18 Rational homotopy of $B \operatorname{aut}_{\partial}\left(M_{g, 1}\right)$

Speaker:Foling
Following [BM14]
Worlds: topology/manifolds \rightsquigarrow algebra (dglas) \rightsquigarrow combinatorics, graph complexes

18.1 SETUP

Topology: Here $M_{g, 1}=W_{g, 1}=\#_{g} S^{d} \times S^{d} \backslash D^{2 d}$
In particular dimension $2 d, d-1$-connected, and $\partial M_{g, 1} \cong S^{2 d-1}$. Assume $d \geq 3$ (many things go through for $d \geq 2$ but not all.)

We want to study $X_{g}=B$ aut $_{\partial}\left(M_{g, 1}\right)=$ homotopy autoequivalences fixing ∂ pointwise. And denote $\tilde{X}_{g}=B$ aut $_{\partial, \circ}\left(M_{g, 1}\right)$. Recall from the last talk that we have a fiber sequence (from SES of groups) $\tilde{X}_{g} \rightarrow X_{g} \rightarrow B \pi_{1} X_{g}$

Algebra:

$$
\begin{aligned}
V_{g} & =s^{-1} \tilde{H}_{*}\left(M_{g, 1} ; \mathbb{Q}\right) \in \mathbf{S p}=\mathbf{S} \mathbf{p}_{d-1}^{2(d-1)}=\text { antisymmetric qr v.s. with inner product of degree } 2(d-2) \\
& =s^{d-1} H_{g} \quad=\left(H^{\oplus g}, M, q\right) \text { geometric quadratic module }
\end{aligned}
$$

$\Gamma_{g}=\operatorname{Aut}\left(H_{g}, M, q\right)$
$\mathcal{G}_{g}=\operatorname{Der}_{w_{g}}^{+}\left(\mathbb{L} V_{g}\right)$
$\tilde{X}_{g},\left(M_{g, 1}, \partial M_{g, 1} \cong S^{2 d-1}\right)$ has a rational model given by $\mathcal{G}_{g},\left(\mathbb{L} V_{g}, w_{g}\right)$
We have a stabilization maps, which can mean anything from

$$
\begin{aligned}
& \operatorname{aut}_{\partial}\left(M_{g, 1}\right) \rightarrow \operatorname{aut}_{\partial}\left(M_{g+1,1}\right) \\
& X_{g} \rightarrow X_{g+1} \\
& H_{g} \rightarrow H_{g+1} \\
& \Gamma_{g} \rightarrow \Gamma_{g+1}
\end{aligned}
$$

18.2 MAIN THEOREMS

Theorem. (7.6)
$\sigma_{k}: H_{k}\left(X_{g} ; \mathbb{Q}\right) \rightarrow H_{k}\left(X_{g+1} ; \mathbb{Q}\right)$ is an isomorphism for $g>2 k+4$
Theorem. $H^{*}\left(X_{\infty} ; \mathbb{Q}\right) \cong H^{*}\left(\Gamma_{\infty} ; \mathbb{Q}\right) \otimes H_{C E}^{*}\left(\mathcal{G}_{\infty}\right)^{\Gamma_{\infty}}$ where $X=\operatorname{hocolim}_{g} X_{g}, \Gamma_{\infty}=\operatorname{colim}_{g} \Gamma_{g}$.
Theorem. $C_{*}^{C E}\left(\mathcal{G}_{\infty}\right)_{\Gamma_{\infty}} \cong\left(\Lambda \mathcal{G}^{d}(0), \partial\right)$ where Λ means 'free graded-commutative' and \mathcal{G} is a graph complex

Recall: fiber sequence $\tilde{X}_{g} \rightarrow X_{g} \rightarrow B \pi_{1}\left(X_{g}\right)$ where (1) RHS is geometric and (2) is algebraic
BM 13, 2.12 There's an exact sequence (recall Shruthi's talk) $0 \rightarrow K \rightarrow \pi_{1} X_{g} \rightarrow \Gamma_{g} \rightarrow 0$ where LHS is finite and RHS is arithmetic.
The upshot is that $\pi_{1} X_{g}$ is 'close' to Γ_{g}.
$\Longrightarrow(7.8)$ is rationally perfect \Longrightarrow no extension problem on modules.

Stasheff, 3.10, $3.11 \pi_{*}^{\mathbb{Q}}\left(\tilde{X}_{g}\right) \cong \mathcal{G}_{g}$ as graded Lie algebras.
Definition (bad): $\pi_{*}^{\mathbb{Q}}(X)=\pi_{*+1} X \otimes \mathbb{Q}$. Moreover, $\pi_{1}\left(X_{g}\right)$-equivariant. Action on LHS: π_{1} action on π_{k}. Action on RHS: by action of Γ_{g}.

We glue these together using the universal cover spectral sequence.

