
TALBOT 2019: MODULI SPACES OF MANIFOLDS

This workshop is aimed at exposing recent progress in our understanding
of the cohomology of moduli spaces of smooth manifolds, or in other words
classifying spaces of diffeomorphism groups.

The focus of the first half of the workshop will be the method which
arose from Madsen and Weiss’ proof of the Mumford Conjecture [MW07],
based on the theory of cobordism categories, fibrewise surgery, the group-
completion theorem, and homological stability. A central role in most of
what will be discussed will be played by the manifold

W 2n
g = #gSn × Sn,

the g-fold connected sum of Sn × Sn, which should be considered the
analogue in higher dimensions of the oriented genus g surface in dimension
2n = 2. (In fact, the variant Wg,1 = Wg \ int(D2n) will be most prominent.)
However the techniques discussed in the first 9 talks apply quite generally,
and Talk 10 will summarise the state of the art in this direction.

The second half of the workshop will give an overview of three adja-
cent pieces of mathematics: two applications of the theory developed in
the first half of the workshop, and an analogous result. The first applica-
tion is the recent theorem of Kupers [Kup17]—building on work of Weiss
[Wei15]—establishing the cohomology of the classifying spaces of many dif-
feomorphism groups (including BDiff∂(D2n) for 2n ≥ 6) has finite type. The
second is recent work of Botvinnik–Ebert–Randal-Williams [BERW17] on
the non-triviality of spaces R+(M) of Riemannian metrics of positive scalar
curvature. The third is recent work of Berglund–Madsen [BM13, BM14] on
classifying spaces for fibrations (as opposed to smooth fibre bundles).

Advice. To give a good talk you will need to be broadly familiar with the
content of the other talks in the same series, so that you know what you
should provide to speakers after you and what you can expect from speakers
before you.

1. Cobordism category methods

This series of talks first aims to explain the main theorem of [GTMW09],
which identifies the homotopy type of the category of d-dimensional cobor-
disms (possibly equipped with tangential structure). We will follow the
proof of this theorem given in [GRW10].

Talk 1. Explain a definition of the cobordism category Cd, a topological
category whose objects are closed smooth (d − 1)-manifolds and whose
morphisms are d-dimensional cobordisms between them. See [GTMW09,
Section 2.1] for a mostly self-contained definition (or [GRW10, Section
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3.2] or [GRW14, Section 2.4]). Resist the temptation to discuss higher
categories.

Define the nerve and the classifying space of a topological category C,
and the natural map EndC(x) → ΩBC. Specialising to the cobordism
category, explain why we get a map BDiff(W ) → ΩBCd for any closed
smooth d-manifold W .

Give a quick definition of Ω∞MTO(d) as a space, mentioning Grassman-
nians of d-planes in RN , and Thom spaces of vector bundles over them.
For the purposes of the following talks, an explicit space-level definition
as in [GTMW09, Section 1] is more useful than one-line definitions involv-
ing Thom spectra of virtual bundles. Then state the main theorem of
[GTMW09] as the existence of a weak equivalence ΩBCd ' Ω∞MTO(d).

If you have any time left, briefly mention “tangential structures”; for
example, there is a version CSO(d) of the cobordism category in which all
manifolds are equipped with orientations.

Talk 2. This talk should introduce the spaces of non-compact manifolds
denoted Ψd(R

N) in [GRW10]. You should not go into details with the
topology on this space, but give an idea of what continuous maps X →
Ψd(R

N) looks like. Explain the weak equivalence from the Thom spaces
appearing in Talk 1 to the space Ψd(R

N).
Then define the subspaces ψd(n, 1) ⊂ Ψd(R

n) consisting of manifolds
bounded in all but one direction. State the weak equivalence BCd '
colimn ψd(n, 1), and indicate how it is proved. You may not have time for a
detailed proof, but try to emphasise the role played by Sard’s theorem.

Talk 3. Define the spaces ψd(n, k) ⊂ Ψd(R
n) consisting of manifolds

bounded in all but k directions. Define the map ψd(n, k)→ Ωψd(n, k + 1),
state that it is a weak equivalence for k ≥ 1, and explain how the GMTW
theorem follows.

