Talk 5

SPEAKER: Jan Steinebrunner

This talk follows the ideas in [GRW14]. Let \mathcal{C} be the cobordism category as defined in previous talks.

Definition 1. We define the subcategory $\mathcal{C}^{\kappa} \subset \mathcal{C}$ having morphisms (W, t) with $W \subset [0, t]$ such that (W, W_t) is κ -connected.

Example

- The category \mathcal{C}^{-1} is no other than \mathcal{C} itself.
- The category \mathcal{C}^0 is the subcategory of \mathcal{C} for which every component of every morphism is required to have non-empty boundary. This was denoted by D in previous talks.

Figure 1: A morphism in C^0

These subcategories define a filtration

$$\mathcal{C} = \mathcal{C}^{-1} \supset \mathcal{C}^0 \supset \mathcal{C}^1 \supset \cdots$$

Theorem 1. Suppose that $2\kappa \leq d-2$ and $k+1+d \leq N$. Then the inclusion induces a weak homotopy equivalence

$$\|\mathcal{C}^{\kappa}(\mathbb{R}^N)\| \xrightarrow{\sim} \|\mathcal{C}^{\kappa-1}(\mathbb{R}^N)\|.$$

From now on, we will assume $N = \infty$ for simplicity. A version with tangential structures is true also, but we will not be concerned with this in the current talk.

To get a first idea of the proof of the theorem, let us sketch how to go from $\mathcal{C}^{-1} = \mathcal{C}$ to \mathcal{C}^{0} :

- 1. Take some morphism in \mathcal{C}^{-1} , say (W, t). The components of W may or may not have outgoing boundary.
- 2. Choose some points and corresponding disjoint paths in W. Each path goes from the chosen point to some point in $\{t\} \times \mathbb{R}^{\infty}$. The collection of chosen points must have at least one element from each component without outgoing boundary, in order to guarantee the desired connectedness. As a fact, the space of such choices is contractible. That is the content of the next lecture.

- 3. Do surgery by pulling the bordism along the paths for $r \in [0, 1]$, obtaining a parameterized family W^r such that $W^0 = W$ and $W^1 \in C^0$. As a warning note, the manifold W^r constructed this way will not be an allowed morphism in C^{-1} for 0 < r < 1. We shall see later how to circumvent this difficulty.
- 4. Do this consistently to obtain

which tells us that $\|\mathcal{C}^0\| \subset \|\mathcal{C}^{-1}\|$ is a deformation retract.

Figure 2: Going from \mathcal{C}^{-1} to \mathcal{C}^{0}

Definition 2. The category \mathcal{D}^{κ} is the poset with elements (t, ε, W) with $t \in \mathbb{R}$, $\varepsilon > 0$, $W \in \Psi(\mathbb{R} \times (-1, 1)^{\infty})$, and such that $(t - \varepsilon, t + \varepsilon)$ consists of regular values of $x_1 : W \to \mathbb{R}$. The ordering is given by $(a, \varepsilon, V) < (a, \varepsilon', W)$ if and only if V = W, $a + \varepsilon < b - \varepsilon'$ and $(W|_{[a,b]}, W_b)$ is κ -connected. We also define $\mathcal{D}_p^{\kappa} := N_p \mathcal{D}^{\kappa}$.

Example The left hand side in the figure below illustrates an element of \mathcal{D}_2^{-1} which is not in \mathcal{D}_2^0 . That is because the morphism lying over $[t_1, t_2]$ has a component with no outgoing boundary. If we moved t_1 to the right as in the right hand side, it would now belong to \mathcal{D}_2^0 .

Figure 3: An element of \mathcal{D}_2^{-1} and an element of \mathcal{D}_2^0 .

Let $V = (-2, 0) \times \mathbb{R}^{\kappa} \times \mathbb{R}^{d-\kappa}$ and denote $h : \overline{V} \to [-2, 0]$ the projection onto the first factor. Also let $P_0 = \partial_- D^{\kappa+1} \times \mathbb{R}^{d-\kappa}$, where ∂_- is the lower hemisphere of the boundary of the unit disk. We want to use these pictures to define the surgery data: It consists of an embedding e of V and $e(P_0)$ is the intersection of a given bordism (i.e. a 1-simplex in the nerve of D^{-1}) with the image of V.

Figure 4: $P_0 \subset \overline{V}$ for $\kappa = 1$, d = 1 (on the left) and $\kappa = 0$, d = 2 (on the right).

