 13.25 (Fibration). Let C be a ⋆-CGW category with acyclicity struc-
tures V and W such that V ⊆ W. Then the following is a homotopy fiber
sequence:

K(W,V) K(C,V) K(C,W).

Finally, we also have a notion of localization:

Theorem 13.26 (Localization). Let A and B be ⋆-CGW categories such that
A ⊆ B is a full inclusion of ⋆-CGW categories and A is closed under kernels
of E-morphisms, cokernels of M-morphisms, and extensions in B. Then there
exists (B,A) an ECGW category such that the following is a homotopy fiber
sequence:

K(A) K(B) K(B,A).

Remark 13.27. Note that this follows directly from the fibration theorem,
where W is replaced by A, C is replaced by B, and V is replaced by ∅.

13.3 Chain complexes of finite sets

Remark 13.28. A significant portion of [SS21] focuses on a construction of
the K-theory of (finite) chain complexes over an extensive category. It turns out
that the category of chain complexes over any extensive category possesses the
structure of a ⋆-CGW category, and a subcategory of such chain complexes, the
exact chain complexes, can be viewed as the acyclic objects, so consequently
there is an S•-construction for the K-theory thereof. Moreover, there is a version
of the Gillet-Waldhausen theorem for chain complexes over an extensive cate-
gory, which gives a way of describing the K-theory of the underlying category
in terms of that of the chain complexes over it.

Definition 13.29 (Chain complexes over extensive categories). Let χ be an
extensive category. A chain complex over χ is a diagram

· · ·Xi+1 X̄i+1 Xi X̄i Xi−1 · · ·
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over χ and for all i ∈ N, such that the chain condition is satisfied, i.e. the
following is a pseudo-commuting square:

∅ X̄i

X̄i+1 Xi

Some terminology:

• The {Xi} objects are the degrees of X.

• The {X̄i} are the images of the Xi.

• Each span

Xi X̄i Xi−1

is a differential of X.

These chain complexes form a category denoted Ch(χ).

Definition 13.30 (Bounded complexes). A bounded chain complex over χ
is a chain complex as above such that only finitely-many objects and images are
non-empty.

The category of bounded chain complexes will be denoted by Chb(χ).

Theorem 13.31. Let χ be an extensive category. The category of chain com-
plexes over χ, Ch(χ) form a ⋆-CGW category.

Remark 13.32. The pieces of this structure for Ch(χ) are as follows:

• M-morphisms in Ch(χ), chainM-morphisms are a collection {fi, f̄i} of
M-morphisms in χ fulfilling

Xi X̄i Xi−1

Yi Ȳi Yi−1

fi f̄i fi−1

such that the square inM commutes.

• Chain E-morphisms are a collection of E-morphisms {gi, ḡi} in χ fulfill-
ing

Xi X̄i Xi−1

Yi Ȳi Yi−1

gi ḡi gi−1

such that the square in E commutes.
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• Pseudo-commutative squares are degree-wise pseudo-commutative squares
in χ commuting with all squares of the adjacent morphisms in the same
subcategory (i.e. in E or inM).

• Good squares of E- orM-morphisms are level-wise commuting good squares
of chain E- orM-morphisms.

Note that all of this holds for Chb(χ), as well.
Recall that acyclic objects were instrumental in defining weak equivalences

in a ⋆-CGW category. The S•-construction of K-theory is able to handle this
more nuanced data, and so to implement this, it would be nice to have a class
of acyclic objects in Ch(χ). These will come from the following:

Definition 13.33 (Exact chain complexes in extensive categories). Let χ be
an extensive category. An exact chain complex over χ is a chain complex of
the form

Xi+1 X̄i+1 Xi X̄i Xi−1

such that for each i each mixed cospan

¯Xi+1 Xi X̄i

is a kernel-cokernel pair, and the chain condition is given by the following
pseudo-commutative square.

∅ X̄i

X̄i+1 Xi.

The collection of exact chain complexes is denoted by ChE(χ).

Theorem 13.34. ChE(χ) is a full double subcategory of Ch(χ).

Proposition 13.1. (Ch(χ),ChE(χ)) forms an ECGW category, where ChE(χ)
is the full subcategory of acyclic objects.

Remark 13.35. This ECGW category restricted to bounded chain complexes
actually provides a model for the K-theory of the underlying extensive category
χ, a relationship described by a Gillet-Waldhausen theorem in this setting.

Theorem 13.36. There is a homotopy equivalence between the K-theory of χ
with isomorphisms and that of the ECGW category (Chb(χ),ChbE(χ)), which has
quasi-isomorphisms induced by the acyclic objects, i.e. those in ChbE(χ):

K(χ) ≃ K(Chb(χ),ChbE(χ)).
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14 Talk 14: Square K -theory and manifold in-
variants (Maxine Elena Calle)

Reference: [Hoe+22].

14.1 Cut-and-paste manifolds

We’ve talked about scissors congruence for polytopes, and we can try to do the
same thing for other kinds of spaces, like manifolds. We can (carefully) cut our
manifold up into pieces, rearrange them, and paste them back together. This is
called a SK-move (SK comes from schneiden und kleben, which means cut and
paste in German), and two manifolds are scissors congruent or SK-equivalent
if one can be obtained from the other by a finite sequence of these SK-moves.

Example: T 2 ∼SK T 2
∐
T 2

What does it mean to “carefully cut” a manifold M? Here are some non-
examples/things to be aware of:

• Our cut must separate M into two (not necessarily connected) pieces M0

and M1.

Non-example: cut doesn’t separate

• When pasting them back together, we need to glue the boundary of M0

to the boundary of M1.

Non-example: glued ∂Mi to itself.
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• Among other things, this means that we must have ∂M0
∼= ∂M1.

Non-example: no way to write ∂M0
∼= ∂M1

∼= (S1)⨿3.

Example 14.1. In the first picture for T 2 ∼SK T 2
∐
T 2, we cut along four

circles to separate T 2 into two (disconnected pieces): M0 consists of one dark
cylinder and one light cylinder, and M1 consists of the two remaining cylinders.
The boundaries of M0 and M1 are both diffeomorphic to (S1)⨿4, and we glue
the dark piece of M0 to the dark piece of M1, and similarly for the light pieces.
This satisfies all the rules for an SK-move for manifolds.

Here’s the formal definition:

Definition 14.2 (SK-moves). An SK-move on (smooth, closed, oriented)
manifolds is defined as follows: cut an n-manifold M along a codimension-1
smooth submanifold N with trivial normal bundle which separates23 M . Then
paste the two pieces back together along an orientation-preserving diffeomor-
phism of N .

Definition 14.3 (SK-move). The SK-group for n-manifolds is

Z[diffeomorphism classes of n-manifolds]/ ∼SK

Remark 14.4. The group SKn can also be defined by a universal property. Let
Mn denote the monoid of diffeomorphism classes of (smooth, closed, oriented)
n-manifolds under disjoint union. Then SKn is defined to satisfy the property
that any Abelian group-valued map out of Mn which is a SK-invariant (i.e.
respects SK-equivalence) must factor through it. The only SK-invariants for
smooth oriented manifolds are the Euler characteristic, the signature, and their
linear combinations.

