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In the previous talk, we proved homological stability using the high connec-
tivity of a certain semi-simplicial space, which we did not prove. In this talk,
we will make progress towards the proof by reducing it to the connectivity of
an algebraic analogue of this complex, which will finally be proved in the next
talk.

Recall we defined Kp(Wg,1) to be the space of embeddings φ0, . . . , φp : H ↪→
Wg,1 satisfying certain conditions, one of which is that the images have to be

disjoint. We will write K(Wg,1) for |K•(Wg,1)|, and same for the other versions
we introduce.

We define another semi-simplicial space Kp(Wg,1) with a slightly less restric-
tive condition. Contained in H is a core C ∼= Sn ∨ Sn ∨ [0, 1] ∪ D2n−1 × {0}
that H deformation retracts onto.

Kp(Wg,1) is then defined in the same way as Kp(Wg,1), except we only
require the images of the cores to be disjoint, not the entire image. It is easy to
see that the inclusion Kp(Wg,1) → Kp(Wg,1) is a weak homotopy equivalence,

hence so is K(Wg,1)→ K(Wg,1).
Finally, we define Kδ

p(Wg,1) to be the same semi-simplicial space, but is
given the discrete topology. This can equivalently be thought of as a simplicial
complex, and we will freely confuse the two. This is a natural thing to consider,
because we want to compare to an algebraic analogue of this, where the p-
simplices do not come with a topology.

The algebraic analogue of this complex captures the behaviour of the inter-
section form plus some quadratic data. For any n ∈ N, there is a fiber sequence

Sn → BO(n)→ BO(n+ 1),
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which gives rise to a long exact sequence

πn+1BO(n+ 1) πnS
n πnBO(n) πnBO(n+ 1)→ 0∂ i

The map i : πnS
n ∼= Z → πnBO(n) sends the generator to the map classifying

the tangent bundle of Sn. So by the Hopf invariant one problem, we know

Λn ≡ im ∂ = ker i =


0 n ∈ 2Z
Z n = 1, 3, 7

2Z otherwise

We then have

im i = Z/Λn = ker(πnBO(n)→ πnBO(n+ 1) ∼= πnBO).

We make the following definition:

Definition. A quadratic module is a triple (M,λ, α), where M is a Z-module,
λ : M ⊗M → Z is an (−1)n-symmetric bilinear form, and α : M → Z/Λn is a
function such that

1. α(ax) = a2α(x) for all a ∈ Z
2. α(x+ y) = α(x) + α(y) + λ(x, y)

Note that since α takes values in Z/Λn but λ takes values in Z, the second
condition does not imply that λ is completely determined by α.

The most basic example of a quadratic module is the hyperbolic module:

Example. The hyperbolic module is defined by

H =

(
Z{e} ⊕ Z{f},

(
0 1

(−1)n 0

)
, α(e) = α(f) = 0

)
.

We will later see that this is the quadratic module associated to Sn × Sn.
Observe that if M is any quadratic module, then any morphism H → M is

automatically injective since it has to preserve the bilinear form.

Definition. Let M be a quadratic module. We define Ka(M) to be the sim-
plicial complex whose vertices are morphisms v : H → M and p-simplicies are
sets {v0, . . . , vp}, where the vi are orthogonal with respect to λ.

The algebraic connectivity theorem is due to Charney:

Theorem (Charney). Ka(H⊕g) is b g−52 c-connected.
In the remainder of the talk, we will show that that this theorem implies

the geometric version. More precisely, we will use this theorem to show that
Kδ(Wg,1) is b g−52 c-connected, and then use this to deduce that K(Wg,1) is

b g−52 c-connected.
First we need to describe how we can get a quadratic module from a man-

ifold. Let W 2n be a stably parallelizable (n− 1)-connected manifold. Then by
Hurewicz, we have πn(W ) ∼= Hn(W ;Z) and the intersection form on Hn gives
us a pairing λ : πn(W )⊗ πn(W )→ Z.

To obtain the map α, we use Haefliger’s theorem:
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Theorem (Haefliger [Hae62]). Any x ∈ πn(W ) can be represented by an em-
bedded sphere if n ≥ 3, and is unique up to isotopy if n ≥ 4.

If x ∈ πn(W ), then after picking a representative by an embedded sphere, the
normal bundle gives an element α(x) ∈ πnBO(n), and since it is stable trivial,
it is in fact in Z/Λn. For n ≥ 4, this is well-defined since the representative is
unique, and when n = 3, α takes values in the zero group, hence is necessarily
well-defined. One can then check that (πn(W ), λ, α) gives a quadratic module.

