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Abstract

In this note, we will highlight some of the main results in [Har19] with the ultimate aim of showing that
a category being higher semiadditive can equivalently be viewed as it being amodule over certain categories
of spans.
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1 Introduction
In [Seg74] Segal showed that the structure of commutative monoids in an arbitrary category C with �nite
products can be cleanly encoded as product-preserving functors Fin∗ → C where Fin∗ is the 1-category
of �nite pointed sets. Moreover, if we write CMon(C) := Fun×(Fin∗, C) for the category of commutative
monoids, it turns out that if C were presentable, then CMon(C) is the free semiadditive category generated
by C. It would be desirable to show that something similar holds for higher semiadditivity.

To this end, observe that Fin∗ can also be thought of as a category of spans whose objects are �nite sets and
a morphism from X to Y is a span

X � Z → Y

where X � Z is injective. Hence, it is natural to expect that the span construction might be fruitful in
encoding the notion of higher semiadditivity. And indeed, this was what was worked out in [Har19] and we
will try to explain some of the highlights from the paper in this note. As a guide to the reader, in §2 we will
introduce the basic notion of spans of �nite spaces; §3 will de�ne the notion of higher semiadditivity and
formulate the universal property of these spans; �nally, the punchlines of this note will appear in §4, where
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we will see that formal consequences of the results in §3 include: (1) the fact that we can view the property
of being higher semiadditive equivalently as being a module over the spans introduced in §2, and (2) that for
presentable categories, we have a Segal-style method of producing higher semiadditive categories.

2 Spans of π-�nite spaces

2.1 Basic de�nitions
De�nition 2.1 (Truncatedness and π-�niteness, [Har19] 2.5-2.6). Let , Y be spaces and n ≥ −2. �en we
say that:

• If n ≥ 0, X is n-truncated if πi(X,x) = 0 for every i > n and every x ∈ X .

• If n = −1, then X is (−1)-truncated if it is either empty or contractible.

• If n = −2, then X is (−2)-truncated if it is contractible.

• A map f : X → Y is n-truncated if �b(f, y) is n-truncated for all y ∈ Y .

We say thatX is π-�nite if it is n-truncated for some n and all its homotopy groups/sets are �nite. If we want
to specify the n-truncatedness, we will also say that a space is π-n-�nite.

Observation 2.2. A map is (−1)-truncated if it is an inclusion of path components, and it is (−2)-truncated
if it is an equivalence.

Notation 2.3. Let Kn = Ho(S'n ) be the set of representatives of all π-�nite n-truncated spaces. We will be
thinking of this as the set of indexing diagrams whose colimits we will be interested in.

Construction 2.4 (Spans, [Har19] §2.1, [Bar17]). Let C† ⊂ C be a wide subcategory whose morphisms are
closed under pullbacks. �en we can construct a new (∞, 1)-category Span(C, C†) called the category of spans
whose objects are objects of C and forX,Y ∈ C, morphismsX → Y in Span(C, C†) are spansX ← Z → Y
where X ← Z is in C† and compositions of morphisms are given by taking pullbacks.

Fact 2.5 (Mapping spaces of spans, [Har19] 2.4). For X,Y ∈ C, we have that MapSpan(C,C†)(X,Y ) is given
by the subspace of (C/X×Y )' on those spans X ← Z → Y such that X ← Z is in C†.

�e following will be the main object of study in this notes.

De�nition 2.6. Let n ≥ −2 andm ≤ n. �en we write:

• Sn ⊆ S be the full subcategory of π-�nite n-truncated spaces.

• Sn,m ⊆ Sn be the non-full wide subcategory whose mapping spaces are spanned bym-truncated maps.

Given these notations, we de�ne Smn := Span(Sn,Sn,m).

Observation 2.7. Since (−2)-truncatedness of a map is the same as being an equivalence, we see that
Sn,−2 ' S'n so that S−2

n ' Sn.

Observation 2.8. �e inclusion Smn−1 ↪→ Smn is fully faithful. �is is because m ≤ n, and so if f : Z → X
ism-truncated and X was (n− 1)-truncated, then Z is (n− 1)-truncated as well.

