Talbot 2019 Talk 14 - Putting together the pieces

Speaker: Jens Reinhold
Live Tex'd by Lucy Yang
Edited by: Apurva Nakade

April 11, 2019

We'll sketch the proof of the following theorem as it appears in [Kup17].
Theorem. For $d \neq 4,5,7 \pi_{i} B \operatorname{Diff}_{\partial}\left(D^{d}\right)$ are finitely generated for all i.

1 Some history

The group $\operatorname{Diff}_{\partial}\left(D^{d}\right)$ is the most fundamental diffeomorphism group. In the 50 's, Smale conjectured that there is a homotopy equivalence

$$
S O(d+1) \stackrel{\sim}{\hookrightarrow} \mathrm{Diff}^{+}\left(S^{d}\right)
$$

where $\operatorname{Diff}^{+}\left(S^{d}\right)$ is the orientation preserving diffeomorphisms of S^{d}.

- $d=1$ elementary
- $d=2$ proved by Smale
- $d=3$ proved by Hatcher
- $d=4$ disproved by Watanabe
- $d \geq 5$ wrong (even on the level of connected components!) from Kervaire-Milnor

As spaces, there is a homotopy equivalence $\operatorname{Diff}^{+}\left(S^{d}\right) \simeq S O(d+1) \times \operatorname{Diff}_{\partial}\left(D^{d}\right)$ and

$$
\pi_{0} \operatorname{Diff}_{\partial}\left(D^{d}\right)=\Theta_{d+1} / h-\operatorname{cob}
$$

where Θ_{d+1} is the group of exotic structures on spheres S^{d+1} up to diffeomorphism. Since Θ_{d+1} is non-trivial in most dimensions, Diff ${ }^{+}\left(S^{d}\right)$ is almost never connected \Longrightarrow Smale's conjecture fails horribly.
(Farrell-Hsiáng) showed that

$$
\pi_{i} \operatorname{Diff}_{\partial}\left(D^{d}\right) \otimes \mathbb{Q}= \begin{cases}0 & \text { if } d \text { is even } \\ K_{i+2}(\mathbb{Z}) \otimes \mathbb{Q} & \text { if } d \text { is odd }\end{cases}
$$

for $i<d / 6-7$.
We also know that

$$
K_{j}(\mathbb{Z}) \otimes \mathbb{Q}= \begin{cases}0 & \text { if if } j \neq 1 \bmod 4 \\ \mathbb{Q} & \text { otherwise }\end{cases}
$$

Figure 1: Forming an exotic S^{d+1} by gluing $d+1$-dimensional discs along identity on one half of the boundary and some element of π_{0} Diff $_{\partial} D^{d}$ along other half.

2 Several lemmas

We will only be considering the even dimensional case today. Perhaps later on we'll talk about the odd dimensions later but it is harder to do. ${ }^{1}$

Basic strategy For the manifold $M=W_{g, 1}=\#_{g} S^{n} \times S^{n} \backslash D^{\circ}$, consider the delooped Weiss fiber sequence

$$
B \operatorname{Diff}_{\partial}(M) \rightarrow B \mathrm{Emb}_{1 / 2 \partial}^{\underline{\simeq}}(M, M) \rightarrow B\left(B \operatorname{Diff}_{\partial}\left(D^{d}\right), \mathfrak{\natural}\right)
$$

and analyze $B \operatorname{Diff}_{\partial}(M)$ by GRW's machinery, $B \operatorname{Emb}_{1 / 2 \lambda}^{\simeq}(M, M)$ by embedding calculus.
We'll begin by defining three finiteness classes of spaces.
Definition. For each of these classes, we require π_{0} to be finite. Then for each connected component, a space X is in

Fin if $\pi_{1} X$ finite and $\pi_{i} X$ finitely generated for $i \geq 2$,
Hfin if for any A which is a finitely generated $\pi_{1} X$ module that is finitely generated as an abelian group $\Longrightarrow H_{*}(X ; A)$ is finitely generated in each degree,
Π fin if $B \Pi_{1}(X)$ is in Hfin and the groups $\pi_{i} X$ are finitely generated for $i \geq 2$.
Fact. We have the following inclusions

$$
\text { Hfin } \cap\left\{\pi_{1} \text { finite }\right\}=\text { Fin } \subsetneq \Pi \text { fin } \subsetneq \text { Hfin }
$$

Furthermore, these inclusions are strict, as witnessed by the spaces $S^{2}, S^{1}, S^{1} \vee S^{2}$ respectively.
Remark (Reason for considering the delooped version of the Weiss fiber sequence). If we have fiber sequence $F \rightarrow E \rightarrow B$ with $B, E \in \mathbf{H f i n}$, it does not imply that $F \in \mathbf{H f i n}$. An easy example is as follows: take classifying groups of the short exact sequence $0 \rightarrow F_{\infty} \rightarrow F_{2} \rightarrow F_{1} \rightarrow 0$ where $F_{n}=$ free (nonabelian) group on n generators. Then both $B F_{1}$ and $B F_{2}$ are in Hfin but the same is not true for $B F_{\infty}$.

[^0]
Lemma.

$$
\{\text { finite-type } C W \text { complexes }\} \subset \mathbf{H f i n}
$$

Definition. We say that two discrete groups G, H differ by finite groups if there exists a zig-zag of group homomorphisms

$$
G=G_{0} \leftarrow G_{1} \rightarrow \cdots \rightarrow G_{r}=H
$$

where all arrows have finite kernel and cokernel. One can show that for two such groups,

$$
B G \in \mathbf{H f i n} \Longleftrightarrow B H \in \mathbf{H f i n} .
$$

Suppose $p: E \rightarrow B$ is a Serre fibration. Let $A \subseteq B$ be a subcomplex such that there exists a (partial) section $s_{A}: A \rightarrow E$ to the fibration $p^{-1}(A) \rightarrow A$.

