2 Spaces of not-necessarily compact embedded manifolds

Speaker: Kevin

2.1 INTRODUCTION

Recall that a tangential structure is the RHS below

and θ -structure on a vector bundle $E \to M$ is a bundle map above.

Write $\mathcal{C}_{d(\theta)}(\mathbb{R}^n)$ be the category with objects $M^{d-1} \subset \mathbb{R}^n$ (and a θ -structure on $TM \oplus \varepsilon^1$) and morphisms cobordisms W (with a θ -structure)

Theorem. There is a weak-homotopy equivalence

$$B\mathcal{C}_d \xrightarrow{\sim} \Omega^{\infty - 1} MTO(d)$$
$$B\mathcal{C}_{d,\theta} \xrightarrow{\sim} \Omega^{\infty - 1} MT\theta(d)$$

The sketch we will follow is a modification of the original theorem [GRW10]. We will define $\Psi_{d,\theta}(\mathbb{R}^n), \psi_{d,\theta}(n,1)$ and show that

Theorem (3.22 of [GRW10]). $\Psi_{d,\theta}(\mathbb{R}^n) \simeq \text{Th}(\theta_n^* \gamma_{d,n}^{\perp})$ where

$$\begin{array}{c} X(\mathbb{R}^n) & \longrightarrow & X \\ & \downarrow^{\theta_n} & \downarrow^{\theta} \\ \operatorname{Gr}_d(\mathbb{R}^n) & \longrightarrow & BO(d) = \operatorname{Gr}_d(\mathbb{R}^n) \end{array}$$

Theorem (3.9 and 3.10). $B\mathcal{C}_{d,\theta}(\mathbb{R}^n) \xrightarrow{\sim} \psi_{d,\theta}(n,1)$

To prove the main result, we need $\psi_{d,\theta}(n,1) \simeq \Omega^{n-1} \Psi_{d,\theta}(\mathbb{R}^n)$ which will be discussed in the next talk.

2.2 Spaces of submanifolds

Definition. $\Psi_{d,\theta}(\mathbb{R}^n)$ consists of pairs (M,ℓ) where $M^d \subset \mathbb{R}^n$ is a smooth manifold and ℓ is a θ -structure on M with a certain topology.

Intuitive description: smooth deformations are ok, and we can also 'push things off to infinity.' A sequence of manifolds converges to a manifold if on all compact subsets K of \mathbb{R}^n , they converge to the same germ (i.e. intersection with an open neighborhood of K).

Example. Consider $\{t\} \times \mathbb{R} \subset \mathbb{R}^2$. As $t \to \pm \infty$, $\{t\} \times \mathbb{R} \to \emptyset$. Why is this true? because it is true on a neighborhood of any compact $K \subset \mathbb{R}^2$.

Question. Why the funky definition? What we really want is a topological sheaf $\Psi_d(-)$.

Smooth maps $f: X \to \Psi_d(\mathbb{R}^n)$ where X a smooth manifold. Form the graph

$$\Gamma(f) = \bigcup_{x \in X} \{x\} \times f(x) \subset X \times \mathbb{R}^n$$

f is smooth if $\Gamma(f)$ is smooth, closed as a subspace of \mathbb{R}^n and $\pi : \Gamma(f) \to X$ is a submersion. Example. (n=1, d=0) $f : \mathbb{R} \to \Psi_d(\mathbb{R})$ such that $\Gamma(f)$ looks like one component of the graph of $\tan(x)$. $X = \mathbb{R}$

Non-example. Same thing but with vertical tangency (i.e. near 0, the graph behaves like $\sqrt[3]{x}$) – not a submersion near 0.

2.3 PROOF OF THEOREM 3.22

(going to do this without θ -structure, and including θ -structures is 'not that hard')

Consider $\Psi_{d,\theta}(\mathbb{R}^n)^{\circ} \subset \Psi_{d,\theta}(\mathbb{R}^n)$ the subspace of submanifolds which pass through the origin. We want a deformation retraction $\Psi_{d,\theta}(\mathbb{R}^n)^{\circ} \to L^{\theta} = \operatorname{Gr}_d(\mathbb{R}^n) + \theta$ -structure. Dilate/zoom in to origin so that we are left with the tangent plane at the origin.³

