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The goal of the coming three talks is to understand and prove (a specific
instance of) homological stability. The main theorem is about the BDiff of some
manifolds, so we begin by describing the manifolds we are interested in:

Wg,1 = #
g

Sn × Sn \D2n.

We elect to draw this as follows:

· · ·

Since Wg,1 has a boundary, we are interested in a slight variation of BDiff.

We let Diff∂(Wg,1) be the group of self-diffeomorphisms of Wg,1 that fix a neigh-

bourhood of the boundary, and consider BDiff∂(Wg,1).

The obvious inclusion Wg,1 ↪→ Wg+1,1 induces a map BDiff∂(Wg,1) →
BDiff∂(Wg+1,1), and the main theorem is

Theorem. The map

Hk(BDiff∂(Wg,1);Z)→ Hk(BDiff∂(Wg+1,1);Z)

is an isomorphism when

k ≤ g − 4

2
.

Our approach to proving this theorem involves having an explicit geometric
model for BDiff∂(Wg,1). In the case of a manifold M without boundary, an
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explicit model for BDiff(M) is given by the space of submanifolds of R∞ that
are diffeomorphic to M . More precisely,

BDiff(M) = colim
N→∞

Emb(M,RN )/Diff(M).

In the case of manifolds with boundary, we need to say a few more words.
We let HN = [0,∞)×RN−1, and we consider embeddings of Wg,1 into HN with
some prescribed boundary behaviour.

First of all, we fix a diffeomorphism between a neighbourhood of the bound-
ary with S2n−1 × [0, 1). We then fix an embedding S2n−1 ↪→ RN−1, which
extends to an embedding of S2n−1× [0, 1) ↪→ HN . We do this for all sufficiently
large N , in a way that is compatible with the inclusions HN ↪→ HN+1.

We then let Emb∂(Wg,1,HN ) be the space of embeddings of Wg,1 into HN

that agrees with the above embedding on S2n−1 × [0, ε) for some ε. We then
have

BDiff∂(Wg,1) = colim
N→∞

Emb(Wg,1,HN )/Diff∂(Wg,1).

Heuristically, this is the space of submanifolds of H∞ that are diffeomorphic to
Wg,1 and is standard near the boundary. For this reason, we will also denote
this space by Mg.

To prove the theorem, we need a way to measure the difference between
BDiff∂(Wg,1) and BDiff∂(Wg+1,1), and the technical devices we employ is due
to Quillen (unpublished).

The proof involves a semi-simplicial space K•(Wg,1), which we proceed to
define. The reader must for now believe that this space is in fact important.

Defining this semi-simplicial space requires a bit of preparation. Define H
to be W1,1, but pictured in a different way.1

We fix an embedding of D2n−1 × [0, 1) into H, which we picture as the end
of the tail. We also fix an embedding of R2n−1 × [0, 1) into Wg,1:

· · ·

R2n−1 × [0, 1)

1This is called G in the workshop, because an algebraic analogue of this will also be called
H. Here we shall abuse the luxury of multiple typefaces instead
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With all this preparation, we can now define the semi-simplicial complex
K•(Wg,1).

Definition. K0(Wg,1) is the space of all embeddings φ : H ↪→ Wg,1 such that
under the above diffeomorphisms, φ takes the following form near the boundary:

φ(x, s) = (x+ te1, s),

where e1 ∈ R2n−1 is the basis vector in the 1 direction, t is some fixed constant
(which is, of course, uniquely determined by φ), and this is required to hold on
some D2n−1 × [0, ε) ⊆ H.

· · ·

We define Kp(Wg,1) to be the subset of K0(Wg,1)p+1 consisting of (φ0, . . . φp)
such that the images of the embeddings are disjoint, and the associated ti satisfy
t0 < · · · < tp.

Note that the latter condition only serves to fix an ordering on the ver-
tices. This is necessary since we are working with semi-simplicial spaces, which
demand an ordering on vertices of a simplex.

The main fact we will use about this semi-simplicial space is the following
theorem:

Theorem.
∣∣∣K•(Wg,1)

∣∣∣ is b g−52 c-connected.

This theorem will be proved in the next talk, and the goal of the current
talk is to see how homological stability follows from this.

What does this theorem mean? If g ≥ 4, then in particular, this tells us
the semi-simplicial complex is path-connected. The connected components of
K0(Wg,1) are isotopy classes of embeddings φ : H ↪→ Wg,1. Given any two
vertices φ1, φ2 : H ↪→ Wg,1, there is an edge between them iff the embeddings

are disjoint. So the fact that
∣∣∣K•(Wg,1)

∣∣∣ is connected means given any two

embeddings, we can find a sequence of embeddings starting from φ1 and ending
at φ2, such that each embedding is disjoint from the previous one (or rather, is
isotopic to an embedding that is disjoint from the previous one). One can think
of higher connectivity as telling us how canonical this sequence is.