Observation 2.9. (Smn )' ⊆ (Sn)' ⊆ Sn.
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2.2 Colimits in spans
Here is an important lemma to check preservation of Kn-colimits out of Sn: the upshot is that in this special
case it can be checked just on the constant diagrams.

Lemma 2.10 ([Har19] 2.11). Let D admit Kn-colimits and F : Sn → D be a functor. �en F preserves
Kn-colimits i� it preserves those which are constant at ∗ ∈ Sn.

Proof. �e only if direction is immediate. To see the reverse, we use the satisfying classical trick of using the
Grothendieck construction to compute colimits in spaces. Let Y ∈ Kn and G : Y → Sn be a Y -indexed
diagram. Unstraightening we obtain a le� �bration pG : Z → Y which in particular implies that Z is also a
space so that we obtain a �bre sequence of spacesW → Z → Y where by constructionW was π-n-�nite.
�e upshot of this paragraph is that since Y was π-n-�nite also by hypothesis, we see that Z must be too so
we can consider Z as living in Sn.

Here’s the fun part: for each y ∈ Y , the space G(y) ∈ Sn is the colimit of the G(y)-indexed constant diagram
with value ∗ so that by the pointwise le� Kan extension formula we see that G ' p! const∗. In particular, this
means that

colim(Z
const∗−−−−→ Sn) ' colim(Y

G−→ Sn) (1)

To summarise, we now have the diagram

Z

Y Sn D

p
const∗

G'p! const∗ F

Again, by the pointwise le� Kan extension formula, we see that G ' p!∗ was computed pointwise as Kn-
space-indexed diagrams with constant value ∗. Hence, since F preserved these by hypothesis, we see that
F ◦ G ' p!(F const∗). �erefore we obtain

colim
Y

F ◦ G := colim(Y
F◦G−−−→ D)

' colim(Z
F const∗−−−−−→ D)

' F colim(Z
const∗−−−−→ D)

' F colim
Y
G

where the penultimate line is by our assumption on F and the last line is by (1).

Lemma 2.11 ([Har19] 2.12). For every −2 ≤ m ≤ n the inclusion j : Sn ↪→ Smn preserves Kn-colimits.

Proof. By the criterion (2.10) we need to show that for each X ∈ Sn,

X ' colim(X
const∗−−−−→ Smn ) ∈ Smn

In other words, by Yoneda we need to show that for all Y ∈ Smn , the map

MapSm
n
(X,Y ) −→ lim

X
MapSm

n
(const∗, Y ) ' MapS(X,MapSm

n

(
∗, Y )

)
is an equivalence. Here the second equivalence is by the usual formula for limits of constant diagrams in
spaces (in our case, with value MapSm

n

(
∗, Y )). Now by (2.5) we know that

MapSm
n
(X,Y ) ' (Sn/Xm×Y )

' and MapSm
n
(∗, Y ) ' (Sn/∗m×Y )

'
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where the subscript m in Sn/Xm×Y for example denotes the full subcategory of Sn/X×Y spanned by those
maps Z → X × Y such that Z → X × Y πX−−→ X ism-truncated. But then sinceX was already n-truncated
andm ≤ n, any space with anm-truncated map to X must itself have been n-truncated, and so in fact

Sn/Xm×Y ' S/Xm×Y

By a similar reasoning, we see that
Sn/∗m×Y ' Sm/Y

Now the straightening-unstraightening equivalence gives

S/X×Y
'−→ Fun(X × Y,S) '−→ Fun(X, Fun(Y,S))

which on objects is given by
(
q : Z → X × Y

)
7→
(
x 7→ (y 7→ q−1(x, y))

)
. Applying core groupoid

everywhere we obtain an equivalence

(S/X×Y )'
'−→ Map(X,Map(Y,S'))

Writing Mapm(Y,S') for the components of Map(Y,S') such that taking colimits produce m-π-�nite
spaces, we see clearly that the preceding equivalence restricts to an equivalence

(S/Xm×Y )
' '−→ Map(X,Mapm(Y,S'))

On the other hand, Mapm(Y,S') ' (Sm/Y )', and so we’re done.

Corollary 2.12 ([Har19] 2.16). A functor F : Smn → D preserves Kn-colimits i� the restriction F : Sn ↪→
Smn → D preserves Kn-colimits.