Fact 14.5. It’s a group (under disjoint union).

Remark 14.6. Because we are working with diffeomorphism classes, we don’t
have access to things like length, angles, scaling (which we needed for the Dehn
invariant). This shows us already that scissors congruence of manifolds has a
very different flavor than scissors congruence of polytopes!

23This meansM\N is a disjoint union of two components, each with boundary diffeomorphic
to N .
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Here’s another difference from the world of polytopes: when we cut up a
polytope, the pieces are all still polytopes, but when we cut up a manifold, we
leave the category of manifolds and enter into the category of manifolds with
boundary. This motivates us to work entirely in the setting of manifolds with
boundary. The SK-relation is defined for manifolds with boundary just as it
was for manifolds without boundary, with the additional condition that the
codimension-1 separating manifold N must not intersect the boundary of M .

Example: two SK-equivalent manifolds with boundary

Remark 14.7. It is crucial that boundaries are not allowed to be cut in these
SK-moves, and all boundaries which come from a cut must be pasted back
together.

Non-example: no cutting boundaries

Non-example: cuts must be reglued

There are other variants of the definition of SK-moves in the literature which
allow for these sorts of things (see [Hoe+22, Remark 2.6]).

Definition 14.8 (SK∂
n). The group SK∂

n is the Grothendieck group (group
completion) on the monoid of diffeomorphism classes of (smooth, compact, ori-
ented) n-manifolds with boundary under disjoint union, modulo the SK-relation.



14.2 Square K-theory 89

Explicitly,

SK∂
n = Z[diffeomorphism classes [M ] of n-manifolds with boundary]/ ∼

where the relations are generated by

(i) [M
∐
N ] = [M ] + [N ],

(ii) Given manifolds M,M ′ with closed submanifolds Σ ⊆ M , Σ′ ⊆ M ′ and
orientation-preserving diffeomorphisms ϕ, ψ : Σ→ Σ′,

[M ∪ϕM ′] = [M ∪ψ M ′],

where M ′ is M ′ with the opposite orientation.

This group looks like it should be K0 of something...and this is exactly
what R. Hoekzema, M. Merling, L. Murray, C. Rovi, and J. Semikina show
in [Hoe+22] using the of machinery square K-theory.

Theorem 14.9.
SK∂

n
∼= K□

0 (Mfld∂n).

Remark 14.10. Our goal for this talk is to understand this theorem. The ben-
efit of using K-theory is we have access to more structure; the higher K-groups
of Mfld∂n can be interpreted as “higher scissors congruence groups” for manifolds
with boundary. As of now, there is no known way to realize SKn as K0 of some
category.

Remark 14.11. In [Hoe+22, Theorem 2.1], the authors show there is a short
exact sequence

0→ SKn
i−→ SK∂

n
∂−→ Cn−1 → 0.

Here, Cn−1 is the group of diffeomorphism classes of nullbordant24 (n−1)-manifolds,
i is the inclusionM 7→ (M, ∅), and ∂ sends (N, ∂N) to its boundary ∂N . In fact,
this short exact sequence splits and so SK∂

n
∼= SKn⊕Cn−1. In the “SK-book”

[Kar+73], they compute

SKn
∼=


0 n odd,

Z[Sn] n ≡ 2 (mod 4),
Z[Sn]⊕ Z[CPn/2] n ≡ 0 (mod 4).

Exercise 14.12. Compute SK2
∼= Z[S2] using the classification of surfaces.

Hint: we have already seen that [T 2] = 0. Show that [T 2#T 2]+[S2] = 2[T 2] = 0,
so [T 2#T 2] = −[S2], and proceed by induction.

14.2 Square K-theory

Remark 14.13. We have discussed how higher algebraic K-theory can be con-
structed in settings where we have some way to “chop things up”:



14.2 Square K-theory 90

exact Waldhausen CGW
categories categories categories

short exact sequences cofiber sequences spans⇝squares

0→ A→ B → C → 0 A↣ B ↠ B/A

A B

• C

□

Q S• Q
[B] = [A] + [C] [B] = [A] + [B/A] [B] = [A] + [C]− [•]

We talked about how we can interpret the K-theory of CGW categories as
the “combinatorial” analogue of the algebraic K-theory of exact categories. In
this talk, we’ll develop the combinatorial analogue of the algebraic K-theory of
Waldhausen categories: square K-theory.

Categories
with squares

squares

A B

C D

□

C(•)

[D] = [B] + [C]− [A]

As the name suggests, our setting will be categories with squares and we
will decompose objects according to these squares. The square K-theory space
is built using something similar to the S•-construction, denoted C(•). This is
forthcoming work of Campbell-Zakharevich.

We’ve already seen the idea that “[D] = [B] + [C]− [A]” from the square

A ∩B B

A A ∪B

.

An exercise in a first set theory class may be to prove

|A ∪B| = |A|+ |B| − |A ∩B| .

In general, the squares under consideration may not be pushouts or pullbacks
(or both, like the example above), but it is a helpful intuition to keep in mind.

24By nullbordant M , we mean that M = ∂W for some W .
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The benefit of a category with squares is that we get to specify exactly what
kinds of squares we want to work with, subject to a few conditions.

Definition 14.14 (Category with squares). A category with squares con-
sists of a category C with coproducts, a chosen distinguished object 0, and two
subcategories cC and fC called cofibrations (↣) and cofiber (↠) maps along
with a collection of distinguished squares

A B

C D

□

which satisfy the following:

(i) distinguished squares are closed under coproducts:

if

A B

C D

□ and

A′ B′

C ′ D′

□ , then

A
∐
A′ B

∐
B′

C
∐
C ′ D

∐
D′

□ ,

(ii) distinguished squares are commutative in C and can be composed vertically
and horizontally,

(iii) the subcategory isoC of isomorphisms (
∼−→) is contained in both cC and

fC,

(iv) all squares of the form

A B

C D

∼ ∼ and

A B

C D

∼

∼

are distinguished.

Example 14.15. The objects of Mfld∂n are (nice) n-manifolds with boundary
and the morphisms are closed embeddings plus a condition25 on the boundary.
Both cMfld∂n and fMfld∂n are all morphisms. Distinguished squares are pushouts

N M

M ′ M ′ ∪N M

□ .

The distinguished object for Mfld∂n is the empty manifold ∅.
25Specifically a map M → M ′ must map each component of ∂M either entirely into the

interior of M ′ or diffeomorphically onto a component of ∂M ′.
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Remark 14.16. Note that the requirement thatM ′∪NM be a smooth manifold
imposes restrictions on our squares, some of which may feel unfamiliar.

(Non-)example: “thicken” S1 to get distinguished pushout square

Definition 14.17 (C•). Define a simplicial category C• where C(n) is the sub-
category of Cat([n], C) whose objects are length n cofibration sequences

c0↣ c1↣ · · ·↣ cn

and whose morphisms are natural transformations in which every square is
distinguished. Then N∗C• is a bisimplicial set whose (m,n)-simplices look like
diagrams

c00 . . . c0m

...
. . .

...

cn0 . . . cnm

of distinguished squares.

