Talbot 2019 Talk 9

Speaker: Mauricio Bustamante
Live Tex'd by Lucy Yang
Edited by: Dexter Chua

4/10/2019

The goal of this talk is to prove Charney's theorem, and thus finally completing the proof of homological stability.

Recall that the notion of a quadratic module depends on two parameters, $\varepsilon= \pm 1$ and $\Lambda \subseteq \mathbb{Z}$ a subgroup. The only combinations relevant are

$$
(\varepsilon, \Lambda) \in\{(1,\{0\}),(-1,2 \mathbb{Z}),(-1, \mathbb{Z})\}
$$

A quadratic module is then a triple (M, λ, α) where M is a \mathbb{Z}-module, λ : $M \otimes M \rightarrow \mathbb{Z}$ is an ε-bilinear form, and $\alpha: M \rightarrow \mathbb{Z} / \Lambda$ is a function satisfying

1. $\alpha(a x)=a^{2} \alpha(x)$ for all $a \in \mathbb{Z}$
2. $\alpha(x+y)=\alpha(x)+\alpha(y)+\lambda(x, y)$

The standard example of a quadratic module is the hyperbolic module

$$
\mathcal{H}=\mathbb{Z}\{e\} \oplus \mathbb{Z}\{f\}, \quad \lambda=\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & 0
\end{array}\right), \quad \alpha(e)=\alpha(f)=0
$$

Definition. Let M bee a quadratic module. The Witt index $g(M)$ is

$$
g(M)=\sup \left\{g \in \mathbb{N} \mid \exists \mathcal{H}^{\oplus g} \rightarrow M\right\}
$$

It is clear that $g(M \oplus \mathcal{H}) \geq g(M)+1$, but we would like this to be exactly equal. Therefore, we define
Definition. The stable Witt index $\bar{g}(M)$ is

$$
\bar{g}(M)=\sup \left\{g\left(M \oplus \mathcal{H}^{\oplus k}\right)-k \mid k \geq 0\right\}
$$

Example. We have $g\left(\mathcal{H}^{\oplus k}\right)=k$, since it is obviously at least k, and cannot be larger than k for dimension reasons. Therefore $\bar{g}\left(\mathcal{H}^{\oplus k}\right)=k$ as well.

Recall that if M is a quadratic module, then $K^{a}(M)$ is the simplicial complexes with vertices given by morphisms $h: \mathcal{H} \rightarrow M$, and $\left\{h_{0}, \ldots h_{p}\right\}$ for a p-simplex if the images of the h_{i} are orthogonal with respect to λ.

Theorem (Charney). Let $g \in \mathbb{N}$ and M a quadratic module with $\bar{g}(M) \geq g$. Then $K^{a}(M)$ is $\left\lfloor\frac{g-4}{2}\right\rfloor$-connected and locally weakly Cohen-Macaulay of dimension $\left\lfloor\frac{g-1}{2}\right\rfloor$.
Definition. A simplicial complex X is locally weakly Cohen-Macaulay of dimension n if for every p-simplex σ, the link of σ is $(n-p-2)$-connected.

Thus, a weakly Cohen-Macaulay complex to be a locally weakly CohenMacaulay complex that is also $(n-1)$-connected.

Proof. We proceed by induction on g. The base cases are $g=1,2,3,4,5$, which we will do at the end.

We first show the locally weakly Cohen-Macaulay condition. Let $\sigma=$ $\left\{h_{0}, \ldots, h_{p}\right\}$ be a p-simplex, and let M^{\prime} be the orthogonal complement of the images of the h_{i} 's. Then we have

$$
M=M^{\prime} \oplus \mathcal{H}^{\oplus p+1}
$$

and $\bar{g}\left(M^{\prime}\right)=\bar{g}(M)-p-1$. Then observe that the $\operatorname{Lk}(\sigma)=K^{a}\left(M^{\prime}\right)$, so by induction, it is $\left\lfloor\frac{g-p-1-4}{2}\right\rfloor \geq\left(\left\lfloor\frac{g-1}{2}\right\rfloor-p-2\right)$-connected.

We next turn to the connectivity result. We suppose the result holds up to $g-1$. Given an M, we know in particular that $K^{a}(M)$ is non-empty, so we can pick an $h: \mathcal{H} \rightarrow M$, and let $M^{\prime}=h(\mathcal{H})^{\perp}$. Then again

$$
M=M^{\prime} \oplus \mathcal{H}
$$

Our strategy is to show that $K^{a}\left(M^{\prime}\right) \rightarrow K^{a}(M)$ is both $n=\left\lfloor\frac{g-4}{2}\right\rfloor$-connected and null-homotopic. The null-homotopic part is easy - $K^{a}\left(M^{\prime}\right)$ is the link of the vertex h, so the inclusion factors through the (closure of the) star of h, which is deformation retracts onto h.