Proof. By (2.11) the only if direction is clear. To obtain the reverse direction, note that since objects ofKn are
groupoids, by the observation (2.7)(3) we see that Kn-diagrams in Smn in fact land in Sn, and the hypothesis
implies the desired statement.

2.3 Spans as commutative algebras
Construction 2.13 (Symmetric monoidality of Smn ). It is standard that span categories inherit the symmetric
monoidal structure on the original category, and so the cartesian symmetric monoidal structure on Sn induces
a symmetric monoidal structure on Smn given by taking products of spaces. Note however that this is no longer
a cartesian symmetric monoidal structure on Smn .

Proposition 2.14 ([Har19], 2.17). �e symmetric monoidal product Smn ×Smn → Smn preserves Kn-colimits in
each variable.

Proof. Consider the diagram

Sn × Sn Smn × Smn

Sn Smn

× ×

where we know that the le� vertical multiplication preserves colimits in each variable separately and the
horizonal maps preserve Kn-colimits by (2.11). �e point is that since if X ∈ Kn, then it’s a groupoid, and
so any diagram d : X → Smn factors through Sn ⊆ Smn . Together with (2.11) this says thatX-colimits in Smn
are computed in Sn ⊆ Smn and so the desired conclusion, which is true for the le� vertical, transfers to that
on the right vertical.
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Construction 2.15 (Spans as a commutative algebra object). By [Lur17] §4.8.1 we know that CatKn
has a

symmetric monoidal structure⊗Kn where for C,D, E ∈ CatKn , the tensor product C⊗KnD has the universal
property

FunKn
(C ⊗Kn

D, E) ' FunKn,Kn
(C × D, E)

where the right hand side consists of functors which preserve Kn-colimits in each variable. Hence we can
get from (2.14) that Smn is a commutative algebra object in CatKn

.

2.4 Duality in spans
Construction 2.16 (Trace and diagonals). Let C be a category with �nal object ∗ and admi�ing �nite limits.
�en for X ∈ Span(C), we de�ne the trace map in Span(C) to be the span(

X ×X trX−−→ ∗
)
:=
(
X ×X ∆←− X → ∗

)
and the diagonal in Span(C) to be the span(

∗ ∆X−−→ X ×X
)
:=
(
∗ ← X

∆−→ X ×X
)

Proposition 2.17 (Self-duality in spans). Let C be a category with �nal object ∗ and admi�ing �nite limits.
�en the trace map and diagonal constructed above exhibits every object as self-dual in Span(C).

Proof. Let X ∈ Span(C). Note that being dualisable can be checked at the level of homotopy categories, and
so it really is enough to check that the composites

X
1×∆X−−−−→ X ×X ×X trX×1−−−−→ X and X

∆X×1−−−−→ X ×X ×X 1×trX−−−−→ X

are homotopic to the identity. We will only show the �rst. Since composition in span categories are given by
pullbacks, we get that the �rst composite is given by the span

X

X ×X X ×X

X X ×X ×X X

∆∆

y
π1

1×∆

π2

∆×1

which is the identity span, as required.

3 Higher semiadditivity

3.1 Basic notions
De�nition 3.1 ([Har19] 3.1). Let m ≥ −2 and D a category. We say that D is m-semiadditive if D admits
Km-colimits and everym-truncated π-�nite space is D-ambidextrous.

Remark 3.2. Two consequences which we will not prove here but which are intuitively clear, namely:

• �at anm-semiadditiveD automatically admitsKm-limits, essentially because theD-ambidextrousness
of any X ∈ Km already gives that the colimit also computes the limit. Given this, the intuition of m-
semiadditivity is just that the canonically constructed norm map

colim
X

=⇒ lim
X

is an equivalence in Fun(DX ,D) for all X ∈ Km.
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• �e opposite of anm-semiadditive category is againm-semiadditive.

Observation 3.3. Form ≤ n, n-semiadditivity impliesm-semiadditivity since Km ⊆ Kn.

Example 3.4. Here are some important �rst examples, the second of which justi�es the terminology of
semiadditivity.

1. D is (−1)-semiadditive i� it is pointed. �is is because the only nontrivial π-�nite space that is (−1)-
D-ambidextrous is given by the map ∅ → ∗, and colim∅ is the initial object and lim∅ is the �nal object.