Recall the number 1 fact about bisimplicial sets:

|[m] 7→ |NmC•|| ∼= |diag(N∗C•)| ∼=
∣∣∣[n] 7→ ∣∣∣N∗C(n)

∣∣∣∣∣∣ .
That is, it does not matter whether we realize horizonally then vertically, or vice
versa, since both are homeomorphic to the realization of the diagonal simplicial
set [n] 7→ NnC(n).

Definition 14.18 (The K-theory space). The K-theory space is this realiza-
tion (with a shift)

K□(C) = Ω |N∗C•| ,

and its K-groups are the homotopy groups of K□(C)

K□
i (C) = πi(K

□(C)).

Example 14.19. Every Waldhausen category C is naturally a category with
squares. In fact, there are sometimes multiple ways to do this:
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(1) When wC = iso C, then we can take cC = coC, fC =cofiber maps, □ =all
commutative squares, 0 = 0.

(2) No matter what wC is, we can take cC = coC, fC =all maps, □ =pushouts
up to weak equivalence,26 0 = 0.

In both cases, a comparison at the level of simplicial objects shows K□(C) ≃
KW (C).

Typically, K0 of a category can be described very concretely the free Abelian
group on objects modulo some relations (often as the Grothendieck group of
some monoid). Campbell-Zakharevich prove that this works for square K-theory
as long as we put some (reasonable) assumptions on C.

Theorem 14.20. Suppose C is a category with squares, with distinguished object
O. If

• O is initial or terminal in cC,

• O is initial or terminal in fC,

• for all objects A,B ∈ C, there is an object X ∈ C so that the squares

O B

A X

□ and

O A

B X

□

are distinguished,

then
K□
0 (C) ∼= Z[ObC]/ ∼

where ∼ is generated by [O] = 0 and [A]+[D] = [B]+[C] for every distinguished
square

A B

C D

□ .

Their proof (forthcoming) is very similar to the proof for the Q-construction,
basically showing that K□

0 (C) has the right generators and relations. The as-
sumptions in this theorem are pretty reasonable to ask for (note the similarities
with CGW categories), and hence make K□

0 computable in many cases.

Exercise 14.21. For a Waldhausen category C, recall that KW0 (C) is the free
Abelian group on objects modulo the relation [A] = [A′] for every weak equiva-
lence A

∼−→ A′ and [B] = [A]+[B/A] for every cofiber sequence A↣ B ↠ B/A.
Using Example 14.19(2), show that K□

0 (C) ∼= KW0 (C) directly.
26This means that a square is distinguished when B ∪A C

∼−→ D is a weak equivalence.
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Hint: consider the square

A B

0 B/A

□

and the two cofiber sequences

A↣B ↠ B/A

C ↣D ↠ D/C.

14.3 Main theorems

Theorem 14.22.
K□
0 (Mfld∂n)

∼= SK∂
n .

Proof idea. Since the distinguished object ∅ is initial in both cMfld∂n and fMfld∂n,
we may apply Theorem 14.20.27 This gives a description of K□

0 (Mfld∂n) in terms
of specific generators and relations and we can show that SK∂

n is described by
the same generators and relations.

The authors of [Hoe+22] also show that the Euler characteristic lifts (as an
SK-invariant) to the level of K-theory.

Theorem 14.23. There is a map of square K-theory

K□(Mfld∂n)→ K(Z)

which on π0 agrees with the Euler characteristic χ : SKn∂ → Z.

Proof idea. To prove the theorem, the authors use the intermediary category
ChhbZ consisting of homologically bounded chain complexes.28 Recall that ChhbZ
has the structure of a Waldhausen category, where cofibrations are level-wise in-
jective maps and weak equivalences are quasi-isomorphisms. By Example 14.19(2),
we can also give ChhbZ the structure of a category with squares. The map
S : Mfld∂n → ChhbZ is just the singular chain functor which sends a compact
manifold with boundary to its singular chain complex. There are two things to
show:

(1) S is a map of categories with squares,

(2) K(ChhbZ ) ≃ K(Z) in such a way that S corresponds to χ on π0.

For (1), the trickiest part is showing that a diffeomorphism C ∪A B
∼−→ D

implies S(C)∪S(A) S(B)
∼−→ S(D) is a quasi-isomorphism. The idea is to model

27Noting that the third condition is clearly satisfied by disjoint union.
28I.e. quasi-isomorphic to bounded complexes of finitely-generated Z-modules.
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the pushout using S(B+C)29 and use things from Hatcher to show the inclusion
S(B + C) → S(D) is a quasi-isomorphism. One thing to note here is that the
choice of distinguished squares in ChhbZ is crucial for the proof, which would not
have worked if we only allowed cofiber maps as the vertical maps.

For (2), the authors use various theorems of higher algebraic K-theory to
show that all the maps

Modprojfg (Z) i−→ Modfg(Z)
t−→ ChbZ

j−→ ChhbZ

realize to isomorphisms on K-theory. Here, Modprojfg (Z) i−→ Modfg is the inclusion
of projective finitely generated Z-modules into finitely generated ones, t maps a
finitely generated Z-module A to the bounded chain complex with A in degree
0 and 0’s everywhere else, and j is the inclusion of bounded complexes into
homologically bounded ones. The final step is to show that the inverse of this
map coincides with the Euler characteristic on K0.

29For each n, Sn(B + C) is the subgroup of Sn(D) consisting on n-chains in D which are
sums of n-chains in B and n-chains in C.
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15 Talk 15: Cathelineau and Milnor K-theory
(Juan Diego Rojas)

References: [Cat03; Cat04; Gon96].

15.1 The Goncharov conjecture revisited

It’s time to remind everyone about Goncharov’s conjectures from Talk 0.

Notation. Let V n = En,Sn,Hn be one of our favorite geometries and let P(V n)
be the scissors congruence group.

Remark 15.1. Recall that we defined the (generalized) Dehn invariant

Dn
V : P(V n)→ ⊕n−2

i=1 P(V
i)⊗ P(Sn−i−1)

[P ] 7→
n−2∑
i=1

∑
i-dimensional

faces A

[A]⊗ [S(A)]

where S(A) is the spherical polytope constructed as follows: take A and then
intersect A⊥ with a sphere to get S(A⊥), then S(A) = P ∩ S(A⊥).

Example 15.2. The map P(E3)→ P(E1)⊗P(S1) is the original Dehn invari-
ant defined in Talk 0

P 7→
∑

edges e

l(e)⊗ θ(e).

Theorem 15.3 (Goncharov).(
ker(D2n−1

H )|P(H2n−1;Q)

)
Q

(K2n−1(Q)Q ⊗ ε(n))−

R
vol rBor

Upshot 15.4. Borel’s theorem, which is a theorem for number fields and a
conjecture for C, asserts that theBorel regulator rBor is injective up to torsion.
Hence if the top horizontal map in the diagram is also injective, then so is the
volume map. In other words:

Slogan 15.5. Volume and Dehn invariant separate scissors congruence classes.
That is, the volume map is injective when restricted to the kernel of the

Dehn invariant, so if two polytopes have the same volume and Dehn invariant
then they are necessarily scissors congruent.
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Conjecture 15.6. There is a commutative diagram(
ker(D2n−1

H )
)
Q (grγnK2n−1(C)Q ⊗ ε(n))−

R
vol rBor

It is worth noting that grγnK2n−1(C) and K2n−1(Q̄) are isomorphic up to tor-
sion given Suslin’s rigidity conjecture. This explains why Goncharov’s theorem
actually motivates this conjecture.