Then give some details of the delooping theorem ψd(n, k)→ Ωψd(n, k+1),
as time permits. (The strategy can be paraphrased as follows: “to prove a
weak equivalence of the formX ' ΩY , guess a suitable group-like topological
monoid M and prove X 'M and Y ' BM”.)

Talk 4: Group completion. This talk should start with a statement of
the group-completion theorem for topological monoids M , concerning the
canonical map M → ΩBM . This map is a weak equivalence if and only
if M is M is group-like, i.e. the induced monoid structure on π0(M) has
inverses. The group-completion theorem for monoids ([MS76]) concerns
its effect in homology when M is not group-like. The theorem has some
assumptions, which should be explained in the talk. In particular it is
sufficient that M to be homotopy commutative.

Monoids are categories with one object, and the group-completion theorem
may be generalised to categories with more than one object. If C is a
topological category then, in good cases, the homology of ΩBC may be
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calculated as a filtered colimit of homology of morphism spaces C(x, y). (In
this abstract setting, a key ingredient is the existence of a filtered diagram
f : J → C such that the functor x 7→ colimj∈J H∗(C(x, f(j)) sends all
morphisms to isomorphisms.)

The group-completion theorem for categories was applied to cobordism
categories by Tillmann ([Til97]) in the case of oriented 2-dimensional cobor-
disms, but the short exposition in [MT01, Section 2.2] may fit better with
this series of talk. (The oriented 2-dimensional cobordism category is
denoted Y in the latter reference.) The higher-dimensional case of the
group-completion argument is carried out in [GRW17, Section 7.1], but for
the sake of time and clarity your talk should focus on the 2-dimensional
case. In particular, emphasise the role played by the “positive boundary
subcategory” (denoted Yb ⊂ Y in [MT01]) and of “homological stability”
(due to Harer in the 2-dimensional case and proved in [GRW17] in higher
dimensions).

Homological stability is the topic of later talks, and should in this talk be
treated as a black box. In light of the available time, you should probably
not attempt to say much about the proof of the group-completion theorem.

If you have some time left, you could say a bit about the higher-
dimensional case, perhaps explained by analogy to the oriented 2-dimensional
case. The torus S1×S1 plays a special role in dimension 2, and in dimension
2n a similar role is played by Sn × Sn, see for example the definitions and
statements in [GRW17, Section 1.1]. The role of orientations on 2-manifolds
is replaced by a tangential structure θ : B → BO(2n). The “positive bound-
ary subcategory” from dimension 2 is replaced by a subcategory Cn−1θ ⊂ Cθ
whose cobordisms are (n− 1)-connected relative to their outgoing boundary,
cf. [GRW17, Section 7]. (In the notation of op.cit. you can take L = ∅ for
the purposes of this talk.)

Talk 5. Talks 1–3 introduced the cobordism category C2n and the tangentially-
structured version Cθ, and related ΩBC2n to Ω∞MTO(2n) and similarly
ΩBCθ ' Ω∞MTθ, while talk 4 related the stable homology of diffeomor-
phism groups to ΩBCn−1θ , where Cn−1θ ⊂ Cθ is the subcategory whose
morphisms are the cobordisms that are (n− 1)-connected relative to their
outgoing boundary. The purpose of this talk and talk 6 is to understand the
inclusion functor Cn−1θ ⊂ Cθ, and in particular understand circumstances
under which it induces an equivalence of group completions. This is the
topic of [GRW14, Section 3].

This talk should first outline the strategy: define the filtration Cθ =
C−1θ ⊂ C0θ ⊂ · · · ⊂ C

n−1
θ and state that we will study one step at a time and

prove that ΩBCκ−1θ

'−→ ΩBCκθ is an equivalence for all κ < n.
Explain the statement of [GRW14, Theorem 3.4], which can be para-

phrased as having a contractible choice of surgery data. Taking that result
for granted, explain how [GRW14, Theorem 3.1] is proven, in as much
detail as you have time for. In the notation of op.cit., make the simplifying
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assumptions N = ∞ and L = ∅ and omit both from the notation. You
should strongly consider focusing only on the case d = 2 and κ = 0, where
it is easier to draw pictures of what’s going on (in particular, draw a picture
of a morphism that is not in C02 , and how it is modified by a surgery move
to be in C02 as in [GRW14, Figures 2 and 3]). You can also safely ignore the
tangential structures θ, which do not play an important role in this step.