2. D is 0-semiadditive i� it is semiadditive in the usual sense. To see this, recall that 0-semiadditivity
implies (−1)-semiadditivity and so by the point above, D is pointed. Now observe that 0-truncated
maps to the point ∗ in S0 consist precisely of maps of form

∐k ∗ → ∗ for k < ∞. �en pointedness
allows us to construct the canonical norm map

k∐
' colim∐k ∗

=⇒ lim∐k ∗
'

k∏
and being 0-semiadditive exactly requires these to be equivalences.

3. An important class of examples for 1-semiadditivitywas furnished by Lecture 3 by the Tate-vanishing of
SpT (n). To see this, note that amapX → ∗whereX is aπ-�nite space is 1-truncated i�X =

∐k
i=1BGi

is a �nite coproduct of Eilenberg-MacLane spaces of �nite groups, and so the norm map will become
the usual one

k⊕
i=1

(−)hGi
=⇒

k⊕
i=1

(−)hGi

whose co�bre
⊕k

i (−)tGi vanishes as we saw in Lecture 3.

3.2 Modules over spans are semiadditive
�e goal of this subsection is to obtain an obstruction for D satisfying the following assumptions moreover
to bem-semiadditive.

Assumption 3.5. D is (m− 1)-semiadditive which furthermore:

(1) admits Km-colimits.

(2) admits a structure of an Sm−1
m -module in CatKm

. �is in particular means that there is an action map
Sm−1
m ×D → D which preserves Km-colimits in each variable.

Notation 3.6. For D satisfying the assumptions (3.5) and X ∈ Sm−1
m , we write

[X] : D −→ D

for X ⊗ (−) a�orded by the action map.

Proposition 3.7 (Trace obstruction, [Har19] 3.17, compare with [HL13] 5.1.8). Let D be as in assumptions
(3.5). �en D ism-semiadditive i� for all X ∈ Sm−1

m the transformation

[trX ] : [X] ◦ [X]⇒ id

exhibits the functor [X] : D → D as self-adjoint.

�eorem 3.8 (Modules implym-semiadditivity, [Har19] 3.19). LetD be tensored over Smm such that the action
functor Smm ×D → D preserves Km-colimits in each variable. �en D ism-semiadditive.
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Proof. We will prove that D is m′-semiadditive for every −2 ≤ m′ ≤ m by induction on m′. Since every
category is (−2)-semiadditive, the base case m′ = −2 is done. Now suppose that D is m′-semiadditive for
some −2 ≤ m′ < m. We want to use the trace criterion (3.7) to see that D is (m′ + 1)-semiadditive, and so
let X ∈ Sm′m′+1. We want to show that

[trX ] : [X] ◦ [X]⇒ id

exhibits as [X] : D → D as self-adjoint. In other words, by the triangle identity characterisation of adjunc-
tions, we need to see that the triangles

[X] [X] ◦ [X] ◦ [X] [X] [X] ◦ [X] ◦ [X]

[X] [X]

[X]([∆])

[trX ][X]

[∆][X]

[X]([trX ])

commute. But then these are given precisely by the triangles witnessing self-duality ofX in a span category
(2.17), and so we’re done.

3.3 Universality of spans
�e key result for everything else in the paper is the identi�cation of the universal property ofm-spans. Once
we have this, the rest follow more or less formally as in the case of ordinary commutative monoids.

�eorem 3.9 (Universal property ofm-spans, [Har19] 4.1). Let−2 ≤ m ≤ n andD bem-semiadditive which
admits Kn-colimits. �en evaluation at ∗ ∈ Smn induces an equivalence of categories

FunKn(Smn ,D)
'−→ D

4 Formal consequences

4.1 Semiadditivity as modules
We want now to formulate and prove the equivalence between m-semiadditivity and being modules over
spans. To this end, we will analyse the forgetful functor

U : ModCatKm
(Smm ) −→ CatKm

Notation 4.1. Let SAddm ⊆ CatKm be the full subcategory spanned bym-semiadditive categories.

Lemma 4.2 (Idempotence ofm-spans, [Har19] 5.1). Let C be an Smm -module. �en the counit map

νC : Smm ⊗Km
U(C) −→ C

from the adjunction Smm ⊗Km (−) : CatKm � ModCatKm
(Smm ) : U is an equivalence of Smm -modules. In

particular, this means that the adjunction is a smashing localisation and Smm is an idempotent commutative
algebra object.

