Talk 5

Speaker: Jan Steinebrunner

This talk follows the ideas in [GRW14]. Let \mathcal{C} be the cobordism category as defined in previous talks.
Definition 1. We define the subcategory $\mathcal{C}^{\kappa} \subset \mathcal{C}$ having morphisms (W, t) with $W \subset[0, t]$ such that (W, W_{t}) is κ-connected.

Example

- The category \mathcal{C}^{-1} is no other than \mathcal{C} itself.
- The category \mathcal{C}^{0} is the subcategory of \mathcal{C} for which every component of every morphism is required to have non-empty boundary. This was denoted by D in previous talks.

Figure 1: A morphism in \mathcal{C}^{0}
These subcategories define a filtration

$$
\mathcal{C}=\mathcal{C}^{-1} \supset \mathcal{C}^{0} \supset \mathcal{C}^{1} \supset \cdots
$$

Theorem 1. Suppose that $2 \kappa \leq d-2$ and $k+1+d \leq N$. Then the inclusion induces a weak homotopy equivalence

$$
\left\|\mathcal{C}^{\kappa}\left(\mathbb{R}^{N}\right)\right\| \xrightarrow{\sim}\left\|\mathcal{C}^{\kappa-1}\left(\mathbb{R}^{N}\right)\right\|
$$

From now on, we will assume $N=\infty$ for simplicity. A version with tangential structures is true also, but we will not be concerned with this in the current talk.

To get a first idea of the proof of the theorem, let us sketch how to go from $\mathcal{C}^{-1}=\mathcal{C}$ to \mathcal{C}^{0} :

1. Take some morphism in \mathcal{C}^{-1}, say (W, t). The components of W may or may not have outgoing boundary.
2. Choose some points and corresponding disjoint paths in W. Each path goes from the chosen point to some point in $\{t\} \times \mathbb{R}^{\infty}$. The collection of chosen points must have at least one element from each component without outgoing boundary, in order to guarantee the desired connectedness. As a fact, the space of such choices is contractible. That is the content of the next lecture.
3. Do surgery by pulling the bordism along the paths for $r \in[0,1]$, obtaining a parameterized family W^{r} such that $W^{0}=W$ and $W^{1} \in \mathcal{C}^{0}$. As a warning note, the manifold W^{r} constructed this way will not be an allowed morphism in \mathcal{C}^{-1} for $0<r<1$. We shall see later how to circumvent this difficulty.
4. Do this consistently to obtain

which tells us that $\left\|\mathcal{C}^{0}\right\| \subset\left\|\mathcal{C}^{-1}\right\|$ is a deformation retract.

Figure 2: Going from \mathcal{C}^{-1} to \mathcal{C}^{0}

Definition 2. The category \mathcal{D}^{κ} is the poset with elements (t, ε, W) with $t \in \mathbb{R}, \varepsilon>0, W \in \Psi(\mathbb{R} \times$ $\left.(-1,1)^{\infty}\right)$, and such that $(t-\varepsilon, t+\varepsilon)$ consists of regular values of $x_{1}: W \rightarrow \mathbb{R}$. The ordering is given by $(a, \varepsilon, V)<\left(a, \varepsilon^{\prime}, W\right)$ if and only if $V=W, a+\varepsilon<b-\varepsilon^{\prime}$ and $\left(\left.W\right|_{[a, b]}, W_{b}\right)$ is κ-connected. We also define $\mathcal{D}_{p}^{\kappa}:=N_{p} \mathcal{D}^{\kappa}$.

Example The left hand side in the figure below illustrates an element of \mathcal{D}_{2}^{-1} which is not in \mathcal{D}_{2}^{0}. That is because the morphism lying over $\left[t_{1}, t_{2}\right]$ has a component with no outgoing boundary. If we moved t_{1} to the right as in the right hand side, it would now belong to \mathcal{D}_{2}^{0}.

Figure 3: An element of \mathcal{D}_{2}^{-1} and an element of \mathcal{D}_{2}^{0}.

Let $V=(-2,0) \times \mathbb{R}^{\kappa} \times \mathbb{R}^{d-\kappa}$ and denote $h: \bar{V} \rightarrow[-2,0]$ the projection onto the first factor. Also let $P_{0}=\partial_{-} D^{\kappa+1} \times \mathbb{R}^{d-\kappa}$, where ∂_{-}is the lower hemisphere of the boundary of the unit disk. We want to use these pictures to define the surgery data: It consists of an embedding e of V and $e\left(P_{0}\right)$ is the intersection of a given bordism (i.e. a 1 -simplex in the nerve of D^{-1}) with the image of V.

Figure 4: $P_{0} \subset \bar{V}$ for $\kappa=1, d=1$ (on the left) and $\kappa=0, d=2$ (on the right).