Talk 6. This talk should sketch some of the ingredients in [GRW14, Theo-
rem 3.4]. An important ingredient is the simplicial technique in [GRW14,
Section 6.2], which may be read independently of the rest of the paper. Try
to present this as a self-contained tool in the homotopy theory of simplicial
spaces.

Then explain how it is applied in [GRW14, Section 6.3].

2. Homological stability

This series of talks aims to explain the simplest example of a homo-
logical stability theorem for diffeomorphism groups, namely in the case of
BDiff(W 2n

g , D2n) with Wg = #gSn×Sn. These talks follow the unpublished
preprint [GRW12], which proves the result of [GRW18a] in this special case,
making various simplifications.

Talk 7. This talk should present the proof of homological stability of
BDiff(W 2n

g , D2n) taking Corollary 4.9 for granted. More precisely, it should
define the moduli spaces Mg following Definition 1.1, give a definition of
the semi-simplicial spaces K•(Wg,1) taking what is needed from Defintion
4.1 (and the paragraph before Corollary 4.9), state Corollary 4.9, and then
explain Section 5 in as much detail as possible. Doing so will involve using
Corollaries 4.4 and 4.5 too, which (with a small variation of their proofs)
can be deduced from the statement of Corollary 4.9.

Talk 8. This talk should explain the reduction from geometry to algebra,
i.e. the deduction of Corollary 4.9 from (Charney’s) Theorem 3.2. You will
need to use two technical results from Section 2, Theorem 2.4 and Corollary
2.8, but will not have time to prove them: instead you should state them
carefully and indicate their plausibility.

The main steps are: (i) to define ((−1)n,Λn)-quadratic modules and in
particular the one associated to Wg,1, and hence define the map

Kδ(Wg,1) −→ Ka(πn(Wg,1), λ, α);

(ii) to deduce Lemma 4.2 from Theorem 3.2, which uses the general simplicial
method described in Theorem 2.4; (iii) to deduce Theorem 4.6 (and hence
Corollary 4.9) by comparing the discrete and topologised semi-simplicial
spaces, using Corollary 2.8. (Some discussion of discrete versus topologised
may have appeared in Talk 6.)
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Talk 9. This talk should give an overview of the proof of Theorem 3.2, the
high-connectivity of the algebraic complex |Ka(M)|. Rather than following
Charney’s paper [Cha87] it is perhaps simpler to present the argument given
in Section 4 of [GRW18a], which proves a slightly more general result than
Charney’s theorem in the special case that the ring in question is Z, which
is what is needed here.

3. The general formulation

Talk 10. This talk should explain the statements of Corollaries 1.8 and 1.9
of [GRW17], which are the natural results which follow from appropriately
generalising the methods discussed in the talks so far. You may wish to
consult Section 4 of [GRW18b] for another perspective.

You should then present the extended example of hypersurfaces Vd ⊂ CP4

described in Section 5.3 of [GRW18b] in detail (spend at least half the talk
on this).

4. Finiteness properties of diffeomorphism groups [after
Kupers, Weiss]

This series of talks aims to explain one of the main results of [Kup17],
namely that the homology of BDiff∂(D2n) has finite type as long as 2n ≥ 6.
The general strategy follows an idea of Weiss [Wei15] which allows for the
use of embedding calculus in the study of diffeomorphism groups.

Talk 11. This talk should explain the theory of Embedding Calculus, fol-
lowing [Wei99] and [BdBW13]. Particular care should be given to describe
the layers in the embedding calculus tower, especially in the case of mani-
folds with boundary. Convergence of the tower under the codimension ≥ 3
assumption should simply be stated, with an explanation of what “codimen-
sion” means in this context. You should collaborate with the speaker for
Talk 14 to make sure that you provide all the tools that will be necessary
in that talk.

Talk 12. This talk should construct the Weiss fibration

BDiff∂(D
d) −→ BDiff∂(M) −→ BEmb

∼=
1/2∂(M,M)

and explain the proof that it deloops, following Section 4 of [Kup17].