$18.3 \quad \Sigma$-mod and \mathcal{L} ie operad

Definition. \mathcal{C} is a Σ-module if for each $k \geq 0$, have $\mathcal{C}(k)$ a graded vector space with a Σ_{k}-action.
An operad is a "composable" Σ-module. [picture of composition in operads where elements are represented as trees]

A cyclic operad is an operad with an action of Σ_{k+1} on $\mathcal{C}(k)$.
[picture of an element of $\mathcal{C}(k)$ as having k inputs +1 output, and Σ_{k+1} acting on the 'leaves']
The $\mathcal{L} i e$ operad $\mathcal{L} i e(k)$ is spanned by Lie polynomials in x_{1}, \ldots, x_{k}.
Example. $\mathcal{L i e}(1)=\mathbb{Z}\left\{x_{1}\right\}$
$\mathcal{L} i e(2)=\mathbb{Z}\left\{\left[x_{1}, x_{2}\right]\right\}$
\vdots
Proposition. \mathcal{L} ie is a cyclic operad. Write $\mathcal{L} i e((n))=\mathcal{L} e(n-1)$
We can associate a Schur functor to a Σ-module \mathcal{C} :

$$
\begin{array}{r}
C: \text { gr. } \mathbf{A b} \rightarrow \text { gr. Ab } \\
H \mapsto \oplus_{k=0}^{\infty} \mathcal{C}(k) \otimes_{\Sigma_{k}} H^{\otimes k}
\end{array}
$$

Examples. - $s H$. Then $S(k)= \begin{cases}\mathbb{Z}[-1] & k=1 \\ 0 & k \neq 1\end{cases}$

- $\Lambda H \Longrightarrow \Lambda(k)=\operatorname{sgn}_{\Sigma_{k}}$
$C_{*}^{C E}(H)=\bigwedge s H$
Definition. $\mathcal{L i e}((V))=s^{-2(d-1)} \oplus_{n \geq 2}\left(\mathcal{L} i e((n)) \otimes_{\Sigma_{n}} V^{\otimes n}\right)$
Proposition (6.6). Have an iso of functors $S p \rightarrow \operatorname{gr} \mathbf{v} \mathbf{s} \operatorname{Der}_{w}(\mathbb{L} V) \cong \mathcal{L i e}((V))$
IDEA $\operatorname{Hom}(V, \mathbb{L} V) \cong V^{*} \otimes \mathbb{L} V \cong V \otimes \mathbb{L} V$.
Recall: $V=V_{g}, \mathcal{G}_{g} \cong \mathcal{L i}^{+}\left(\left(V_{g}\right)\right)$. The upshot is that \mathcal{G}_{g} trivial below degree $d-1$.

18.4 Stability

Recall our tool is universal cover spectral sequence applied to $\tilde{X}_{g} \rightarrow X_{g} \rightarrow B \pi_{1} X_{g}$

Universal cover spectral sequence (is this right?) $E_{p, q}^{2}=H_{p}\left(\pi_{1}\left(X_{g}\right) ; H_{q}\left(\tilde{X}_{g} ; \mathbb{Q}\right)\right) \Longrightarrow$ $H_{p+q}\left(X_{g} ; \mathbb{Q}\right)$

Strategy: show stability/isomorphism on E^{2} page.
Step 1: fiber $H_{q}\left(\tilde{X}_{g} ; \mathbb{Q}\right) \stackrel{2.3}{\cong} H_{q}^{C E}\left(\lambda\left(\tilde{X}_{g}\right)\right)$ because Quillen SS collapses, and RHS is formal, so $\cong H_{q}^{C E}\left(\pi_{*}^{\mathbb{Q}}\left(\tilde{X}_{g}\right)\right) \stackrel{5.5}{\cong} H_{q}^{C E}\left(\mathcal{G}_{g}\right)$
so $E_{p, q}^{2} \cong H_{p}\left(\pi_{1}\left(X_{g}\right) ; H_{q}^{C E}\left(\mathcal{G}_{g}\right)\right) \pi_{1}$-equivariant, compatible with σ.
Step 2: Recall SES of groups $0 \rightarrow k \rightarrow \pi_{1} X_{g} \rightarrow \Gamma_{g} \rightarrow 0$ where the action by (-) is given by projection. Therefore (using finiteness of kernel) $E_{p, q}^{2} \cong H_{p}\left(\Gamma_{g} ; H_{q}^{C E}\left(\mathcal{G}_{g}\right)\right)$

Step 3: (Stability) $\sigma: H_{p}\left(\Gamma_{g} ; H_{q}^{C E}\left(\mathcal{G}_{g}\right)\right) \rightarrow H_{p}\left(\Gamma_{g+1} ; H_{q}^{C E}\left(\mathcal{G}_{g}\right)\right)$ isomorphism for $g>2 p+2 q+4$.