Definition 15.7 (The Dehn complex). The Dehn complex is

D∗
V (n) : P(V 2n−1)→

⊕
n1+n2=n

P(V n1)⊗ P(Sn2−1)→ . . .

· · · →
⊕

n1+···+nk=n

P(V n1)⊗ P(Sn2−1)⊗ · · · ⊗ P(Snk−1).

The Dehn invariant makes
⊕

n P(S2n−1) into a coalgebra and
⊕

n P(V 2n−1) is
a comodule over this coalgebra. This construction amounts to taking a cobar
complex with coefficients in this comodule.

Remark 15.8. In the previous conjecture, we see the first homology appearing,
which inspires us to extend the conjecture to other homological degrees:

Conjecture 15.9. There is a map

Hi(D∗(n))Q → (grγnK2n−i(C)Q ⊗ ε(n))−.

Moreover, Goncharov conjectures that not only does this map exists, but
that it is in fact an isomorphism.

Remark 15.10. Conjectures in motivic cohomology imply existence, but show-
ing it is an isomorphism is much harder. Why did Goncharov think this con-
jecture is true? He knew that the Hn(D∗(n)) case was true, and we now know
that the Hn−1(D∗(n)) case is also true – the rest is wishful thinking. Today we
will look at the two known cases.

15.2 Cohomology of the Dehn complex

We will need a bunch of gadgets, and for convenience we will just work in the
spherical setting. Recall the previous setup:

• E = Rn,

• T (n) is the Tits building of Rn,

• Hn−2(T (n),Q) = St(n),30

30We will always work over Q.
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• P(Sn−1) = H0(On,St(n)
t).

Construction 15.1. Consider the map [P ] 7→ Lp(n) where Lp(n) is theQ-vector
space generated by nonzero E1, . . . , Ep ⊆ E with E = E1⊕· · ·⊕Ep. This forms
a semisimplicial set whose ith face map is given by

(E1, . . . , Ep) 7→ (E1, . . . , Ei ⊕ Ei+1, . . . , Ep).

The realization of this semi-simplicial set is the Tits building, suspended so
that its homology lives in degree n (where we want it), and so that Hn(L∗(n)) =
St(n).

Remark 15.11. Note that this forms a semisimplicial set and not a simplicial
set – there are no degeneracy maps because we require the subspaces Ei to be
nonzero, so we can’t just insert zeros. One could obtain a simplicial set by
allowing the Ei to be zero.

Definition 15.12 (Orthogonal algebra). Let A =
⊕

n,iHi(On,Qt) where Qt
has action twisted by the determinant. This forms an algebra under multipli-
cation in the following way: first map

Hi(On,Qt)⊗Hj(Om,Qt)→
⊕

n1+n2=n

Hi+j(On×Om,Qt ⊗Qt)

using Eilenberg-Zilber and Künneth, and then compose with On×Om → On+m
to land in Hi+j(On+m,Qt).

Remark 15.13. We are also interested in the homology of Steinberg modules
as a coalgebra,

HSt =
⊕
n,q

Hq(On,St(n)
t).

To view this as a coalgebra, use Construction 15.1: Define

Lp(n)→
⊕

n1+n2=n
p1+p2=p

Lp1(n1)⊗ Lp2(n2)

by (E1, . . . , Ep) 7→
∑

(E1, . . . , Ep1) ⊗ (Ep1+1, . . . , Ep). This induces a map of
complexes L∗(n)→

⊕
n1+n2

L∗(n1)⊗L∗(n2). Now take homology of both sides:

St(n) ∼= Hn(L∗(n))→
⊕
n1+n2

Hn(L∗(n1)⊗ L∗(n2)) ∼=
⊕

n1+n2=n

St(n1)⊗ St(n2).

The last isomorphism follows by Künneth and the fact that the Tits building
only has homology in one degree. Use this map to get

Hn(On,St(n)
t)→

⊕
n1+n2

Hq(On,
⊕

V1⊕V2=V

St(n1)
t ⊗ St(n2)

t)

∼=
⊕

n1+n2=n

Hq(On1 ×On2 ,St(n1)
t ⊗ St(n2)

t)

by applying Shapiro’s Lemma.



15.2 Cohomology of the Dehn complex 99

Upshot 15.14. HSt is a coalgebra.31

We’re interested in the case when q = 0. Let

H0St :=
∑
n

H0(On,St(n)
t) ∼=

⊕
n

P(Sn−1).

The crucial fact is that this is an isomorphism of coalgebras for which comulti-
plication coincides with the Dehn invariant.32

Theorem 15.15 (Cathelineau). For every n, there is a spectral sequence with

E2
−p,q = Hp

q (HSt,Q)n ⇒ H−p+q+n(On,Qt).

Remark 15.16. The subscript n in Hp
q (HSt,Q)n means take nth degree part.

This spectral sequence connects the cohomology of the homology of the Stein-
berg module (as a coalgebra) to the homology of orthogonal algebra.

The proof begins in worst way possible, by considering a tricomplex:

Cα(On,Ωβ,γ L∗(n))
t)

where

Ωβ,−γL∗(n) =
∑

n1+···+nγ=n
β1+···+βγ=β

Hβ1
(On1

, Lβ1
(n1)

t)⊗ · · · ⊗Hβγ
(Onγ

, Lβγ
(nγ)

t).

The trick is to filter it in two different ways: one to get E2 page and one to get
the E∞ page.

Corollary 15.16.1. When q = 0, n = 2m, and p = m,m− 1, we have

E2
0,−m

∼= Hm(D∗(m)) ∼= Hm(O2m,Qt),
E2

0,−m+1
∼= Hm−1(D∗(m)) ∼= Hm+1(O2m,Qt).

Remark 15.17. This follows by lower degree computations for homology for
orthogonal groups. In order to relate all this back to Goncharov’s conjecture,
we use Milnor K-theory. To do this, we need to change the base field from R to
C. This muddies the connection to scissors congruence groups, since it’s unclear
how relate complexified scissors congruence to usual scissors congruence. In this
setting, the same theorem is true, but it’s unclear exactly what it means.

The idea is to show that the isomorphism is induced by the surjective map

⊗mH1(O2,Qt)→ Hm(Om,Qt).

The first observation is that ⊗H1(O2,Qt) ∼= ⊗mH1(SO2,Q). We can study
the spectral sequence associated to the extension

1→ SO2 → O2 → {±1} → 1.

31This talk takes algebra to its limit and we just have to go with it.
32This is non-obvious.
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The map λ 7→ diag(λ, λ−1) shows SO2
∼= C×, so

⊗mH1(SO2,Q) ∼= ⊗mH1(C×,Q) ∼= ⊗mC×/µ,

where µ denotes roots of unity and we quotient by torsion. This extends to a
map of the tensor algebra

T (C×, µ)→ ⊕mHm(O2m,Qt).