Proof. Since the forgetful functor U is conservative it will su�ce to show that U(νC) is an equivalence. Now
by the triangle identity of adjunctions we have that the composite

U(C)
uU(C)−−−→ Smm ⊗Km

U(C) U(νC)−−−−→ U(C)

is the identity. Hence it will be enough to show that the �rst map

uU(C) : U(C)→ Smm ⊗Km
U(C)
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is an equivalence. Since both sides admit canonical structures of Smm -module (where for the right hand term
we use the Smm ⊗Km − part for the module structure), by Yoneda it will su�ce to show that

u∗U(C) : FunKm
(Smm ⊗Km

U(C),D) −→ FunKm
(U(C),D) (2)

is an equivalence for allD ∈ ModCatKm
(Smm ). Now sinceD was an Smm -module, we get that FunKm

(U(C),D)
is too (sinceModCatKm

(Smm ) ⊆ CatKm is closed under cotensors). Hence by the universal property ofm-spans
(3.9) we see that

FunKm
(Smm , FunKm

(U(C),D) −→ FunKm
(U(C),D)

is an equivalence, and so by currying, the map (2) is an equivalence, as required.

�eorem 4.3 (Semiadditivity as modules, [Har19] 5.2). �e forgetful functor induces an equivalence

U : ModCatKm
(Smm )

'−→ SAddm

Hence we have the adjunctions

SAddm CatKm

Sm
m⊗Km (−)

FunKm (Sm
m ,−)

where the top adjunction is a smashing localisation. In particularmeans that for anyD ∈ CatKm
, FunKm

(Smm ,D)
is the universalm-semiadditive category equipped with a Km-colimit preserving functor to D.

Proof. We have a few things to show, namely:

(1) �at Smm -modules arem-semiadditive.

(2) �at the forgetful map is essentially surjective on SAddm.

(3) �at the forgetful map is fully faithful.

Point (1) is by (3.8), and point (2) is by the universal property of m-spans (3.9) since we can write D '
FunKm

(Smm ,D) which then a�ains a canonical structure of an Smm -module by evaluation. Finally, point (3) is
just because (4.2) says that Smm ⊗Km (−) is a smashing localisation, and so in particular the whole forgetful
functor

U : ModCatKm
(Smm )→ SAddm ↪→ CatKm

is fully faithful. Since the second map in this factorisation is fully faithful, so is the �rst map, as required.

Via this equivalence we can then obtain a symmetric monoidal structure SAdd⊗m on them-semiadditives, and
the following statements are standard consequences of the equivalence.

Corollary 4.4 ([Har19] 5.6-5.8). �e fully faithful inclusion SAddm ↪→ CatKm
can be canonically re�ned to a

lax symmetric monoidal functor and Smm is the initial object in CAlg(SAddm).

4.2 Higher commutative monoids
Notation 4.5. LetX ∈ Sm. Note that the inclusion of a point x ∈, ix : ∗ → X , is an (m− 1)-truncated map
by the π∗-long exact sequence. We then write îx to denote the span X ix←− ∗ → ∗ which is in Sm−1

m .

De�nition 4.6. Let D be a category admi�ing Km-limits. �en an m-commutative monoid is a functor
F : Sm−1

m → D such that for every X ∈ Km, the set of maps {̂ix : X ← ∗}x∈X induce an equivalence
F (X)

'−→ limDX F (∗). We write CMonm(D) ⊆ Fun(Sm−1
m ,D) for the full subcategory of them-commutative

monoids.
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Remark 4.7. In the case where m = 0, we see that S−1
0 = Span(Fin, Fininj) = Fin∗. Moreover, the 0-

commutative monoid condition is precisely demanding that F : Fin∗ → D preserves products (recall that the
categorical products in Fin∗ are given by disjoint unions). Hence 0-commutative monoids agree with Segal’s
notion of commutative monoids mentioned in the introduction.
Lemma4.8 ([Har19] 5.13, 5.14). Letm ≥ −1. ForD admi�ingKm-limits, then the restriction FunKm(Smm ,D)→
FunKm(Sm−1

m ,D) factors through an equivalence FunKm(Smm ,D)
'−→ CMonm(D), and so we can just as well

think ofm-commutative monoids in these terms.

