RATIONAL HOMOTOPY OF $B \operatorname{aut}_{\partial}(M_{q,1})$ 18

Speaker:Foling

Following [BM14] Worlds: topology/manifolds \rightsquigarrow algebra (dglas) \rightsquigarrow combinatorics, graph complexes

18.1 Setup

TOPOLOGY: Here $M_{g,1} = W_{g,1} = \#_g S^d \times S^d \setminus D^{2d}$ In particular dimension 2d, d-1-connected, and $\partial M_{g,1} \cong S^{2d-1}$. Assume $d \ge 3$ (many things go through for $d \geq 2$ but not all.)

We want to study $X_g = B \operatorname{aut}_{\partial}(M_{g,1}) =$ homotopy autoequivalences fixing ∂ pointwise. And denote $\tilde{X}_g = B \operatorname{aut}_{\partial,\circ}(M_{g,1})$. Recall from the last talk that we have a fiber sequence (from SES of groups) $\tilde{X}_q \to X_q \to B\pi_1 X_q$

ALGEBRA:

 $V_g = s^{-1} \tilde{H}_*(M_{g,1}; \mathbb{Q}) \in \mathbf{Sp} = \mathbf{Sp}_{d-1}^{2(d-1)} =$ antisymmetric qr v.s. with inner product of degree 2(d-2) $=s^{d-1}H_a$ $=(H^{\oplus g},M,q)$ geometric quadratic module

 $\Gamma_g = \operatorname{Aut}(H_g, M, q)$ $\mathcal{G}_g = \operatorname{Der}^+_{w_g}(\mathbb{L}V_g)$

> $\tilde{X}_g, (M_{g,1}, \partial M_{g,1} \cong S^{2d-1})$ has a rational model given by $\mathcal{G}_g, (\mathbb{L}V_g, w_g)$ We have a stabilization maps, which can mean anything from

$$\operatorname{aut}_{\partial}(M_{g,1}) \to \operatorname{aut}_{\partial}(M_{g+1,1})$$

 $X_g \to X_{g+1}$
 $H_g \to H_{g+1}$
 $\Gamma_g \to \Gamma_{g+1}$

18.2 Main Theorems

Theorem. (7.6)

 $\sigma_k: H_k(X_q; \mathbb{Q}) \to H_k(X_{q+1}; \mathbb{Q})$ is an isomorphism for g > 2k + 4

Theorem. $H^*(X_{\infty}; \mathbb{Q}) \cong H^*(\Gamma_{\infty}; \mathbb{Q}) \otimes H^*_{CE}(\mathcal{G}_{\infty})^{\Gamma_{\infty}}$ where $X = \operatorname{hocolim}_{q} X_q$, $\Gamma_{\infty} = \operatorname{colim}_{q} \Gamma_q$.

Theorem. $C^{CE}_*(\mathcal{G}_\infty)_{\Gamma_\infty} \cong (\Lambda \mathcal{G}^d(0), \partial)$ where Λ means 'free graded-commutative' and \mathcal{G} is a graph complex

Recall: fiber sequence $\tilde{X}_q \to X_q \to B\pi_1(X_q)$ where (1) RHS is geometric and (2) is algebraic

BM 13, 2.12 There's an exact sequence (recall Shruthi's talk) $0 \to K \to \pi_1 X_g \to \Gamma_g \to 0$ where LHS is finite and RHS is arithmetic.

The upshot is that $\pi_1 X_q$ is 'close' to Γ_q .

 \implies (7.8) is rationally perfect \implies no extension problem on modules.

Stasheff, 3.10, 3.11 $\pi^{\mathbb{Q}}_{*}(\tilde{X}_{q}) \cong \mathcal{G}_{q}$ as graded Lie algebras.

Definition (bad): $\pi^{\mathbb{Q}}_*(X) = \pi_{*+1}X \otimes \mathbb{Q}$. Moreover, $\pi_1(X_g)$ -equivariant. Action on LHS: π_1 action on π_k . Action on RHS: by action of Γ_g .

We glue these together using the universal cover spectral sequence.

