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We’ll sketch the proof of the following theorem as it appears in [Kup17].

Theorem. For d 6= 4, 5, 7 πiBDiff∂(Dd) are finitely generated for all i.

1 Some history

The group Diff∂(Dd) is the most fundamental diffeomorphism group. In the 50’s, Smale conjectured
that there is a homotopy equivalence

SO(d+ 1)
∼
↪→ Diff+(Sd)

where Diff+(Sd) is the orientation preserving diffeomorphisms of Sd.

• d = 1 elementary
• d = 2 proved by Smale
• d = 3 proved by Hatcher
• d = 4 disproved by Watanabe
• d ≥ 5 wrong (even on the level of connected components!) from Kervaire-Milnor

As spaces, there is a homotopy equivalence Diff+(Sd) ' SO(d+ 1)×Diff∂(Dd) and

π0 Diff∂(Dd) = Θd+1/h-cob

where Θd+1 is the group of exotic structures on spheres Sd+1 up to diffeomorphism. Since Θd+1 is
non-trivial in most dimensions, Diff+(Sd) is almost never connected =⇒ Smale’s conjecture fails
horribly.

(Farrell-Hsiáng) showed that

πi Diff∂(Dd)⊗Q =

{
0 if d is even

Ki+2(Z)⊗Q if d is odd

for i < d/6− 7.
We also know that

Kj(Z)⊗Q =

{
0 if if j 6= 1 mod 4

Q otherwise
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2 SEVERAL LEMMAS

Figure 1: Forming an exotic Sd+1 by gluing d + 1-dimensional discs along identity on one half of
the boundary and some element of π0 Diff∂ D

d along other half.

2 Several lemmas

We will only be considering the even dimensional case today. Perhaps later on we’ll talk about the
odd dimensions later but it is harder to do.1

Basic strategy For the manifold M = Wg,1 = #gS
n × Sn \

◦
D2n, consider the delooped Weiss

fiber sequence

BDiff∂(M)→ B Emb
∼=
1/2∂(M,M)→ B(BDiff∂(Dd), \)

and analyze BDiff∂(M) by GRW’s machinery, B Emb
∼=
1/2∂(M,M) by embedding calculus.

We’ll begin by defining three finiteness classes of spaces.

Definition. For each of these classes, we require π0 to be finite. Then for each connected compo-
nent, a space X is in

Fin if π1X finite and πiX finitely generated for i ≥ 2,

Hfin if for any A which is a finitely generated π1X module that is finitely generated as an abelian
group =⇒ H∗(X;A) is finitely generated in each degree,

Πfin if BΠ1(X) is in Hfin and the groups πiX are finitely generated for i ≥ 2.

Fact. We have the following inclusions

Hfin ∩ {π1 finite} = Fin ( Πfin ( Hfin

Furthermore, these inclusions are strict, as witnessed by the spaces S2, S1, S1 ∨ S2 respectively.

Remark (Reason for considering the delooped version of the Weiss fiber sequence). If we have fiber
sequence F → E → B with B, E ∈ Hfin, it does not imply that F ∈ Hfin. An easy example is as
follows: take classifying groups of the short exact sequence 0 → F∞ → F2 → F1 → 0 where Fn =
free (nonabelian) group on n generators. Then both BF1 and BF2 are in Hfin but the same is not
true for BF∞.

1Proved both proofs can be found in [Kup17].
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3 PROOF FOR D EVEN

Lemma.

{finite-type CW complexes} ⊂ Hfin

Definition. We say that two discrete groups G,H differ by finite groups if there exists a zig-zag
of group homomorphisms

G = G0 ← G1 → · · · → Gr = H

where all arrows have finite kernel and cokernel. One can show that for two such groups,

BG ∈ Hfin ⇐⇒ BH ∈ Hfin.

Suppose p : E → B is a Serre fibration. Let A ⊆ B be a subcomplex such that there exists a
(partial) section sA : A→ E to the fibration p−1(A)→ A.

Definition. With the notation as above, define

Γ(E,B;A) = {s : E → B section | s|A = sA}

Lemma. Let B be a finite, connected CW complex. Let F → E
p→ B be a Serre fibration such that

πi(F ) are finitely generated all i. Let A be a non-empty CW-subcomplex of B with a partial section
sA : A→ E. Then,

πiΓ(E,B;A)

is finitely generated for all i.

Proof idea: The proof is by induction on the cells in B \ A. Let Dd be a cell in B \ A. There is a
fibration

Γ(E,B;A ∪Dd)→ Γ(E,B;A)→ Γ(E|Dd , Dd;Sd)

There is a natural homotopy equivalence Γ(E|Dd , Dd;Sd) ' ΩdF , all of whose homotopy groups
are finitely generated. We are done by induction and the long exact sequence of homotopy groups
for fibrations.

