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1 The connection. . .

. . . between last talk and everything before it.

Once again we consider a spin manifold W d with ∂W d = Md−1. Why did we want W a spin
manifold?—Because it allowed us to define the “index difference” operator

R+(W )h
inddiff−−−−→ Ω∞+d+1KO

as seen in the previous talk.

1.1 The Action of the Diffeomorphism Group

We have an action Diff∂(W )→ Aut(R+(W )h) by pulling back metrics along diffeomorphisms. For
the tangential structure θ = Spin this gives us a diagram

BDiff∂(W ) BAut(R+(W )h)

Ω∞MTθ

ψ

where ψ is the map given as the composition of BDiff∂(W ) → ΩBCθ ' Ω∞MTθ, which was
discussed in the first part of this workshop (the map from BDiff∂(W ) in the first talk, the latter
one is [GMTW09, Main Theorem]). We want the indicated dashed map to achieve our goal of
understanding R+(W )h better by factorising a known map through it.

Let’s study π1 of the horizontal arrow:

Theorem (Abelianness theorem, [BER17, Thm. 4.1.2]). Let W be compact, spin, simply connected
with ∂W = Sd−1, d ≥ 5. Assume that W is Spin-bordant to Dd rel ∂ and let h◦ = hd−1

◦ be the round
metric on Sd−1. Then the image of

π0(Diff∂(W )) −→ π0(Aut(R+(W )h0))

is abelian.
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We will prove this theorem using the following rather abstract statement about topological
categories, which is of Eckmann–Hilton flavour:

Lemma ([BER17, Lem. 4.1.3]). Let C be a (non-unital) topological category with Obj C = Z, and
suppose we have a topological group G acting equivariantly on the morphism spaces C(m,n) for all
m,n ∈ Z such that

i) C(m,n) = ∅ when n ≤ m
ii) For all m 6= 0, there is um ∈ C(m,m+ 1) such that the composition maps

um ◦ − : C(m+ 1, n) −→ C(m,n) for n > m+ 1

− ◦ um : C(n,m) −→ C(n,m+ 1) for n < m

are homotopy equivalences.
iii) There exists x0 ∈ C(0, 1) such that the composition maps

x0 ◦ − : C(1, n) −→ C(0, n) for n > 1

− ◦ x0 : C(n, 0) −→ C(n, 1) for n < 0

are homotopy equivalences.
iv) G acts trivially on C(m,n) unless m ≤ 0 and n ≥ 1.

Then the action of G commutes up to homotopy on C(0, 1).

Proof. Let f, g ∈ G be elements of the group G. Then there are yf ∈ C(−1, 0) and zf ∈ C(1, 2)
such that

yf ◦ x0 ∼ u−1 ◦ f(x0) ∈ C(−1, 1) and x0 ◦ zf ∼ f(x0) ◦ u1 ∈ C(0, 2)

where “∼” means being equivalent on π0. This can be achieved by letting yf correspond to the
path component of the image of x0 under the homotopy equivalences

x0 ∈ C(0, 1) C(−1, 1) C(−1, 1) C(−1, 0)
u−1◦− f −◦x0

For zf one uses an analogous argument.
Now we show that for f, g ∈ G the maps

fg(− ◦ u−1 ◦ x0 ◦ u1), gf(− ◦ u−1 ◦ x0 ◦ u1) : C(−2, 1) −→ C(−2, 2)

are homotopic.

fg(− ◦ u−1 ◦ x0 ◦ u1) = f(− ◦ u−1 ◦ gx0 ◦ u1)

' f(− ◦ u−1 ◦ x0 ◦ zg)
= (− ◦ u−1 ◦ fx0 ◦ zg)
' (− ◦ yf ◦ x0 ◦ zg)
' · · ·
= gf(− ◦ u−1 ◦ x0 ◦ u1)
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W d T

Figure 1: The manifold W d with T glued onto it

W d T

Figure 2: the manifold, that has C(−2, 3) as its space of psc metrics

Finally, (−◦ u−1 ◦ x0 ◦ u1) : C(−2,−1)→ C(−2, 2) is a homotopy equivalence and therefore the two
maps f, g : C(−2, 2)→ C(−2, 2) are homotopic. Using the the diagram

C(0, 1) C(−2, 2)

C(0, 1) C(−2, 2)

h

u−2◦u−1◦−◦u1

'

h

u−2◦u−1◦−◦u1

'

we see that fg ' gf : C(0, 1)→ C(0, 1) as required.

Proof of the Abelianness Theorem. We define need to define C(m,n). As the group we choose G =
Diffd(W ) and we obviously want C(0, 1) ' R+(W )h◦ .

Now let T = [0, 1] × Sd−1 \ intDd be a cylinder, with a disc removed. Gluing T and W we
get V = W d ∪Sd−1 T as in fig. 1. Via the Corbordism Theorem from the previous talk we have
R+(W )h◦ ' R+(V )h◦,h◦ (by gluing the torpedo metric back into the removed disk), hence we set
C(0, 1) = R+(V )h◦,h◦ and let G act on it by extending the action trivially onto T .

