Talk 6: Prepping for surgery

Speaker: TJ Warner

In the previous talk we had a map $\mathcal{D}_{\bullet,\bullet}^{\kappa} \to \mathcal{D}_{\bullet}^{\kappa-1}$, and a theorem saying that it induces a weak homotopy equivalence after geometric realization. The purpose of this talk is to explore more of the proof of this result.

Let $X = (W, t, \varepsilon) \in \mathcal{D}^{\kappa-1}$. Define a (semi-)simplicial set $Z_{\bullet}(X)$ by

$$\begin{split} &Z_0(X) = \{ \text{surgery data } (\Lambda, \delta, e : \Lambda \times V \to \mathbb{R}^\infty) \text{ for } X \}, \\ &Z_p(X) = \{ (q+1) - \text{tuples of disjoint surgery data} \}, \end{split}$$

where face operators are given by forgetting entries from the tuples. Rephrasing the definition in the previous talk,

$$\mathcal{D}_{p,q}^{\kappa} = \left\{ (x,y) \mid x \in \mathcal{D}_p^{\kappa-1}, y \in Z_q(x) \right\}.$$

Remark. Since pairwise disjoint disjointedness can be detected by the 1-simplices, much of the information we want is contained in the 1-skeleton.

Definition 1. A simplicial space X_{\bullet} is said to be *augmented* if we have a space X_{-1} and a map $X_0 \xrightarrow{\varepsilon} X_{-1}$ such that $\varepsilon \circ d_0 = \varepsilon \circ d_1$.

Note that any simplicial space has the trivial augmentation map with $X_{-1} = \{*\}$. Our particular case of interest will be the augmented simplicial space $\mathcal{D}_{p,\bullet}^{\kappa} \to \mathcal{D}_p^{\kappa-1}$.

Definition 2. An augmented topological flag complex (ATFC) $X_{\bullet} \to X_{-1}$ is an augmented simplicial space X_{\bullet} satisfying

- 1. $X_n \to X_0 \times_{X_{-1}} \cdots \times_{X_{-1}} X_0$ is a homeomorphism onto its image, which is open.
- 2. $(v_0, \ldots, v_n) \in X_0 \times_{X_{-1}} \cdots \times_{X_{-1}} X_0$ is in X_n if $(v_i, v_j) \in X_1$ for all i < j.

Think about the second condition as a 'triangle-filling condition'. Of course, our augmented simplicial space $\mathcal{D}_{p,\bullet}^{\kappa} \to \mathcal{D}_p^{\kappa-1}$ is an ATFC.

Theorem 1. (6.2 in [GRW14]) Let $X_{\bullet} \to X_{-1}$ be an ATFC and suppose that

- i) $\varepsilon: X_0 \to X_{-1}$ has local sections,
- ii) ε is surjective,
- iii) for all $p \in X_{-1}$ and for all nonempty finite $\{v_1, \ldots, v_n\} \subset \varepsilon^{-1}(p)$, there exists $v \in \varepsilon^{-1}(p)$ such that $(v_i, v) \in X_1$ for all *i*.

Then $||X_{\bullet}|| \to X_{-1}$ is a weak homotopy equivalence.

We want to obtain a level-wise weak equivalence $\|\mathcal{D}_{p,\bullet}^{\kappa}\| \xrightarrow{\sim} \mathcal{D}_{p}^{\kappa-1}$. Instead of applying the previous result directly, we want to make a slight modification of the simplicial spaces in question. Let $\tilde{Z}_{\bullet}(X)$ consist of surgery data (Λ, δ, e) with a softened condition: e is only required to be an embedding in a neighborhood of $C = [0, 2] \times D^{\kappa} \times \{0\} \subset [0, 2] \times \mathbb{R}^{\kappa} \times \mathbb{R}^{d-\kappa}$. We call C the *core*. There is a corresponding $\tilde{\mathcal{D}}_{\bullet,\bullet}^{\kappa}$ defined using \tilde{Z}_{\bullet} .

Figure 1: The core $C \subset \overline{V}$ in light blue.

Claim. $\tilde{\mathcal{D}}^{\kappa}_{\bullet,\bullet} \leftarrow \mathcal{D}^{\kappa}_{\bullet,\bullet}$ is a weak homotopy equivalence after geometric realization.