18.3 Σ -mod and $\mathcal{L}ie$ operad

Definition. C is a Σ -module if for each $k \ge 0$, have C(k) a graded vector space with a Σ_k -action. An *operad* is a "composable" Σ -module. [picture of composition in operads where elements are represented as trees]

A cyclic operad is an operad with an action of Σ_{k+1} on $\mathcal{C}(k)$.

[picture of an element of $\mathcal{C}(k)$ as having k inputs +1 output, and Σ_{k+1} acting on the 'leaves']

The $\mathcal{L}ie$ operad $\mathcal{L}ie(k)$ is spanned by Lie polynomials in x_1, \ldots, x_k .

Example. $\mathcal{L}ie(1) = \mathbb{Z}\{x_1\}$ $\mathcal{L}ie(2) = \mathbb{Z}\{[x_1, x_2]\}$:

Proposition. *Lie is a cyclic operad. Write* $\mathcal{L}ie((n)) = \mathcal{L}ie(n-1)$

We can associate a Schur functor to a Σ -module \mathcal{C} :

$$C: \mathbf{gr. Ab} \to \mathbf{gr. Ab}$$
$$H \mapsto \bigoplus_{k=0}^{\infty} \mathcal{C}(k) \otimes_{\Sigma_k} H^{\otimes k}$$

Examples. • sH. Then $S(k) = \begin{cases} \mathbb{Z}[-1] & k = 1 \\ 0 & k \neq 1 \end{cases}$ • $\bigwedge H \implies \Lambda(k) = sgn_{\Sigma_k}$ $C_k^{CE}(H) = \bigwedge sH$

Definition. $\mathcal{L}ie((V)) = s^{-2(d-1)} \oplus_{n \ge 2} (\mathcal{L}ie((n)) \bigotimes_{\Sigma_n} V^{\otimes n})$

Proposition (6.6). *Have an iso of functors* $Sp \to \mathbf{gr} \mathbf{v} \mathbf{s}$ $\operatorname{Der}_w(\mathbb{L}V) \cong \mathcal{L}ie((V))$

IDEA Hom $(V, \mathbb{L}V) \cong V^* \otimes \mathbb{L}V \cong V \otimes \mathbb{L}V$. Recall: $V = V_g, \mathcal{G}_g \cong \mathcal{L}ie^+((V_g))$. The upshot is that \mathcal{G}_g trivial below degree d-1.

18.4 STABILITY

Recall our tool is universal cover spectral sequence applied to $\tilde{X}_g \to X_g \to B\pi_1 X_g$

UNIVERSAL COVER SPECTRAL SEQUENCE (is this right?) $E_{p,q}^2 = H_p(\pi_1(X_g); H_q(\tilde{X}_g; \mathbb{Q})) \implies$ $H_{p+q}(X_g; \mathbb{Q})$

Strategy: show stability/isomorphism on E^2 page.

Step 1: fiber $H_q(\tilde{X}_g; \mathbb{Q}) \stackrel{2.3}{\cong} H_q^{CE}(\lambda(\tilde{X}_g))$ because Quillen SS collapses, and RHS is formal, so $\cong H^{CE}_q(\pi^{\mathbb{Q}}_*(\tilde{X}_g)) \stackrel{5.5}{\cong} H^{CE}_q(\mathcal{G}_g)$

so $E_{p,q}^2 \cong H_p(\pi_1(X_g); H_q^{CE}(\mathcal{G}_g)) \pi_1$ -equivariant, compatible with σ .

Step 2: Recall SES of groups $0 \to k \to \pi_1 X_g \to \Gamma_g \to 0$ where the action by (-) is given by projection. Therefore (using finiteness of kernel) $E_{p,q}^2 \cong H_p(\Gamma_g; H_q^{CE}(\mathcal{G}_g))$ Step 3: (Stability) $\sigma: H_p(\Gamma_g; H_q^{CE}(\mathcal{G}_g)) \to H_p(\Gamma_{g+1}; H_q^{CE}(\mathcal{G}_g))$ isomorphism for g > 2p+2q+4.

18.5 POLYNOMIAL FUNCTORS

Definition. A functor $P : \mathbf{Ab} \to \mathbf{Ab}$ is polynomial of degree $\leq \ell$ where $P(H) = \bigoplus_{k=0}^{\ell} P(k) \otimes_{\Sigma_k} P(k)$ $H^{\otimes k}$ Schur functor that vanishes above level ℓ

Why do we care?