To show the map is n-connected, we factor it into two parts note that $h(e)^{\perp}=M^{\prime} \oplus \mathbb{Z}\{e\}$. So our map factors as

$$
K^{a}\left(M^{\prime}\right) \xrightarrow{(1)} K^{a}\left(M^{\prime} \oplus \mathbb{Z}\{e\}\right) \xrightarrow{(2)} K^{a}(M)
$$

We will show that (1) and (2) are both n-connected. This is based on the following combinatorial fact:

Proposition ([GRW18, Proposition 2.5]). Let X be a simplicial complex and $Y \subseteq X$ a subcomplex. Let $n \in \mathbb{Z}$ be such that for all p-simplices σ in X having no vertex in Y, the complex $Y \cap \operatorname{Lk}(\sigma)$ is $(n-p-1)$-connected. Then $Y \hookrightarrow X$ is n-connected.
(1) There is a projection map $M^{\prime} \oplus \mathbb{Z}\{e\} \rightarrow M^{\prime}$ which induces a retraction $\pi: K^{a}\left(M^{\prime} \oplus \mathbb{Z}\{e\}\right) \rightarrow K^{a}\left(M^{\prime}\right)$. Let σ be a simplex in $K^{a}\left(M^{\prime} \oplus \mathbb{Z}\{e\}\right)$. The geometric observation is that

$$
K^{a}\left(M^{\prime}\right) \cap \operatorname{Lk}_{K^{a}\left(M^{\prime} \oplus \mathbb{Z}\{e\}\right)}(\sigma)=\operatorname{Lk}_{K^{a}\left(M^{\prime}\right)}(\pi(\sigma))
$$

Since $\bar{g}\left(M^{\prime}\right)=\bar{g}(M)-1$, we know that this is $\left(\left\lfloor\frac{g-2}{2}\right\rfloor-p-2\right)$-connected by induction, as desired. So the connectivity follows from the proposition.
(2) This is similar to the previous one. Let $\sigma=\left\{h_{0}, \ldots, h_{p}\right\}$ be a p-simplex in $K^{a}(M)$, and let $M^{\prime \prime}$ be the orthogonal complement of the images of the h_{i}, so that

$$
M=M^{\prime \prime} \oplus \mathcal{H}^{\oplus p+1}
$$

We also have

$$
K^{a}\left(M^{\prime} \oplus \mathbb{Z}\{e\}\right) \cap \operatorname{Lk}_{K^{a}(M)}(\sigma)=K^{a}\left(M^{\prime \prime} \cap\left(M^{\prime} \oplus \mathbb{Z}\{e\}\right)\right) .
$$

Since $\bar{g}\left(M^{\prime \prime} \cap\left(M^{\prime} \oplus \mathbb{Z}\{e\}\right)\right) \geq g-p-2$, we are done by induction.
We are left with the base cases. Suppose $\bar{g}(M) \geq 4$. We want to show path-connectedness of $K^{a}(M)$. In fact, let us make the stronger assumption that $g(M) \geq 4$.

By assumption, we can pick an $h_{0}: \mathcal{H} \rightarrow M$ such that $g\left(h_{0}(\mathcal{H})^{\perp}\right) \geq 3$. We shall find a path from h_{0} to any other vertex $h_{1}: \mathcal{H} \rightarrow M$. In fact, we shall find a path of length 2 . That is, we want a morphism $h: \mathcal{H} \rightarrow h_{0}(\mathcal{H})^{\perp} \cap h_{1}(\mathcal{H})^{\perp}$. Equivalently, by definition, we want to show that

$$
g\left(h_{0}(\mathcal{H})^{\perp} \cap h_{1}(\mathcal{H})^{\perp}\right) \geq 1 .
$$

To do so, we use the algebraic fact that if M is a quadratic module and $\ell: M \rightarrow \mathbb{Z}^{a}$ is linear, then $g(\operatorname{ker} \ell) \geq g(M)-a$. Once we have this, we simply observe that $h_{0}(\mathcal{H})^{\perp} \cap h_{1}(\mathcal{H})^{\perp}$ is the kernel of the composite

$$
h_{0}(\mathcal{H})^{\perp} \hookrightarrow M \rightarrow h_{1}(\mathcal{H})
$$

This proves the case where $g(M) \geq 4$, and we now show that it is also true when $\bar{g}(M) \geq 4$. In fact, we will show that $\bar{g}(M) \geq 4$ implies $g(M) \geq 4$.

We note that the proof of our geometric cancellation theorem also proves the following:

Proposition. Let M, N be quadratic modules such that $M \oplus \mathcal{H} \cong N \oplus \mathcal{H}$. If $K^{a}(M \oplus \mathcal{H})$ is connected, then $M \cong N$.

Equipped with this, suppose M is such that $\bar{g}(M) \geq 4$. Then there exists a quadratic module N with $g(N) \geq 4$ and a large k such that $M \oplus \mathcal{H}^{\oplus k} \cong N \oplus \mathcal{H}^{\oplus k}$, and $g\left(N \oplus \mathcal{H}^{\oplus k}\right) \geq k+4$. Thus $K^{a}\left(N \oplus \mathcal{H}^{\oplus k}\right)$ is connected, and by induction, we see that $M \cong N$.

Finally, we have to show that $K^{a}(M) \neq \emptyset$ when $\bar{g}(M) \geq 2$. The same argument shows that there is some N with $g(N) \geq 2$ and $M \oplus \mathcal{H} \cong N \oplus \mathcal{H}$. Then $g(N \oplus \mathcal{H}) \geq 3$ and M is the kernel of a $\operatorname{map} N \oplus \mathcal{H} \rightarrow \mathcal{H}$, hence $g(M) \geq 1$.

References

[GRW18] Søren Galatius and Oscar Randal-Williams. Homological stability for moduli spaces of high dimensional man- ifolds i. Journal of the American Mathematical Society, 31(1):215, 2018.