Using the theorem above, the map $\tilde{\mathcal{D}}_{\bullet,\bullet}^{\kappa} \to \mathcal{D}_{\bullet}^{\kappa-1}$ given by $(W,t,\varepsilon), (\Lambda,\zeta,e) \to (W,t,\varepsilon)$ yields a weak equivalence $\|\tilde{\mathcal{D}}_{p,\bullet}^{\kappa}\| \to \mathcal{D}_{p}^{\kappa-1}$. For this we shall need the hypotheses $2\kappa \leq d-1$ and $\kappa+1+d < N$. Let us sketch how the conditions i), ii) and iii) are verified.

First one would like to check that $\tilde{\mathcal{D}}_{p,0}^{\kappa} \to \mathcal{D}_p^{\kappa-1}$ has local sections. The idea here is to consider $(W,t,\varepsilon) \in \mathcal{D}_p^{\kappa-1}$ and $s_0 < t_0 - \varepsilon$, $s_1 > t_p + \varepsilon$ regular values for $x_1 : W \to \mathbb{R}$ such that $(x_1 \circ e)(\Lambda \times \overline{V}) \subset (s_0, s_1)$. One takes a neighborhood $U \subset \mathcal{D}_p^{\kappa-1}$ where the restriction of each manifold over $[s_0, s_1]$ is diffeomorphic to $M = W|_{[s_0, s_1]}$ and so define a map $F : U \to \operatorname{Emb}_{\partial}(M, [s_0, s_1] \times (-1, 1)^N) / \operatorname{Diff}(M)$. This map can be lifted to $\tilde{F} : U \to \operatorname{Emb}_{\partial}(M, [s_0, s_1] \times (-1, 1)^N)$. To take care of surgery data there is a way to get $\varphi : U \to \operatorname{Diff}([s_0, s_1] \times (-1, 1)^N)$ (possibly reducing U) such that $\tilde{F}(u)$ is obtained from $W|_{[s_0, s_1]}$ by applying φ . A local section will be then given by

$$u = (W, t, \varepsilon) \mapsto (\tilde{F}(u), t, \varepsilon), (\Lambda, \delta, \varphi(u) \circ e).$$

The second condition to check is the surjectivity of $\tilde{\mathcal{D}}_{p,0}^{\kappa} \to \mathcal{D}_p^{\kappa-1}$. Fix $(W,t,\varepsilon) \in \mathcal{D}_p^{\kappa-1}$. We need to show that $\tilde{Z}_0(W,t,\varepsilon)$ is non-empty. To find the discs where surgery is to be performed, let X be a finite relative CW-complex having only cells of dimension $\geq \kappa$ such that $(X,W|_{t_i}) \xrightarrow{\sim} (W|_{[t_{i-1},t_i]},W|_{t_i})$ is a weak equivalence. Here the right hand side is $(\kappa - 1)$ -connected. We can take the κ -cells and consider the diagram

By dimension considerations, each map $(D^{\kappa}, \partial D^{\kappa}) \to (W|_{[t_{i-1}, t_i]}, W|_{t_i})$ can be deformed to be an embedding. We need to be able to extend the embedding of $\partial_- D^{\kappa+1}$ such that what lives over zero is sent 'all the way to the right'. This can be done because W is $(\kappa - 1)$ -connected relative to the outgoing boundary. By the assumptions on dimension, we can use a similar general position argument to show that this embedding can be extended in a 'nice' way so that it defines an embedding in a neighborhood of $[-2,0] \times \mathbb{R}^{\kappa} \times \{0\}$, and extend once again to the whole \overline{V} in a way that it satisfies the defining conditions of surgery data. The surjectivity of $\mathcal{D}_{p,0}^{\kappa} \to \mathcal{D}_p^{\kappa-1}$ follows.

To conclude we see how condition iii) holds. Fix $X = (W, t, \varepsilon)$ and $v_1, \ldots, v_k \in \tilde{Z}_0(X)$. We need to find $v \in \tilde{Z}_0(X)$ such that v_i and v are disjoint. The idea is to take initially $v = v_1$ and deform the embeddings to force trasversality with the cores of the v_i 's. Once again, under our assumptions on the dimension, this transversality is just the disjointness we are looking for.

References

[GRW14] Søren Galatius and Oscar Randal-Williams. Stable moduli spaces of high-dimensional manifolds. Acta Math., 212(2):257–377, 2014.