Theorem (Charney). H_q, Γ_q as before, P polynomial of degree $\leq \ell$. $\sigma: H_p(\Gamma_q; P(H_q)) \to H_p(\Gamma_{g+1}; P(H_{g+1}) \text{ is iso for } g > 2p + \ell + 4.$

Theorem. Vanishing theorem (7.5)

$$H^{k}(\Gamma_{q};\mathbb{Q})\otimes P(H_{q}\otimes\Gamma_{q})\cong H^{k}(\Gamma_{q};P(H_{q}^{\mathbb{Q}}\otimes\mathbb{Q}))$$

isomorphism for $g > 2k + \ell + 4$

Lemma. (7.2)Fix q

$$C: H_q \mapsto C_q^{CE}(\mathcal{G}_q) = C_q^{CE}(\operatorname{Der} \mathbb{L}S^{d-1}H_q) = C_*^{CE}(\mathcal{L}ie((S^{d-1}H_q)))$$

is polynomial of degree $\leq \left|\frac{3q}{d}\right|$

Idea: C is "Taylor." So what? $H^*(\Gamma_g; \mathbb{Q}) \otimes (H^*_{CE}(\mathcal{G}_g))^{\Gamma_g} \cong H^*(\Gamma_g; C^q_{CE}(\mathcal{G}_g))$ in a range. prop 7.11: works for H^{CE}_q replacing C^{CE}_q for g > 2p + 2q + 4.

18.6 STABLE COHOMOLOGY

18.2 For each $q E^2$ of RHS \implies LHS.

Fact. 0. (8.5) $H^*(X_{\infty}; \mathbb{Q})$ free graded commutative

1. (Borel) $H^*(\Gamma_{\infty}; \mathbb{Q}) \cong \mathbb{Q}[x_1, x_2, \ldots]$ $|x_i| = \begin{cases} ?? & d \text{ odd} \\ ?? & d \text{ even} \end{cases}$ 2. (GRW) $H^*(B \operatorname{Diff}_{\partial}(M_{q,1}))$ 3. by hand, $H^*(\Gamma_{\infty}; \mathbb{Q}) \to H^*(B \operatorname{Diff}_{\partial}(M_{q,1}))$ is injective on indecomposables, hence so is $H^*(\Gamma_{\infty}; \mathbb{Q}) \to H^*(X_{\infty}).$ \therefore no differentials

18.7 GRAPH COMPLEX

 $\mathcal{G}^d(0)$ graph complex. d = 1 (otherwise just contributes to a degree shift)

 $\mathcal{G}^d(0)_k = \operatorname{cnt}(??)$ graphs of k vertices, each of degree $k \ge 3$, with orientation on vertices and edges (??) and decoration of vertices by elements of $\mathcal{L}ie$ operad.

The differential $\mathcal{G}^d(0)_k \to \mathcal{G}^d(0)_{k-1}$ is given by contraction of edges and summing over all of these with signs.

$$C^{CE}_*(\mathcal{G}_{\infty})_{\Gamma_{\infty}} \cong \underset{g}{\operatorname{colim}} C^{CE}_*(\mathcal{G}_g)_{\Gamma_g}$$

= $\underset{g}{\operatorname{colim}} C^{CE}_*(\mathcal{L}ie((V_g)))_{\Gamma_g}$
$$\cong \underset{g}{\operatorname{colim}} \left(\bigwedge s\mathcal{L}ie((V_g))\right)_{\Gamma_g}$$

$$\cong \underset{g}{\operatorname{colim}} \left(\bigwedge s\widetilde{\mathcal{L}ie}\right)(n) \otimes_{\Sigma_n} (V_g^{\otimes n})_{\operatorname{Aut} V_g}$$

$$\cong \bigwedge \mathcal{G}^d(0)$$

commuting colimits and coinvariants

some 'fundamental theorem'

 $\operatorname{colim}_g(V_q^{\otimes n})_{\operatorname{Aut} V_g} \cong M_n \otimes \operatorname{sgn}_{\Sigma_n}$ at level k where M_n is matching (??) on n letters