Definition 3. Let $x=(t, \varepsilon, W) \in \mathcal{D}_{p}^{\kappa-1}$. Then a surgery datum for x is Λ a finite set together with $e: \Lambda \times V \hookrightarrow \mathbb{R} \times \mathbb{R}^{\infty}$ and $\delta: \Lambda \rightarrow\{0, \ldots, p+1\}$, such that for each λ
i) on $e_{\lambda}^{-1}\left(\left(t_{i}-\varepsilon_{i}, t_{i}+\varepsilon_{i}\right)\right), x_{1} \circ e_{\lambda}$ is an affine rescaling of h,
ii) $h^{-1}(-2)$ is sent to $\left(-\infty, t_{0}-\varepsilon_{0}\right)$ by $x_{1} \circ e_{\lambda}$,
iii) $h^{-1}(-3 / 2)$ is sent to $\left(-\infty, t_{i}-\varepsilon_{i}\right)$ by $x_{1} \circ e_{\lambda}$, for $i=\delta(\lambda)$,
iv) $h^{-1}(0)$ is sent to $\left(t_{p}+\varepsilon_{p}, \infty\right)$ by $x_{1} \circ e_{\lambda}$,
v) $e_{\lambda}^{-1}(W)=P_{0}$,
vi) and for all $i \in\{1, \ldots, p+1\},\left(\left.W\right|_{\left[t_{i-1}, t_{i}\right]},\left.W\right|_{t_{i}} \cup \bigcup_{\lambda \in \delta^{-1}(i)} e_{\lambda}\left(P_{0}\right)\right)$ is κ-connected.

Figure 5: A surgery datum for certain W in \mathcal{D}_{1}^{-1}.

Performing a surgery

The idea now is to use a "standard family" P_{t} for $t \in[0,1]$ as illustrated in Figure 6 below. Given $(t, \varepsilon, W) \in \mathcal{D}_{p}^{\kappa-1}$ and surgery data $\left(\Lambda, e: \Lambda \times V \hookrightarrow \mathbb{R} \times \mathbb{R}^{\infty}\right)$, define

$$
K_{e}^{t}(W)=W \backslash e\left(P_{0} \times \Lambda\right) \cup e\left(P_{t} \times \Lambda\right)
$$

Figure 6: The standard family P_{t}.

As t progresses from 0 to $1, K_{e}^{t}(W)$ corresponds to the process illustrated in Figure 2. There is a caveat at this point, however. Even though we start with an element of $\mathcal{D}_{p}^{\kappa-1}$ for $t=0$, there is no guarantee that $K_{e}^{t}(W)$ will stay in $\mathcal{D}_{p}^{\kappa-1}$ for intermediate times. This motivates the following definition.

Definition 4. Let X_{\bullet}^{κ} be the (semi-)simplicial space such that X_{r}^{κ} consists of triples $(t, \varepsilon . W)$ as in $\mathcal{D}_{\bullet}^{\kappa}$ but now isolated singular values are allowed over $(t-\varepsilon, t+\varepsilon)$. Moreover, there is the extra condition that if $b<c$ are regular values in $(t-\varepsilon, t+\varepsilon)$ then $\left(\left.W\right|_{[b, c]}, W_{c}\right)$ is κ-connected.

According to the following lemma, enlarging our category like this does not change much for our purposes. As a remark, the proof makes use of Sard's theorem.

Lemma 1. The inclusion $\mathcal{D}_{\bullet}^{\kappa} \hookrightarrow X_{\bullet}^{\kappa}$ induces an equivalence $\left\|\mathcal{D}_{\bullet}^{\kappa}\right\| \simeq\left\|X_{\bullet}^{\kappa}\right\|$.
Now we proceed to define a bisimplicial space that will be our main technical artifact. It can be thought of as a fibration over $\mathcal{D}^{\kappa-1}$, where the fiber over an element consists of all possible choices of surgery data for such element.

Definition 5. Define a bisimiplicial space $\mathcal{D}_{\bullet, \bullet}^{\kappa}$

$$
\mathcal{D}_{p, q}^{\kappa}=\left\{(x, y) \mid x \in \mathcal{D}_{p}^{\kappa-1}, y=\left(e^{0}, \ldots, e^{q}\right) \text { and } e^{i} \text { are pairwise disjoint surgery data for } x\right\} .
$$

The following result formalizes the idea that these choices of surgery data form a contractible space. The proof is the main topic of the next talk.

Lemma 2. There is an equivalence $\left\|\mathcal{D}_{\bullet, \bullet}^{\kappa}\right\| \simeq\left\|\mathcal{D}_{\bullet}^{\kappa-1}\right\|$.
To conclude the proof of Theorem 1, define a homotopy

$$
\begin{aligned}
\zeta:[0,1] \times \mathcal{D}_{p, q}^{\kappa} \times \Delta^{q} & \rightarrow X_{p}^{\kappa-1} \\
\left(t,\left((a, \varepsilon, W),\left(e^{0}, \ldots, e^{q}\right)\right),\left(s_{0}, \ldots, s_{q}\right)\right) & \mapsto\left(a, \varepsilon, K_{e^{q}}^{t \bar{s}_{q}} \circ K_{e^{q-1}}^{t \bar{s}_{q-1}} \circ \cdots \circ K_{e^{0}}^{t \bar{s}_{0}}(W)\right)
\end{aligned}
$$

where $\bar{s}_{i}=\frac{s_{i}}{\max s_{j}}$. We get a diagram

where $\zeta(0,-)$ is the composite of the equivalences in the two previous lemmas. Thus the vertical arrows are also weak equivalences as desired.

References

[GRW14] Søren Galatius and Oscar Randal-Williams. Stable moduli spaces of high-dimensional manifolds. Acta Math., 212(2):257-377, 2014.