Proof. We only argue essential surjectivity, which is [Har19] 5.13. For this just consider the sequence of
equivalences:

Smm
F−→ D preserves Km-limits

i� (Smm )op F op

−−→ Dop preserves Km-colimits
i� Sm ↪→ (Smm )op F op

−−→ Dop preserves Km-colimits
i� the set of maps {ix : ∗ → X}x∈X induce an equivalence colimD

op

X F op(∗) '−→ F op(X) for all X ∈ Km
i� the set of maps {̂ix : X ← ∗}x∈X in Sm−1

m induce an equivalence F (X)
'−→ limDX F (∗) for all X ∈ Km

i� F |Sm−1
m

ism-commutative monoid.
where the third line is by (2.12), the fourth by (2.10), and the ��h just by taking opposites everywhere of the
fourth line: here we are using that the span ix : ∗ ← ∗ ix−→ X gets sent to îx : X

ix←− ∗ → ∗.

Observation 4.9 (An alternate life of m-commutative monoids). We have the identi�cation CMonm(S) '
PKm

(Smm ) since by constructionPKm
(Smm ) := FunKm((Smm )op,S), and (Smm )op ' Smm since spans are always

self-dual.
Lemma 4.10 ([Har19] 5.15). Let D admit Km-limits. �en CMonm(D) is m-semiadditive and the restriction
along {∗} ↪→ Smm induces a functor

CMonm(D)→ D
which is the universal Km-limit preserving functor to D from an m-semiadditive category. In particular, D is
m-semiadditive i� this functor is an equivalence.

Proof. By hypothesis Dop admits Km-colimits. Hence by (4.3) we get that

FunKm(Smm ,Dop)→ Dop

is the universal Km-colimit preserving functor from an m-semiadditive category to Dop, so by taking op-
posites everywhere and using the result that says that opposites ofm-semiadditives arem-semiadditive, we
obtain the desired statement.

Corollary 4.11. If C is an m-semiadditive presentable category, then C ' CMonm(S) ⊗ C. In particular, C
a�ains a canonical CMonm(S)-module structure.

Proof. �e equivalence is essentially due to the formula for the Lurie tensor product of presentables [Lur17]
4.8.1.17: forD, E presentables, we haveD⊗E ' RFun(Dop, E)where RFun is the full subcategory spanned
by functors which are right adjoints. To wit,

C ' CMonm(C)
:= FunKm(Smm , C)
' FunKm(Smm , C ⊗ S)
' FunKm

(
Smm ,RFun(Cop,S)

)
' RFun

(
Cop, FunKm(Smm ,S)

)
' C ⊗ CMonm(S)

where the �rst equivalence is by (4.10). �is completes the proof.
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Construction 4.12. Let Ĉatsmall be the category of not necessarily small categories admi�ing small colimits
and functors preserving these.

Lemma 4.13. CMonm(S) ∈ PrL is an idempotent commutative algebra object.

Proof. By [Lur17] 4.8.1.16 and 4.8.1.17 we know that the inclusion PrL ⊆ Ĉatsmall is symmetric monoidal.
Moreover, [Lur17] 4.8.1.10 gives that the functor PKm

: CatKm
→ Ĉatsmall is symmetric monoidal and so

in particular preserves idempotent commutative algebra objects. Now by (�) we know that CMonm(S) '
PKm(Smm ) and by (4.2) we know thatSmm is an idempotent commutative algebra object, and sowe’re done.

�eorem 4.14 ([Har19] 5.21). �ere is a smashing localisation

PrL ModPrL(CMonm(S))
CMonm(S)⊗(−)

i

where the essential image of the fully faithful inclusion i consists precisely of the m-semiadditive presentable
categories.

Proof. We need to show two things:

(1) �at we have the smashing localisation (easy and formal, given by idempotence of Smm )

(2) To identify the essential image as them-semiadditives.

Point (1) is by idempotence of CMonm(S) (4.13) and point (2) is just because (4.11) implies that the inclusion
i is essentially surjective onto them-semiadditive presentables.
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