Talk 13. This talk should present Kreck’s analysis of the mapping class
group Γg,1 = π0(Diff∂(Wg,1)). This is Proposition 3 of [Kre79] in the
special case M = Wg (you will need to mention Cerf’s “concordance implies
isotopy” theorem to get rid of the ˜’s). Kreck’s argument has several
external references, and you should do your best to summarise them.
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Talk 14. This talk should combine the ingredients of the last three talks to
prove the finiteness of BDiff∂(D2n) for 2n ≥ 6, i.e. Theorem 5.1 of [Kup17].
This may look short, but involves proving Theorem 3.2 for M = Wg,1 which
in turn involves proving Proposition 3.11 and Proposition 3.15 for these
manifolds. Proposition 3.11 concerns finiteness of the mapping class group
of Wg,1, and should be deduced from Talk 13 (and the theorem of Borel–
Serre that arithmetic groups are virtually of type (F )) rather than the more
general results used in [Kup17]. Proposition 3.15 concerns finiteness of the
identity component of Emb

∼=
1/2∂(Wg,1,Wg,1), and should be done following

the given proof.

5. Positive scalar curvature [after
Botvinnik–Ebert–Randal-Williams]

This series of talks aims to give an idea of the application by Botvinnik–
Ebert–Randal-Williams [BERW17] of cobordism category methods to under-
standing spaces R+(M) of Riemannian metrics of positive scalar curvature
of a smooth manifold M .

Talk 15. You should start by defining the spaces R+(W )h0,h1 of positive
scalar curvature metrics on a cobordism W , and discuss briefly the con-
struction of Hitchin’s secondary index invariant (this workshop is not on
index-theory, so you will have to simply assert several things). You then
carefully formulate the result to be discussed in these talks, namely Theorem
A.

You should spend the rest of the talk explaining some of the basic
constructions in Section 2.2, and the Cobordism Theorem (Theorem 2.3.1)
and its basic application (Spin-cobordism invariance of the space of psc
metrics). Finally you should explain the statement of Theorem 3.6.1 and
how it reduces Theorem A to the case d = 6 following Remark 1.2.6.

Talk 16. This talk should start by discussing the Abelianness Theorem
(Theorem 4.1.2), and how it follows from the Cobordism Theorem (Theorem
2.3.1) by a formal argument of Eckmann–Hilton flavour. It should then
outline the proof of Theorem B in the 6-dimensional case. The focus should
be on constructing the map Ω∞+1MTSpin(6)→ R+(D6)h5◦ , and the index-
theoretic part of the argument should be sketched only briefly. Finally, you
should say something about Theorem 5.2.1, that

MTSpin(6) −→ Σ−6MSpin −→ Σ−6ko

is surjective on rational homotopy (you should not present this in detail in
the talk: it is a routine piece of algebraic topology).

6. Classifying spaces for fibrations [after Berglund–Madsen]

This series of talks aims to give an overview of the work of Berglund–
Madsen [BM13, BM14] concerning the classifying spaces BhAut∂(Wg,1) for
fibrations with fibre Wg,1. (For reasons of time we shall skip the applications
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to BD̃iff(M), the classifying space for “block diffeomorphisms”, in the
Berglund–Madsen papers.)

Despite the apparent conceptual similarities between BDiff∂(Wg,1) and
BhAut∂(Wg,1)—the former space classifies smooth fiber bundles while the
latter classifies fibrations, in both cases with fibres Wg,1 and trivialised
boundary—the methods of study are quite different, and the calculations
produce rather dissimilar-looking answers.

Talk 17. This talk will concern the abstract rational homotopy theory
in [BM14, Sections 2–3] and the references therein. Start by explaining
what it means for a map between simply connected spaces to be a rational
equivalence, and discuss the connection (due to Quillen) to differential
graded Lie algebras (DGLAs).

Then discuss mapping spaces in rational homotopy theory, focusing on
how to extract a DGLA model for BhAut(X)Q given a DGLA model for XQ.
The space BhAut(X) is likely not simply connected even when X is, so in
practice one must separately study the discrete group π0(hAut(X)) and the
rational homotopy type of the classifying space of the identity component
of hAut(X). The latter is modeled by Lie algebras of derivations, while
π0(hAut(X)) in practice often has to be studied “by hand”.

Talk 18. This talk will discuss the rational homotopy theory of the spaces
BhAut(Wg,1), where Wg,1 = D2n#g(Sn×Sn). Specialise the abstract results
from Talk 17 to this space, and discuss how the Lie algebras of derivations
compare to graph complexes (i.e. first half of [BM14, Theorem 9.1]).
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