Definition 3. Let $x = (t, \varepsilon, W) \in \mathcal{D}_p^{\kappa-1}$. Then a surgery datum for x is Λ a finite set together with $e : \Lambda \times V \hookrightarrow \mathbb{R} \times \mathbb{R}^{\infty}$ and $\delta : \Lambda \to \{0, \ldots, p+1\}$, such that for each λ

- i) on $e_{\lambda}^{-1}((t_i \varepsilon_i, t_i + \varepsilon_i)), x_1 \circ e_{\lambda}$ is an affine rescaling of h,
- ii) $h^{-1}(-2)$ is sent to $(-\infty, t_0 \varepsilon_0)$ by $x_1 \circ e_{\lambda}$,
- iii) $h^{-1}(-3/2)$ is sent to $(-\infty, t_i \varepsilon_i)$ by $x_1 \circ e_{\lambda}$, for $i = \delta(\lambda)$,
- iv) $h^{-1}(0)$ is sent to $(t_p + \varepsilon_p, \infty)$ by $x_1 \circ e_{\lambda}$,
- v) $e_{\lambda}^{-1}(W) = P_0,$
- vi) and for all $i \in \{1, \ldots, p+1\}$, $\left(W|_{[t_{i-1}, t_i]}, W|_{t_i} \cup \bigcup_{\lambda \in \delta^{-1}(i)} e_{\lambda}(P_0)\right)$ is κ -connected.

Figure 5: A surgery datum for certain W in \mathcal{D}_1^{-1} .

Performing a surgery

The idea now is to use a "standard family" P_t for $t \in [0,1]$ as illustrated in Figure 6 below. Given $(t,\varepsilon,W) \in \mathcal{D}_p^{\kappa-1}$ and surgery data $(\Lambda, e: \Lambda \times V \hookrightarrow \mathbb{R} \times \mathbb{R}^{\infty})$, define

$$K_e^t(W) = W \setminus e(P_0 \times \Lambda) \cup e(P_t \times \Lambda).$$

Figure 6: The standard family P_t .

As t progresses from 0 to 1, $K_e^t(W)$ corresponds to the process illustrated in Figure 2. There is a caveat at this point, however. Even though we start with an element of $\mathcal{D}_p^{\kappa-1}$ for t = 0, there is no guarantee that $K_e^t(W)$ will stay in $\mathcal{D}_p^{\kappa-1}$ for intermediate times. This motivates the following definition.

Definition 4. Let X^{κ}_{\bullet} be the (semi-)simplicial space such that X^{κ}_{r} consists of triples $(t, \varepsilon.W)$ as in $\mathcal{D}^{\kappa}_{\bullet}$ but now isolated singular values are allowed over $(t - \varepsilon, t + \varepsilon)$. Moreover, there is the extra condition that if b < c are regular values in $(t - \varepsilon, t + \varepsilon)$ then $(W|_{[b,c]}, W_c)$ is κ -connected.

According to the following lemma, enlarging our category like this does not change much for our purposes. As a remark, the proof makes use of Sard's theorem.

Lemma 1. The inclusion $\mathcal{D}^{\kappa}_{\bullet} \hookrightarrow X^{\kappa}_{\bullet}$ induces an equivalence $\|\mathcal{D}^{\kappa}_{\bullet}\| \simeq \|X^{\kappa}_{\bullet}\|$.

Now we proceed to define a bisimplicial space that will be our main technical artifact. It can be thought of as a fibration over $\mathcal{D}^{\kappa-1}$, where the fiber over an element consists of all possible choices of surgery data for such element.

Definition 5. Define a bisimiplicial space $\mathcal{D}_{\bullet,\bullet}^{\kappa}$

 $\mathcal{D}_{p,q}^{\kappa} = \left\{ (x,y) \mid x \in \mathcal{D}_p^{\kappa-1}, y = (e^0, \dots, e^q) \text{ and } e^i \text{ are pairwise disjoint surgery data for } x \right\}.$

The following result formalizes the idea that these choices of surgery data form a contractible space. The proof is the main topic of the next talk.

Lemma 2. There is an equivalence $\|\mathcal{D}_{\bullet,\bullet}^{\kappa}\| \simeq \|\mathcal{D}_{\bullet}^{\kappa-1}\|$.

To conclude the proof of Theorem 1, define a homotopy

$$\zeta: [0,1] \times \mathcal{D}_{p,q}^{\kappa} \times \Delta^{q} \to X_{p}^{\kappa-1}$$
$$(t, ((a,\varepsilon, W), (e^{0}, \dots, e^{q})), (s_{0}, \dots, s_{q})) \mapsto (a,\varepsilon, K_{e^{q}}^{t\bar{s}_{q}} \circ K_{e^{q-1}}^{t\bar{s}_{q-1}} \circ \dots \circ K_{e^{0}}^{t\bar{s}_{0}}(W))$$

where $\bar{s}_i = \frac{s_i}{\max s_i}$. We get a diagram

where $\zeta(0, -)$ is the composite of the equivalences in the two previous lemmas. Thus the vertical arrows are also weak equivalences as desired.

References

[GRW14] Søren Galatius and Oscar Randal-Williams. Stable moduli spaces of high-dimensional manifolds. Acta Math., 212(2):257–377, 2014.