We can show that the kernel of this map is the Steinberg relation, and since
Milnor K-theory is T (C×/µ) modulo the Steinberg relations, the map factors as
follows:

T (C×/µ) ⊗mHm(O2m,Qt)

KM
∗ (C)

Question 15.18. How does this relate to scissors congruence? Unclear.

Remark 15.19. There have been several lies in this talk, because some of the
claims in [Gon96] are wrong. What is the state of the theorem he claims, and
how much of it is correct? Is it possible to fix or not? For example, one of
the maps he considers isn’t well-defined, and it would be great if someone could
fix it, if possible. As of now, Goncharov’s conjectures might better be called
“Goncharov’s fantasies”.
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16 Talk 16: Rognes’ Rank Filtration and Stable
Buildings (Jack Burke)

Reference: [Rog92].

16.1 Combinatorics on S•

Recall the Waldhausen S•-construction: If C is a category with cofibrations coC
and weak equivalences wC, we can form a simplicial category S•C where SqC
has objects of the form

∗ A0 . . . An ∈ Fun(Ar[n], C).

Since S•C is itself a Waldhausen category, we can iterate S•-construction. Define
the K-theory spectrum K(C)k =

∣∣wSk•C∣∣ ∈ Sp.
However, we might be remembering more information than we need to. De-

fine

r : [q]→ Ar[q]

j 7→ (0→ j).

Then r∗ takes a diagram F on Ar[q] to a diagram σr∗F on [q]:

∗ = σ(0) σ(1) . . . σ(q)

Lemma 16.1 (And a slogan). By the pushout condition in S•C, we can reduce
S•C to functors on [q].

Lemma 16.2. For each q and n ≥ 1, we have equivalences of categories

(r∗)n : Snq C → (r∗Sq)
nC.

Remark 16.3. Similarly, we have equivalence of categories when we restrict
to the subcategories of cofibrations and weak equivalences. Note that we are
suppressing the multi-index by taking the diagonal of our multisimplicial set.
Another important observation is that we have fixed a degree q – we are not
saying anything (yet) about a simplicial structure.

Proof idea. The proof is by induction. The base case for n = 1 goes as follows:
view an object of SqC as a diagram σ = r∗F in coC on [q] such that it looks like
the S•-construction:

• σ(0) = ∗.

• Choose subquotients σ(k)/σ(j):

σ(j) σ(k)

∗ σ(k)/σ(j)

⌟
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• A cofibration is a commutative diagram:

∗ σ(1) . . . σ(q)

∗ τ(1) . . . τ(q)

such that each pushout is a cofibration in coC.

Choosing subquotients gives a canonical quotient cofibration extending the di-
agram to Ar[q]. We can do something similar for weak equivalences, where all
vertical arrows are weak equivalences in C. Any consistent choice of subquotients
provides an inverse for r∗F → F , so r∗ is an equivalence of categories.

16.2 Rank filtration on K-theory

Remark 16.4. LetR be a ring with strong invariant dimension.33 The (Quillen)
K-theory of free finitely generated R-modules agrees with the K-theory of projec-
tive finitely generated R-modules in all positive degrees.34 In degree 0, we just
get monomorphism, not an isomorphism. Let F(R) denote category of finitely
generated free R-modules. Then we can define filtration by rank,

∗ ≃ F0(F(R)) ⊆ F1(F(R)) ⊆ · · · ⊆ F(R),

and use this to define filtration on K-theory.

Definition 16.5. Define FkK(R)n ⊆ K(R)n to be the subcomplex realizing
the simplicial full subcategory of [q] 7→ wSnq F(R) which consists of diagrams
which factor through the FkF(R). For each n, this gives a filtration on K-theory
spaces,

∗ ≃ F0K(R)n ⊆ F1K(R)n ⊆ · · · ⊆ K(R)n.

Note that this is diagram in the category of spaces.

Lemma 16.6. This is in fact a diagram of spectra: the connecting maps

∂n : ΣK(R)n → K(R)n+1

restrict to connecting maps for the filtration

∂̃n,k : ΣFkK(R)n → FkK(R)n+1,

and so {FkK(R)n}n≥0 is a prespectrum.35

33In particular, if there is a split injection Rn ↪→ Rm, then n ≤ m, i.e. two R-modules are
isomorphic if and only if have same dimension. Most nice rings we would want to think about
are like this.

34Essentially, the inclusion of free into projective induces covering map on K-theory. For
details see Thm A.9.1(C) in Thomason-Trobaugh.

35What we mean here by “prespectrum” is a collection of spaces En with structure maps
ΣEn → En+1, and when the adjoints of the structure maps are equivalences we call it a
spectrum. These are sometimes called spectra and Ω-spectra, respectively, instead.



16.2 Rank filtration on K-theory 103

Proof sketch. The connecting map ∂ takes a suspended q-simplex F to the
(1, q)-bisimplex

(0↣ F ) in wS•S
n
•F(R),

which preserves rank.

Definition 16.7. The kth unstable K-theory of R is FkK(R), and the rank
filtration of K(R) is given by

∗ ≃ F0K(R)→ F1K(R)→ · · · → K(R).

Lemma 16.8. These are useful: the unstable K-theories approximate K(R),

colimk πiFkK(R)
∼=−→πiK(R).

Proof. Omitted, since the proof is straightforward and only a few lines.

This brings us to our main proposition:

Proposition 16.1. There is an equivalence of spaces

FkK(R)n
Fk−1K(R)n

∼=
D(Rk)n
hGLk(R)

,

where the right side in the proof will be constructed in the proof, and there is an
equivalence of spectra

FkK(R)

Fk−1K(R)
≃ D(Rk)

hGLk(R)
.

Proof. We construct a simplicial category X ′
∗ whose realization is the space

FkK(R)n/Fk−1K(R)n. For q ≥ 0, the objects of X ′
q are diagrams on (Ar[q])n

in Snq F(R) where the largest module has rank exactly k, together with a base
object ∗q. Morphisms are isomorphisms of such diagrams.

Now let’s simplify: let Xq be the category whose objects are lattices36 on
[q]n on free R-modules with top module isomorphic to Rk, together with a base
object ∗q. By (a filtered version of) the previous lemma, there is an equivalence

of categories r∗ : X ′
q

∼−→ Xq. We claim that X∗ is a simplicial category and
r∗ is an equivalence of simplicial categories. The problem is that X∗ does not
support a 0th face map. Recall that d0 of SqC uses the choice of sub-quotients
in a diagram on Ar[q] but r∗ forgets these. But we can fix this problem, because
we know a non-degenerate σ in X ′

q is mapped to d0(σ) = ∗q, and so we can
define d0 on X∗ by taking non-degenerate simplices to the base point ∗q. This
additional structure makes the equivalence of simplicial categories true.

Now we study X∗, which has two relevant simplicial subcategories

D(Rk)n ⊆ Y∗ ⊆ X∗,

36A lattice is the “correct shape” of the diagram in the n-th iterated S•-construction, with
pushouts and etc.
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defined as follows: Yk is the full subcategory of Xk whose objects are those lat-
tices where the top module is equal(!) to Rk and the cofibrations are inclusions.
The simplicial subcategory D(Rk)n has the same objects as Y∗ but only identity
morphisms, and is called a building.