Example. The quadratic module of Wg,1 is H⊕g.

Lemma. If Ka(H⊕g) is b g−52 c-connected, then so is Kδ(Wg,1).

Proof. The above procedure gives us a map of simplicial complexes Kδ(Wg,1)→
Ka(H⊕g). To show that πk(Kδ(Wg,1)) = 0, we need to show that any map
∂Ik+1 → |Kδ(Wg,1)| extends to a map on Ik+1. By assumption, we know the
extension exists when we compose down to |Ka(H⊕g)|. So we have to solve the
lifting problem

∂Ik+1 |Kδ(Wg,1)|

Ik+1 |Ka(H⊕g)|.g

Our strategy is to pick a simplicial approximation of triangulation of g,
and then lift simplex by simplex. It turns out we can pick a particularly nice
triangulation, using the fact that Ka(H⊕g) is weakly Cohen–Macaulay.

Definition. A simplicial complex X is k-weakly Cohen–Macaualay if it is (k−
1)-connected and the link1 of any p-simplex is (k − p− 2)-connected.

We will use the following fact without proof:

Lemma. If X is k-weakly Cohen–Macaulay, and f : ∂Ik → |X| is simplicial
with respect to some triangulation of ∂Ik, then there is an extension Ik → |X|
such that g is simplex-wise injective on the interior of Ik, i.e. it doesn’t collapse
simplices to lower-dimensional simplices.

It is not too difficult to see that Ka(H⊕g) is b g−32 c-weakly Cohen–Macaulay,
since if σ = {v0, . . . , vp} is a p-simplex, then the link is Ka(im(v0, . . . , vp)

⊥).
If g − p − 1 < 4, then the connectivity we desire is < −1, hence is automatic.
Otherwise, im(v0, . . . , vp)

⊥ ∼= H⊕g−p−1 by cancellation (c.f. the proof in the
geometric case in the previous talk). So we are done by induction.

We now return to our lifting problem. After picking the simplicial approx-
imation of g as above, we need to decide how to lift the vertices in Ik+1. We
put a total order on the set of vertices and do the lifting one by one. Let v be a
vertex in the interior of Ik+1, and consider the embedding g(v) : H ↪→ πn(Wg,1).

1The star of a simplex σ is the union of all simplices that contain σ (which is an open
subset of the simplicial complex). The link is then obtained by taking the closure of the star
and then removing the star.

3



REFERENCES REFERENCES

Then g(v)(e) and g(v)(f) can be represented by embedded spheres whose alge-
braic intersection with each other is +1, while the algebraic intersection with
other neighbours that have already been lifted is 0. Applying Whitney’s trick,
we can assume the previous sentence is true with “algebraic” replaced by “ge-
ometric” (and that the intersection is transverse). We can then thicken g(v)(e)
and g(v)(f) to an embedding of H into Wg,1 of the desired form, and use this
as our lift. One then checks that this works.

Lemma. If Kδ(Wg,1) is b g−52 c-connected, then so is K(Wg,1).

Proof sketch. Consider the bisimplicial space Dp,q = Kp+q+1(Wg,1), topologized
as a subspace of Kp(Wg,1)×Kδ

q (Wg,1).
By construction, this comes with augmentations Dp,q → Kp(Wg,1) and

Dp,q → Kδ
p(Wg,1). The first observation is that the following diagram is com-

mutative up to homotopy

|D•,•| |Kδ
•(Wg,1)|

|K•(Wg,1)|

It suffices to show that |D•,•| → |K•(Wg,1)| is b g−52 c-connected. Then since it

factors through a b g−52 c-connected space, the target must be b g−52 c-connected.

To show that |D•,•| → |K•(Wg,1)| is b g−52 c-connected, it suffices to show

that |Dp,•| → Kp(Wg,1) is (b g−52 c − p)-connected. In fact, we will show it is

b g−p−42 c-connected.
The idea is that the map |Dp,•| → Kp(Wg,1) is like a Serre fibration, so the

connectivity of this map is given by the connectivity of the literal fiber (after
a degree shift). It is not a Serre fibration, but it is what is known as a Serre
microfibration, and it turns out this also means the connectivity of the map is
given by the connectivity of the literal fiber.

To understand the literal fiber, let z = ((ti, φi)) ∈ Kp(Wg,1), and W the
complement of the φi(C)’s. Then the fiber over z admits a map to Ka(πn(W )) ∼=
Ka(H⊕g+p−1, and since the target is b g−p−62 c-connected, the argument in the

previous lemma shows that the fiber over z is also b g−p−62 c-connected.
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