To define C(m,n) in general we attach cylinders of unit length to the two boundary components
as follows: For m ≤ 0 in the first argument we attach the according number of cylinders to the
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“top” of V , for n ≥ 1 in the second argument to the right, see fig. 2 for the idea. If m ≥ n, we
consider the empty set and if both are negative or positive, we only consider the respective cylinder.
In all those cases C(m,n) is the space of psc metrics on that manifold (and in particular empty in
some cases), see [BER17, p. 42] for the actual formula.

Composition is simply given by gluing. The group G = Diff∂(W ) acts on C(n,m) trivially unless
n ≤ 0,m ≥ 1 – in that case the action comes from extending by the identity from W .

We let um ∈ C(m,m + 1) = R+(Sd−1 × [m,m + 1]) be the cylinder metric um = dt2 + hd−1
◦ ,

which fulfils assumption (ii) of the Lemma.
Using the Cobordism Theorem1 one finds x0 ∈ C(0, 1) fulfilling assumption (iii), since V is

cobordant relative to its boundary to Sd−1 × [0, 1].

1.2 Maps into the space of psc metrics R+(W )h

Let’s get back to our diagram from the beginning:

BDiff∂(W ) BAut(R+(W )h)

Ω∞MTSpin

ψ
∃?

We just showed that the horizontal map has abelian image in π1; in particular this implies, that
the commutator subgroup of π0(Diff∂(W )) lies in the kernel of the horizontal map. This implies,
that a suitable dashed map exists if ψ is acyclic (see [HH79, Prop. 3.1]). This idea comes up in the
proof of the following central theorem:

Theorem ([BER17, Thm. B]). Let W d be spin and d = 2n ≥ 6. Fix h ∈ R+(Md−1) and g0 ∈
R+(W d)h. Then there is a map ρ such that the composition

Ω∞+1MTSpin(2n) R+(W )h Ω∞+2n+1KO
ρ inddiffg0

is weakly homotopic2 to an infinite loop space version of the Â-genus

Ω∞+1MTSpin(2n)
ΩÂ2n−−−→ Ω∞+2n+1KO

Remark. There is also a version of Theorem B for odd dimensions, which is called Theorem C in
[BER17] and can be derived from Theorem B via the techniques mentioned in the previous talk.

Remark. Recall that Theorem A says that inddiffg0 is surjective in πk ⊗ Q. It is derived from

Theorem B via a computation of ΩÂ2n on πk ⊗Q. For this workshop we took a different approach
of proving Theorem A, which allows us to circumvent proving Theorem B in its full generality.

However, the following question has to be answered: What is the Â-genus? The bundles V ⊥d,n =

θ∗γd,n → GrSpin
d,n have KO-Thom classes λV ⊥d,n ∈ KO(Th(V ⊥d,n)), which assemble to a spectrum map

MTSpin(d)
λ−d−−→ Σ−dKO

1or rather its corollary about the surgery equivalence from the previous talk, see also [BER17, Thm. 2.3.4]
2two maps are weakly homotopic, if all precompositions with maps from a finite CW complex are homotopic, cf.

[BER17, Def. 1.1.2]
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(see [BER17, Par. 3.8.3]). The map in Theorem B is defined as the associated infinite loop map
Ω∞λ−d = Âd. It can be related to the classical Â-genus by Atiyah, Bott, and Shapiro [ABS64].

We will now prove Theorem B in the case d = 2n = 6 as in [BER17, Par. 4.3.1]. Consider
the simply connected manifold W = D6 (viewed as a spin cobordism ∅  S2n−1) and set Wk =
W#Wk,1. We now apply the following results of Galatius and Randal-Williams

1. ψ is a homology equivalence if g � 0 (first block of this workshop, [GR14])
2. Ω∞MTSpin(6) is simply-connected, which can be extracted from [GR16].

Together they imply, that the map ψ in our diagram

BDiff∂(Wk) BAut(R+(Wk)h)

Ω∞MTSpin(2n)

ψ
g

is acyclic, which finally gives us the dashed map (as discussed above), when passing to the homotopy
colimit as k →∞.

Now there is the fibre bundle

R+(W )h −→ EAut(R+(W )h) −→ BAut(R+(W )h)

which we can pull back using the newly obtained g. The fibre transport associated to this gives us
the map ρ : ΩΩ∞MTSpin(6)→ R+(W )h from Theorem B.

1.3 Index Theory (again)—Further Ingredients for the Proof of Theorem B

Suppose a we have bundle W d → E → X of Riemannian spin manifolds. If we have fibrewise
metrics g with some boundary conditions, we have a family of Dirac operators D/g parametrized by
X. This family defines3 an index class

ind(E, g) ∈ KO−d(X)

It should be noted that X only needs to be paracompact in the model for KO-theory used there;
also there are some technical assumptions needed for W d → E → X.

In particular we get a homotopy class of a map X → Ω∞+dKO. The following diagram compares
the index with the Â-genus, that appeared in Theorem B:

X Ω∞MTSpin(d)

Ω∞+dKO

αE

ind(E,g) Â

Here αE is the Pontrjagin–Thom map of E. Indeed we have:

Theorem (Index-Theorem, [BER17, Thm. 3.8.4]). ind(E, g) and Âd ◦ αE are weakly homotopic.

Remark. This generalises the classical Atiyah–Singer Index Theorem.

In the proof of Theorem B one now uses this index theorem and the so called relative index
construction ([BER17, Cor. 3.5.2]), to get the statement about factorising ΩÂ6.

3see [BER17, Def. 3.2.4]
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