Upshot 16.9. Every object in Y∗ is isomorphic to an object ofX∗, and choosing

isomorphisms gives us a deformation retraction |X| ≃−→ |Y |. Moreover, the mor-
phisms in Y∗ are determined by a source object and the action of the morphism
on Rk, i.e. an element of GLk(R), which means Y∗ is the simplicial (based)
translate category for the GLk(R)-action on D(Rk)n. Thus we can conclude

FkK(R)n/Fk−1(R)n ≃ |X| ≃ |Y | ≃ D(Rk)n/hGLk(R).

To lift to spectra, we note that the inclusions D(Rk)∗ ⊆ Y∗ ⊆ X∗ respect
the structure maps on K-theory.

16.3 Barratt-Priddy-Quillen Theorem

Rognes gives a slick proof of this well-known theorem. Let FinSet∗ denote the
category of finite pointed sets whose cofibrations are injections and weak equiv-
alences are bijections. We can filter FinSet∗ by cardinality, which tells us we
have a functor FinSet∗ → F(R) that respects filtration, given by mapping a
finite set I to RI , the free R-module generated by the set I. We also identify
RI with R|I|.

Definition 16.10 (Axial submodules and standard apartments). The axial
submodules of Rk are those submodules RI for I ⊆ k (set with k elements).
Let D∗(k) ↪→ D∗(Rk)n be the subcomplex of lattice diagrams in axial submod-
ules of R. We call

An,k = D(k)n ⊆ D(Rk)n

the standard apartment inside the building D(Rk)n. One can show there is
a homeomorphism An,k ∼= Snk.

Corollary 16.10.1 (Barratt-Priddy-Quillen).

K(FinSet∗) = S,

where S denotes the sphere spectrum.

Proof. Look at the graded piece FkK(FinSet∗)n/Fk−1K(FinSet∗)n. Our propo-
sition says this space is equivalent to D(k)n/hΣk ≃ Snk/hΣ1. When k = 1, we
have Sn/hΣ1

∼= Sn. For k > 1, Snk/hΣk is (2n− 1)-connected, which gives us
a stable equivalence S = F1K(FinSet∗) ↪→ K(FinSet∗).
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17 Talk 17: Campbell-Zakharevich’s Solution to
Constructing the Goncharov map (Elise McMa-
hon)

Reference: [CZ19].

17.1 Setup: the Goncharov map

Remark 17.1. Recall from the previous talks that we can iterate the Dehn
invariant: for a given X (usually one of our three favorites geometries), the ith

Dehn invariant is a map

Di : P(Xn)→ P(Xi)⊗ P(Sn−i−1),

and so there are two possible ways to apply it again, either to P(Xi) or to
P(Sn−i−1). We use the notation P(X) := P(X, I(X)).

Example 17.2. In dimension 3, there is a commutative diagram:

P(X5) P(X3)⊗ P(S1)

P(X1)⊗ P(S3) P(X1)⊗ P(S1)

Remark 17.3. Goncharov constructs the complex P∗(X) from this data. The
problem is that homology of homology is hard. Campbell-Zakharevich’s solution
to this problem is to construct a simplicial set whose homology is P(X, 1), and
then define then Dehn invariant directly on this. The goal of this approach
is to delay taking coinvariants H0(G,−) for as long as possible. This ends up
being pretty powerful, since it will allow us to access tools of homotopy theory.
Specifically, we’ll be able to commute a certain cofiber and homotopy colimit,
which will make things easier to analyze.

Recall that Goncharov conjectured the existence of a map

Hm(P∗(X
2n−1))→ (grγn Kn+m(C)Q ⊗ ε(n))±.

Campbell-Zakharevich show there is a homomorphism

ϕn : Hn+m(I(X),Z[1/2]σ)→ Hm(P∗(X)).

Note the differences between this map and the one Goncharov conjectured.
In particular, the map goes the other direction! The goal for this talk is to
understand this theorem and its proof.
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17.2 The RT -building and homology

Remark 17.4. Here’s the set up: let X be one of the geometries Sn or Hn given
by quadratic forms q = x20 + · · · + x2n and q = −x20 + x21 + . . . x2n, respectively.
A subspace U of X is the linear space U ′ such that q|U ′ is non-degenerate
and has a maximum negative signature. If X is Hn, then U is isometric to
some hyperbolic space Hi, then U⊥ is spherical, i.e. isometric to some Sn−i.
Alternatively if X is Sn then U ≃ Si and S⊥ is Sn−i. Note that the perp spaces
are spherical in both cases.

Remark 17.5. We’ll need to invert 2 a lot.37 To realize this geometrically,
we’ll smash Sσ, which denotes S1 with a twisted action.

Definition 17.6 (RT -buildings). The RT -building38 FX∗ is the simplicial set
whose i-simplices are chains of non-empty subspaces

U0 ⊆ · · · ⊆ Ui

such that Ui = X. The face and degeneracy maps do what we would expect: di
deletes Ui and sj repeats Uj .

Fact 17.7. The isometry group I(X) acts on FX∗ by

g · (U0 ⊆ · · · ⊆ Ui = X) = (gU0 ⊆ · · · ⊆ gUi = gX).

This construction does what we want in the sense of the following theorem.

Theorem 17.8. The map P(X, 1)→ Hn+1(Sσt ∧ FX∗ ) given by

{x1, . . . , xn} 7→
∑

σ∈Σn+1

sgn(σ)[(xσ(0) ⊆( xσ(0), xσ(1)) ⊆ · · · ⊆( xσ(0), . . . , xσ(n))]

is an isomorphism, and so

P(X,G) ∼= H0(G,Hn−1(Sσ ∧ FX∗ )).

Theorem 17.9. Hn(F
X
∗ ) ̸= 0 only in dimension n = dimX.

Now our goal is to construct the Dehn invariant on FX∗ . The key idea is
that (in the spherical and hyperbolic cases) angle can be captured by projecting
onto orthogonal complement.

Generalizing this picture, we can use this new idea of “angle” it to help
construct the Dehn invariant. To do that, we need to replace tensor products
of the polytope algebras with reduced joins of the FT-buildings.

37Compare and contrast: Goncharov worked rationally.
38Named after Rognes-Tits.
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Definition 17.10 (Reduced joins of simplicial sets). For pointed simplicial sets
X,Y , the reduced join is X ∗̂Y whose m-simplices are

(X ∗̂Y )m =
∨

i+j=m−1

Xi ∧ Yj .

The reduced join X ∗̂Y is weakly equivalent to Sσ ∧X ∧ Y . We’ll define the
Dehn invariant for single subspace, and then define it more generally by gluing
things together.

Definition 17.11 (DU ). Let U be a proper, non-empty subspace of X and

define DU : FX∗ → FU∗ ∗ FU
⊥

∗ by

(U0 ⊆ · · · ⊆ Un) 7→
{

(U0 ⊆ · · · ⊆ Uj) ∧ (prU⊥Uj+1 ⊆ · · · ⊆ prU⊥Un) j = max{i | Ui = U}
∗ U ̸= Uj for any j.