We have a normal bundle $\nu \to \psi_d(\mathbb{R}^n)^\circ$ where the fiber over M is the normal space to T_0M . We have an embedding

$$e: \{\text{open nbd of the zero section}\} \hookrightarrow \Psi_d(\mathbb{R}^n)$$

 $(M, v) \mapsto M + v$

So C = complement of the image of e contracts to the empty set \emptyset . Therefore we have $\text{Th}(\nu \to \psi_d(\mathbb{R}^n)^\circ) = \psi_d(\mathbb{R}^n)$. We have a diagram in which the lower horizontal arrow is a cofibration (because pushouts preserve cofibrations)

$$\nu \cap e^{-1}(C) \longrightarrow \nu$$

$$\downarrow^{e} \qquad \qquad \downarrow^{e}$$

$$C \simeq * \longrightarrow \psi_{d}(\mathbb{R}^{n})$$

and $\psi_d(\mathbb{R}^n)/C \simeq \psi_d(\mathbb{R}^n) \simeq \nu/\nu \cap e^{-1}(C) \simeq \operatorname{Th}(C).$

2.4 $\psi_d(n,1) \subset \Psi_d(\mathbb{R}^n)$

Definition. Let $\psi_d(n, 1)$ consist of those M which are contained in $\mathbb{R} \times (-1, 1)^{n-1}$ and still closed as a subset of \mathbb{R}^n .

Give $\psi_d(n, 1)$ the subspace topology.

Remark. • The condition that M be closed as a subset of \mathbb{R}^n means that this is not the same as $\psi_d(\mathbb{R}^n)$ (via the homeomorphism $(-1,1) \cong \mathbb{R}$).

• this looks like cobordisms (all vertical slices are compact) $BC_d \simeq \psi_d(n, 1)$ In order to prove this, we'll use a go between $\mathcal{D}_d(\mathbb{R}^n)$ is a (poset) category with objects subsets of $\mathbb{R} \times \psi_d(n, 1) = \{(t, M) \mid t \text{ is a regular value for } x_1 : M \to \mathbb{R}\}$ and morphisms $(t_0, M) \leq (t_1, M)$ where $t_0 \leq t_1$

³'This is the definition of the derivative, you can tell your calculus students that.'

Claim. $BC_d(\mathbb{R}^n) \simeq BD_d(\mathbb{R}^n)$

Proof. We will define maps $f : \mathcal{C}_d(\mathbb{R}^n) \to \mathcal{D}_d(\mathbb{R}^n)$, g going the other way.

f on objects: $(t, M) \mapsto M \cap x_1^{-1}(t)$ on morphisms: $(t_0 \leq t_1, M) \mapsto M \cap x_1^{-1}([t_0, t_1])$ shifted left by t_0 , then make cylindrical ends (up to homotopy anyways)

g on objects: $M \mapsto M \times \mathbb{R}$ on morphisms: add cylinders to cobordisms on unbounded intervals Note that $f \circ g = id$

 $g \circ f$ takes a morphism in \mathcal{D}_d and 'straightens the ends.' can 'push topology out to infinity, g is a functor on nerves'

It remains to check that $B\mathcal{D}_d \simeq \psi_d(-, 1)$. We have a natural map from LHS to RHS with fibers $B(Reg_M, \leq) \simeq *$ where Reg_M are regular values of x_1 on M.

Formally,

$$\begin{array}{ccc} \partial D^m & \longrightarrow & D^m \\ & & \downarrow^{\hat{f}} & & \downarrow^f \\ B\mathcal{D}_d(\mathbb{R}^n) & \stackrel{u}{\longrightarrow} \psi_d(n,1) \end{array}$$

For all $a \in \mathbb{R}$, let $U_a = \{x \mid f(x) \text{ has a regular value at } a\}$ these are open sets. Sard's theorem says that any $M \in \psi_d(n, 1)$ has a regular value, so $\bigcup U_a = D^m$. Take a finite cover $\bigcup_{i=1}^k U_i = D$. Let λ_i a partition of unity subordinate to the cover $\{U_i\}$ then $g(x) = (\sum_i \lambda_i a_i, f(x))$ where $g: D^m \to B\mathcal{D}_d(\mathbb{R}^n)$ such that $g|_{\partial D^m} \sim \hat{f}$ and $u \circ g = f$.