18.5 Polynomial functors

Definition. A functor $P: \mathbf{A b} \rightarrow \mathbf{A b}$ is polynomial of degree $\leq \ell$ where $P(H)=\bigoplus_{k=0}^{\ell} P(k) \otimes_{\Sigma_{k}}$ $H^{\otimes k}$ Schur functor that vanishes above level ℓ

Why do we care?
Theorem (Charney). H_{g}, Γ_{g} as before, P polynomial of degree $\leq \ell$.
$\sigma: H_{p}\left(\Gamma_{g} ; P\left(H_{g}\right)\right) \rightarrow H_{p}\left(\Gamma_{g+1} ; P\left(H_{g+1}\right)\right.$ is iso for $g>2 p+\ell+4$.
Theorem. Vanishing theorem (7.5)

$$
H^{k}\left(\Gamma_{g} ; \mathbb{Q}\right) \otimes P\left(H_{g} \otimes \Gamma_{g}\right) \cong H^{k}\left(\Gamma_{g} ; P\left(H_{g}^{\mathbb{Q}} \otimes \mathbb{Q}\right)\right)
$$

isomorphism for $g>2 k+\ell+4$
Lemma. (7.2)
Fix q

$$
C: H_{g} \mapsto C_{q}^{C E}\left(\mathcal{G}_{g}\right)=C_{q}^{C E}\left(\operatorname{Der} \mathbb{L} S^{d-1} H_{g}\right)=C_{*}^{C E}\left(\mathcal{L} i e\left(\left(S^{d-1} H_{g}\right)\right)\right)
$$

is polynomial of degree $\leq\left\lfloor\frac{3 q}{d}\right\rfloor$
Idea: C is "Taylor."
So what? $H^{*}\left(\Gamma_{g} ; \mathbb{Q}\right) \otimes\left(H_{C E}^{*}\left(\mathcal{G}_{g}\right)\right)^{\Gamma_{g}} \cong H^{*}\left(\Gamma_{g} ; C_{C E}^{q}\left(\mathcal{G}_{g}\right)\right)$ in a range.
prop 7.11: works for $H_{q}^{C E}$ replacing $C_{q}^{C E}$ for $g>2 p+2 q+4$.

18.6 Stable cohomology

18.2 For each $q E^{2}$ of RHS \Longrightarrow LHS.

Fact. 0. (8.5) $H^{*}\left(X_{\infty} ; \mathbb{Q}\right)$ free graded commutative

1. (Borel) $H^{*}\left(\Gamma_{\infty} ; \mathbb{Q}\right) \cong \mathbb{Q}\left[x_{1}, x_{2}, \ldots\right]$
$\left|x_{i}\right|= \begin{cases}? ? & d \text { odd } \\ ? ? & d \text { even }\end{cases}$
2. (GRW) $H^{*}\left(B \operatorname{Diff}_{\partial}\left(M_{g, 1}\right)\right)$
3. by hand, $H^{*}\left(\Gamma_{\infty} ; \mathbb{Q}\right) \rightarrow H^{*}\left(B \operatorname{Diff}_{\partial}\left(M_{g, 1}\right)\right)$ is injective on indecomposables, hence so is $H^{*}\left(\Gamma_{\infty} ; \mathbb{Q}\right) \rightarrow H^{*}\left(X_{\infty}\right)$.
\therefore no differentials

18.7 Graph complex

$\mathcal{G}^{d}(0)$ graph complex. $d=1$ (otherwise just contributes to a degree shift)
$\mathcal{G}^{d}(0)_{k}=\operatorname{cnt}($??) graphs of k vertices, each of degree $k \geq 3$, with orientation on vertices and edges (??) and decoration of vertices by elements of $\mathcal{L} i e$ operad.

The differential $\mathcal{G}^{d}(0)_{k} \rightarrow \mathcal{G}^{d}(0)_{k-1}$ is given by contraction of edges and summing over all of these with signs.

$$
\begin{aligned}
C_{*}^{C E}\left(\mathcal{G}_{\infty}\right)_{\Gamma_{\infty}} & \cong \operatorname{colim}_{g} C_{*}^{C E}\left(\mathcal{G}_{g}\right)_{\Gamma_{g}} \\
& =\operatorname{colim}_{g} C_{*}^{C E}\left(\mathcal{L} i e\left(\left(V_{g}\right)\right)\right)_{\Gamma_{g}} \\
& \cong \operatorname{colim}_{g}\left(\bigwedge s \mathcal{L} i e\left(\left(V_{g}\right)\right)\right)_{\Gamma_{g}} \\
& \cong \underset{g}{\operatorname{colim}}(\bigwedge \widetilde{\mathcal{L i e}})(n) \otimes_{\Sigma_{n}}\left(V_{g}^{\otimes n}\right)_{\text {Aut } V_{g}} \\
& \cong \bigwedge \mathcal{G}^{d}(0)
\end{aligned}
$$

commuting colimits and coinvariants
some 'fundamental theorem'
$\operatorname{colim}_{g}\left(V_{g}^{\otimes n}\right)_{\text {Aut } V_{g}} \cong M_{n} \otimes \operatorname{sgn} n_{\Sigma_{n}}$ at level k where M_{n} is matching (??) on n letters