Definition 17.12 (Derived Dehn invariants). The dimension i derived Dehn
invariant Di is the lift ∨

U⊆X
dimU=i

FU∗ ∗FU
⊥

∗

FX∗
∏
U⊆X

dimU=i

FU∗ ∗̂FU
⊥

∗

Di

Fact 17.13. This map is I(X) equivariant.

Theorem 17.14. H0(I(X), Hn+1(Sσ ∧D1)) is the classical Dehn invariant.

Remark 17.15. Now we want to be able to take all possible iterations of Dehn
invariants, which requires knowing that certain diagrams commute.

Lemma 17.16.

FX∗
∨
U⊆X

dimU=i

FU∗ ∗̂FU
⊥

∗

∨
FV∗ ∗̂FV

⊥

∗
∨
FU∗ ∗ FU

⊥∩V
∗ ∗ FV ⊥

∗

Di

Dj

∗̂Dj−i−1

Di∗̂

Theorem 17.17. H0(I(X), Hn+1(Sσ ∧D)) is the classical Dehn cube.

Remark 17.18. Now our goal is to get a spectral sequence39 which converges to
the total homotopy cofiber of something. Then we can analyze this cofiber and
make use of the fact that we can swap colimits – specifically we take coinvariants
and the total homotopy cofiber cofth.

39The one we saw earlier in previous talks.
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Proposition 17.1. Let F : In → Top∗ be a functor where In is the indexing
category for a n-cube. Then there is a spectral sequence with

E1
p,q =

⊕
A=(b,a1,...,an−p−1)

H̃q(F (A))⇒ H̃p+q(cof
ht F )

The index A is ??? with |A| = dimX and b+ a1 + · · ·+ an−p−1 = d.

Example 17.19. In dimension 3, the indexing category is

I3 =

(3) (2, 1)

(1, 2) (1, 1, 1)

.

This is keeping track of possible ways we might split up the Dehn invariant
starting at dimension 3.

Definition 17.20 (Dehn cube). The Dehn cube is the functor D0 : In → Top∗
which maps (b, a1, . . . , ak), where b+ a1 + · · ·+ ak = d, to∨

W⊕V1⊕···⊕Vk
dimW=b,dimVj=aj−1

FW∗ ∗̂(∗̂
k
j=1F

Vj
∗ ).

Thus
E1
p,q =

⊕
A=(b,a1,...,an−p−1)

H̃1(D
0(A)hI(X),Z[1/2]).

Remark 17.21. This is summing up different ways we can take Dehn invari-
ants, and also ⇒ H̃p+q((cof

th)hI(X)).
The bottom non-trivial row ends up being P ∗ (X),H̃d+1(F

X
∗ )hI(X))→

⊕
|A|=2

H̃d+1(D
0(A)hI(X)))→ . . .

⇒ P∗(X).

The upshot is that we get a projection to the base. Given a spectral sequence
E∗
p,q ⇒ Gp+q, if E1

∗,n is the first non-zero row then we get homomorphisms
θm : Gm → E1

m−n,n. Applying this fact to our situation yields a homomorphism

Hm((cofthD)hI(X),Z[1/2])→ Hm(P∗(X)).

Now we just need to understand Hm((cofthD)hI(X),Z[1/2]), so we compute

cofth(D0)hI(X) in the following extremely important theorem:

Theorem 17.22.

cofth(D0)hI(X) ≃[2] (St ∧ Sn−1)hI(X).
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With this theorem in hand, we then have

Hm((cofthD)hI(X),Z[1/2]) ∼= Hm((Sσ ∧ Sn−1)hI(X),Z[1/2])
∼= Hn+m(I(X), Hn(Sσ ∧ Sn−1;Z[1/2]))
∼= H̃n+m(I(X),Z[1/2]σ)

and using θm we get a map

ϕn : Hn+m(I(X),Z[1/2]σ)→ Hm(P∗(X)).

Remark 17.23. Like in the Goncharov conjecture, we can fit this map into a
triangle involving R-volume. The Cheeger-Chern-Simons map plays the role of
the Borel regulator.

Conjecture 17.24. This map is an isomorphism.40

40Inna will bet money that it is not!



110

18 Talk 18: Some Reflections and Some Ques-
tions (Jonathan Campbell)

We began with the classical problem of scissors congruence in R3, and tran-
sitioned to some crazy K-theory and homological ways of defining things. We
also discussed combinatorial K-theory, and spent the last day of the workshop
on Goncharov’s conjectures. Without a global perspective on things, it’s diffi-
cult to see how all of this fits together, so we will start by discussing the rank
filtration and then elaborate on conjectures.

18.1 The rank filtration and review

The rank filtration was originally due to Quillen (we saw the stable rank filtra-
tion due to Rognes); this can be found in the paper “On finite generation of
Ki(OK)”. The idea is to look at wS•Vect

fin
F and filter by dimension

wS•Vect
fin,≤n
F → wS•Vect

fin
F .

The associated graded is given by Σ2T (F ); this is the Tits building!
If we compute the homology of the cofiber sequences involving the graded

terms, we obtain a sequence whose cofiber is the homology of Σ2T (F )hGLn ,
which gives Hi−n(GLn,St(F )). As a consequence, the associated graded looks
like a GL -version of scissors congruence, and Hi−n(GLn,St(F )) looks like a Lie
group acting discretely on the Steinberg module.

As an example of the applications of this filtration, Lee–et al. computed that
K3(Z) = Z/48, along with other calculations about the K-theory of integers.
More recently, other authors have determined that K8(Z) = 0 as well as some
other K-groups of the integers, and they use a very concrete resolution plus
computers to do a lot of these calculations.

The objects Hi−n(GLn,St(F )) keep coming up in the rank filtrations, and so
in some sense scissors congruence is equivalent to the study of associated graded
to filtrations in K-theory. Can the information flow in both directions? To push
this as far as possible, you want to consider different versions of K-theory, and
the fact that K-theory is cobbled together from filtrations makes this feasible.

18.2 Complexes and speculation

In this workshop, we’ve discussed complexes built out of scissors congruence
groups. As a reminder, we have a complex

P(E3)
D−→ P(S1)⊗ P(E1)→ Ω1

R/Z.

But what happens if we have complexes involving

• P∗(E2n−1),

• P∗(S2n−1), and
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• P∗(H2n−1)?

It could be that the relevant complexes would involve the exterior algebra on
Kähler differentials, but Jonathan and Inna expect these are wrong. The con-
jectures surrounding these other complexes should involve the rank filtration as
opposed to the weight filtration; the rank filtration gets used in this work by
Goncharov.

Additionally, algebraic K-theory is probably not the right thing to work
with. Instead, we probably want to work with a variant of Hermitian K-theory
because we care about quadratic forms, and Hermitian K-theory records exactly
this structure. However, as of now, the existing notions of Hermitian K-theory
do not encode the correct structure.41

The tail end of P(S2n−1) has homology given by KM∗ (k)Q, and the tail end
of the complex P∗(E2k−3) has homology given by Ω2k−3

R/Z . There is a map be-

tween these two complexes by including one face, inducing a map on homology.
This turns out to be a map from Milnor K-theory to Kähler differentials (in
appropriate degrees), which coincides with dlog, which in turn agrees with the
Dennis trace map.