This observation allows us to quickly prove a number of corollaries:

Corollary (Transitivity). If g ≥ 4 and φ1, φ2 ∈ K0(Wg,1), then there is a
diffeomorphism f : Wg,1 → wg,1 such that φ2 = f ◦ φ1 and f |∂Wg,1

is isotopic
to the identity.
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Proof. We claim this is obvious if they are disjoint. An explicit such diffeomor-
phism is described in the original papers, which we shall not reproduce [GRW12,
Corollary 4.4]. The proof then follows from the previous observation.

Corollary (Cancellation). If φ ∈ K0(Wg,1), then Wg,1 \ φ(H) is diffeomorphic
to Wg−1,1.

Proof. By the previous corollary, we only have to prove this for a “standard”
embedding of H into Wg,1, for which it is “evident”.

We now proceed to prove our main theorem.
Let Xp be the space of submanifolds of H∞ diffeomorphic to Wg,1, together

with p + 1 disjoint embeddings of H into that submanifold (in a way that is
standard at the boundary, as usual). More precisely, we define

Xp = Emb∂(Wg,1,H∞)×Kp(Wg,1)/Diff∂(Wg,1).

Forgetting the second factor leads to a map Xp → Mg whose fiber is

Kp(Wg,1). This is in fact a fiber sequence, which is the same fact as our previous

claim that our explicit model of BDiff∂(Wg,1) is a legitimate model.
Taking geometric realizations, we have a fiber sequence∣∣∣K•(Wg,1)

∣∣∣ |X•|

Mg

and we know the fiber is b g−52 c-connected, and this tells us Hq(X•) ∼= Hq(Mg)
when q is small compared to g.

Now there is a spectral sequence

E1
p,q = Hq(Xp)⇒ Hp+q(|X•|),

and the d1 differential is given by

d1 =
∑

(−1)i(di)∗,

where the di are the face maps.

Claim. Xp ' Mg−p−1 and the di are all (weakly) homotopy to the standard
inclusion Mg−p−1 ↪→Mg−p.

Assuming the claim, the theorem follows immediately. Since all the di’s are
in particular homotopic to each other, the d1 differentials are either 0 or i∗,
depending on the parity of p. So the spectral sequence looks like this:
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H0(Mg−1)

H1(Mg−1)

H2(Mg−1)

H3(Mg−1)

H4(Mg−1)

H0(Mg−2)

H1(Mg−2)

H2(Mg−2)

H3(Mg−2)

H4(Mg−2)

H0(Mg−3)

H1(Mg−3)

H2(Mg−3)

H3(Mg−3)

H4(Mg−3)

H0(Mg−4)

H1(Mg−4)

H2(Mg−4)

H3(Mg−4)

H4(Mg−4)

H0(Mg−5)

H1(Mg−5)

H2(Mg−5)

H3(Mg−5)

H4(Mg−5)

0 i∗ 0 i∗

0 i∗ 0 i∗

0 i∗ 0 i∗

0 i∗ 0 i∗

0 i∗ 0 i∗

By induction on g, we know that the i∗ appearing in the diagram above
are isomorphisms below a line of slope − 1

2 , so in the E2 page, below this line,
the only non-zero entries are Hq(Mg−1) in the first column. Since the spectral
sequence converges to Hp+q(Mg) in low degrees, the theorem follows after some
careful keeping track of indices.

It remains to convince ourselves that our claim is true.

Proof of claim. We first produce the desired map Mg−p−1 ↪→ Xp, and then
show that this is a weak homotopy equivalence. Fix an embedding of Wp+1,2 ↪→
[0, p+ 1]× R∞ equipped with p+ 1 embeddings of H.

· · ·

The map Mg−p−1 ↪→ Xp is obtained by taking a submanifold, translating
in the first coordinate by p + 1, and then adding the copy of Wp+1,2, and the
embeddings of H are the ones we have fixed in the Wp+1,2.

We claim this map is a weak homotopy equivalence. Observe that this map
is a homeomorphism onto the subspace of Xp consisting of submanifolds and
embeddings such that the intersection with [0, p+ 1]×R∞ is our standard copy
of Wp+1,2 with the standard p+ 1 embeddings of H.

The first step we take is also the non-obvious step. There is a projection
map

Xp → Emb∂
(∐

p+1
H,H∞

)
that picks out the embeddings of H. The point is that this is a fibration whose
target is contractible, so the inclusion of the fiber into Xp is a weak homotopy
equivalence.
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The fiber consists of submanifolds and embeddings such that the embed-
dings are “standard”. Noticing that the image of the embeddings (plus a small
neighbourhood of the boundary component at {0} × R∞) is isotopy equivalent
to the whole Wp+1,2, it is not difficult to see that we can deform any compact
family of submanifolds (and embeddings) in the fiber to ones contained in the
image of Mg−p−1, thereby completing the proof of the first part.

Recall that di : Xp → Xp−1 is obtained by forgetting the ith embedding of
H. Therefore, the following diagram commutes essentially by definition:

Mg−p−1 Xp

Mg−p Xp−1

∼

i dp

∼

.

One then sees that there is an isotopy from our embedding Wp+1,2 ↪→ [0, p+1]×
R∞ to an embedding with the same image but swaps two adjacent embeddings
of H. This then provides a homotopy between the composites

Mg−p−1 Xp Xp−1
∼ di .

This completes the proof.
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