3 Proof for d even

We want to prove the following.

Theorem.

B Emb
∼=
1/2∂(M,M) ∈ Hfin

We will separate the proof into two independent steps: π1, πi(i ≥ 2).
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3.1 π1 3 PROOF FOR D EVEN

3.1 π1

Look at the following sequence of homotopy groups induced by the Weiss fiber sequence

π1BDiff(D2n)→ π1BDiff∂(M)→ π1B Emb
∼=
1/2∂(M,M)→ 0

which is equivalent to, π0 Diff(D2n)→ π0 Diff∂(M)→ π0 Emb
∼=
1/2∂(M,M)→ 0

The group π0 Diff(D2n), which equals Θ2n+1, is known to be finite.
We need to show that Bπ0 Diff∂(M) ∈ HFin. This was shown in the last talk (this is an arith-

metic group2.) (Serre, Borel): arithmetic groups are virtually (has finite index subroup satisfying)
of finite type. Therefore, B Emb

∼=
1/2∂(M,M) ∈ Hfin.

3.2 πi for i > 2

Now need to look at B Emb
∼=id
1/2∂(M,M). This is where embedding calculus comes in. To be able

to apply embedding calculus we need to get rid of 1/2, because this is not quite the setting where
embedding calculus is usually applied.

Consider M∗ = M \ 1
2∂M (which is no longer compact). (M, 12∂M) ' (M∗, ∂M∗) is an isotopy

equivalence and embedding calculus can be applied to the embedding space Emb∂(M∗,M∗).

Step 1. Consider embedding calculus tower for M∗. We want to study the basepoint component
of Emb∂(M∗,M∗)0 ' Emb

∼=id
1/2∂(M,M).3 Consider the Taylor tower for the right-hand side.

Emb∂(M∗,M∗)0 Tk Emb∂(M∗,M∗)

Tk−1 Emb∂(M∗,M∗)

T1 Emb∂(M∗,M∗) Imm(M∗,M∗)

T0 Emb∂(M∗,M∗) Map(M∗,M∗)

...

Base case: The space Map(M∗,M∗) is in Hfin. The Smale-Hirsch theorem implies that
Imm(M∗,M∗) = Γ(Iso(TM∗),M∗, ∂M∗) ∈ HFin.

Inductive step: We know that the kth homogeneous layer
Lk Emb∂(M∗,M∗) = hofib (Tk Emb∂(M∗,M∗)→ Tk−1 Emb∂(M∗,M∗)) is given by compactly sup-
ported functions

Γ

(
E,

(
M

k

)
/Σn, nbhd of (missing) fat diagonal and boundary

)
.

2Recall: Γ = π0 Diff∂(M) an arithmetic group if Γ ⊂ G ⊂ GLn(Q) where G is Q-algebraic and Γ ∩ GLn(Q) has
finite index in both Γ and G ∩GLn(Q)

3This is proven by a hands-on geometric argument.
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The fibration E →
(
M
k

)
/Σk has fibers given by the total homotopy fiber of the cubical diagram

Emb(I,M)

where I varies over subsets of {1, 2, . . . , k}. Using the Fulton-MacPherson model for configura-
tion spaces, this implies that the base and fiber are in HFin which then shows that the layers
Tk Emb∂(M∗,M∗) are in HFin.

Finally, the Goodwillie-Klein-Weiss analyticity result in [GW99] applies here, since the handle
dimension of Wg,1 = n ≤ 2n − 3 and dim(Wg,1) = 2n which implies that Emb∂(M∗,M∗) '
T∞ Emb∂(M∗,M∗) is in HFin.

It then remains to show that BDiff∂(Wg,1) is in HFin. For this look at

BDiff∂(Wg,1) B Emb
∼=
1/2∂(M,M) B(BDiff∂(D2n), \)

Ω∞0 MTθ

H∗-iso in range of degrees ≤ g−3
2

where we are choosing θ to be Wg,1 → BSO(2n)〈n〉 θ−→ BSO(2n).
=⇒ BDiff∂(D2n) ∈ HFin. π1 finite implies that ∈ Fin, all π∗ are finitely generated, thereby

finishing the proof.

Remark (by Oscar). There is a missing step in the above proof: we need to say something about
finitely generated π1-modules, we have only shown H∗ is iso for Z-coefficients.

4 Odd-dimensional case

The odd dimensional case is treated similarly, but the manifolds Wg have to be replaced by Hg =
#g(D

n+1×Sn), and the results by GRW get replaced by a theorem due to Botvinnik and Perlmutter
in [BP17]. As their results only hold in odd dimensions greater than 7, the dimensions 5 and 7 have
to be excluded in Kuper’s main theorem.
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