Question 18.1. What is the relationship between these complexes, and can we
interpret this in terms of some Dennis trace map? How can we correctly express
Goncharov’s conjecture in terms of the rank filtration on Hermitian K-theory?

The original motivation for Jonathan’s and Inna’s work was to resolve the
generalized Hilbert’s 3rd problem, which says that the generalized Dehn invari-
ant and volume are complete invariants of scissors congruence; i.e. H?(P∗(E?)) =
R. One way to approach resolving the problem is by computing the homology
of these complexes. The work by Jonathan and Inna gives you a foothold for
this super classical problem.

Upshot: The theme of the week should be that we are cooking up a bunch of
fancy tools to solve this really classical concrete problem!

18.3 Weight filtration vs. rank filtration

Recall that we could have defined K-theory using the +-construction. This is
nice because given the standard K0-group of representations of GLn, considered
as an algebraic group over Z, we can define maps

RZ GLn(A)→ [BGLn(A)
+,BGLn(A)

+]

using the universal properties of the +-construction. So, passing to the colimit,
we get some natural operations on the algebraic K-theory space of A induced
from the representation ring of GL(A). In particular, there are

• lambda operations on K-theory induced by taking the exterior power of a
module,

41Jonathan suspects there is a rank filtration on a modified Hermitian K-theory, and con-
jectures Hochschild homology might be involved.
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• Adams operations which on line bundles are given by tensor powers,

• Gamma operations (which are mysterious).

The weight filtration is a filtration induced by these gamma operations, but we
care about them because the associated graded terms of the gamma filtration,

K
(i)
∗ (A), are eigenspaces for the Adams operations, yielding a decomposition

K∗(A)Q ≃
⊕

K
(i)
∗ (A)Q.

Remark 18.2. There’s a paper by Grayson which talks about Adams opera-
tions on the S•-construction, but it is a bit complicated. In general, Grayson’s
papers are important to read if you are studying K-theory.

There is another version of the unstable rank filtration;

Fil≤r K∗(A)Q = im (primH∗(GLr)Q → primH∗(GL)Q)

Here are some questions and open problems about this:

• How on earth does this relate to other rank filtrations? How about stable
rank filtrations?

• (Weight vs. rank filtration conjecture) Are the associated graded of the
weight and rank filtrations are the same?42

• How does this relate to the geometric constructions like the polytope al-
gebra?

• What is a homotopical interpretation of the weight filtration? Even if you
don’t want it for K-theory, what about for some variant of where we have
geometry in play, such as Hermitian K-theory?

• Find some easier analogue of the weight and rank filtrations on K-theory,
on more geometric versions of K-theory, or the polytope algebra, or . . .

18.4 A few open questions about combinatorial K-theory

• Write down the Waldhausen theorems for squares K-theory. 43

• In K-theory of rings, the Milnor K-theory KM∗ (F ) is the “totally decom-
posable” part of K-theory in that

F× ⊗ · · · ⊗ F× → KMn (F )→ Kn(F ),

and you can get your hands on Milnor K-theory more easily. What about
if you replace algebraic K-theory with the K-theory of varieties over F?

• Many more open questions we’ve discussed throughout the week . . .

Reminder: We’ve been focusing on very classical problems (Greek classical,
even), and it’s been extremely profitable to play around with formal structures,
but also to play around with a lot of these classical homotopical problems!

42This is known to be true for number fields and that’s about it.
43If you do, Jonathan will buy you a (very good) beer.
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19 Open Questions

Question 19.1 (Liam & Lucy). What can be said about the association S 7→
K(VarS)? In particular

1. Given a field k and a (k, k)-bimodule M , what is the relationship between
K(Vark⊕M ) and K(Vark), where k⊕M is the trivial square-zero extension.

2. Does the association above satisfy descent with respect to various topolo-
gies on schemes, e.g. the Zariski, Nisnevich, étale topologies etc.

3. (Possibly a goofy question) Can we make sense of the K-theory of varieties
over a base ring spectrum or simplicial commutative ring?

Question 19.2 (Liam). There is an equivalence K(Vark) ≃ K(Schred,ftk ) by
the CGW dévissage theorem. Generalize this result to arbitrary bases S (the
expectation is that it should work).

Question 19.3 (Inna). Come up with new proofs that a given rectangle is
scissors congruent to another rectangle of the form 1 × area, where area is the
area of the rectangle; Inna mentioned this as a challenge in the first talk and
that she collects such proofs.

Question 19.4 (Inna). Counterexample or proof of the claim: if we force
a Waldhausen category to satisfy the extension axiom, then the associated
K-theories are the same.

Question 19.5 (Ming). Let us work over field C. Two observations:

1. Liu-Sebag: Suppose X,Y are two complex varieties such that [X] = [Y ] in
K0(Var). Then X is piecewise isomorphic to Y when X has only finitely
many rational curves.

2. Slogan from Arithmetic Geometry: the negativity of the canonical line
bundle of a complex variety X controls the number of the rational curves
in X. This is quantified by Manin’s conjecture.

Motivation: we want to understand how combinatorial K-theory may contain
geometric information. Can the higher K-groups tell us something about the
negativity of the canonical line bundle of complex varieties? Perhaps see if
there exists some kind of trace map and an HKR-isomorphism for combinatorial
K-theory of varieties? Can we extend K-theoretic techniques used for point-
counting to curve-counting? Does K-theory detect e.g. if a complex variety fails
to be uniruled?

Question 19.6 (Ming). Observation from Goncharov:

1. All hyperbolic 3-manifolds have Dehn invariant zero.
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Problem: determine that all hyperbolic 3-manifolds of same finite volume are
scissors congruent, or construct a counter-example.

This is a warm-up to the bigger problem of understanding if hyperbolic vol-
ume and the Dehn invariant determine hyperbolic scissors congruence. If there
exists hyperbolic 3-manifolds of same volume which are not scissors congruent,
why is this? Can we define an algebraic invariant capturing this? How might
we extend this invariant to all hyperbolic 3-polyhedra?

Question 19.7 (Liam). Give a comparison theorem between the square K-theory
of the category of k-varieties and all the other K-theories we’ve seen throughout
the week; e.g. CGW or assembler K-theories. We know that all the K0’s agree
and have the same universal properties imposed by the cut and paste relations.

Question 19.8 (Jonathan). Determine (as many as possible of) the usual Wald-
hausen K-theory theorems for square K-theory. Jonathan remarked that the
square K-theory allows you to do something K-theoretic when you don’t have
cofibers, since you can pretend they exist by remembering the map. Moreover,
this philosophy applies to higher cubical versions of K-theory.

Question 19.9 (Inna). Understand what is precisely true regarding Goncharov’s
theorems in “Volumes of hyperbolic manifolds and mixed motives” – there is a
map in the paper which is not well-defined (I believe it’s the volume map), but
the status of this work is unknown.
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