Definition. With the notation as above, define

$$
\Gamma(E, B ; A)=\left\{s: E \rightarrow B \text { section }|s|_{A}=s_{A}\right\}
$$

Lemma. Let B be a finite, connected $C W$ complex. Let $F \rightarrow E \xrightarrow{p} B$ be a Serre fibration such that $\pi_{i}(F)$ are finitely generated all i. Let A be a non-empty $C W$-subcomplex of B with a partial section $s_{A}: A \rightarrow E$. Then,

$$
\pi_{i} \Gamma(E, B ; A)
$$

is finitely generated for all i.
Proof idea: The proof is by induction on the cells in $B \backslash A$. Let D^{d} be a cell in $B \backslash A$. There is a fibration

$$
\Gamma\left(E, B ; A \cup D^{d}\right) \rightarrow \Gamma(E, B ; A) \rightarrow \Gamma\left(\left.E\right|_{D^{d}}, D^{d} ; S^{d}\right)
$$

There is a natural homotopy equivalence $\Gamma\left(\left.E\right|_{D^{d}}, D^{d} ; S^{d}\right) \simeq \Omega^{d} F$, all of whose homotopy groups are finitely generated. We are done by induction and the long exact sequence of homotopy groups for fibrations.

3 Proof for d even

We want to prove the following.

Theorem.

$$
B \operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M) \in \mathbf{H f i n}
$$

We will separate the proof into two independent steps: $\pi_{1}, \pi_{i}(i \geq 2)$.

$3.1 \pi_{1}$

Look at the following sequence of homotopy groups induced by the Weiss fiber sequence

$$
\begin{array}{rr}
& \pi_{1} B \operatorname{Diff}\left(D^{2 n}\right) \rightarrow \pi_{1} B \operatorname{Diff}_{\partial}(M) \rightarrow \pi_{1} B \operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M) \rightarrow 0 \\
\text { which is equivalent to, } & \pi_{0} \operatorname{Diff}\left(D^{2 n}\right) \rightarrow \pi_{0} \operatorname{Diff}_{\partial}(M) \rightarrow \pi_{0} \operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M) \rightarrow 0
\end{array}
$$

The group $\pi_{0} \operatorname{Diff}\left(D^{2 n}\right)$, which equals $\Theta_{2 n+1}$, is known to be finite.
We need to show that $B \pi_{0}$ Diff $_{\partial}(M) \in \mathbf{H F i n}$. This was shown in the last talk (this is an arithmetic group ${ }^{2}$.) (Serre, Borel): arithmetic groups are virtually (has finite index subroup satisfying) of finite type. Therefore, $B \mathrm{Emb}_{1 / 2 \partial}^{\cong}(M, M) \in$ Hfin.

$3.2 \pi_{i}$ FOR $i>2$

Now need to look at $B \operatorname{Emb}_{1 / 2 \lambda}^{\simeq i d}(M, M)$. This is where embedding calculus comes in. To be able to apply embedding calculus we need to get rid of $1 / 2$, because this is not quite the setting where embedding calculus is usually applied.

Consider $M^{*}=M \backslash \frac{1}{2} \partial M$ (which is no longer compact). $\left(M, \frac{1}{2} \partial M\right) \simeq\left(M^{*}, \partial M^{*}\right)$ is an isotopy equivalence and embedding calculus can be applied to the embedding space $\operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right)$.

Step 1. Consider embedding calculus tower for M^{*}. We want to study the basepoint component of $\operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right)_{0} \simeq \mathrm{Emb}_{1 / 2 \partial}^{\simeq i d}(M, M) .^{3}$ Consider the Taylor tower for the right-hand side.

Base case: The space $\operatorname{Map}\left(M^{*}, M^{*}\right)$ is in Hfin. The Smale-Hirsch theorem implies that $\operatorname{Imm}\left(M^{*}, M^{*}\right)=\Gamma\left(\operatorname{Iso}\left(T M^{*}\right), M^{*}, \partial M^{*}\right) \in \mathbf{H F i n}$.

Inductive step: We know that the $k^{\text {th }}$ homogeneous layer
$L_{k} \operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right)=\operatorname{hofib}\left(T_{k} \operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right) \rightarrow T_{k-1} \operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right)\right)$ is given by compactly supported functions

$$
\Gamma\left(E,\binom{M}{k} / \Sigma_{n}, \text { nbhd of (missing) fat diagonal and boundary }\right)
$$

[^1]The fibration $E \rightarrow\binom{M}{k} / \Sigma_{k}$ has fibers given by the total homotopy fiber of the cubical diagram

$$
\operatorname{Emb}(I, M)
$$

where I varies over subsets of $\{1,2, \ldots, k\}$. Using the Fulton-MacPherson model for configuration spaces, this implies that the base and fiber are in HFin which then shows that the layers $T_{k} \operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right)$ are in HFin.

Finally, the Goodwillie-Klein-Weiss analyticity result in [GW99] applies here, since the handle dimension of $W_{g, 1}=n \leq 2 n-3$ and $\operatorname{dim}\left(W_{g, 1}\right)=2 n$ which implies that $\operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right) \simeq$ $T_{\infty} \operatorname{Emb}_{\partial}\left(M^{*}, M^{*}\right)$ is in HFin.

It then remains to show that $B \operatorname{Diff}_{\partial}\left(W_{g, 1}\right)$ is in HFin. For this look at

$$
\begin{aligned}
& B \operatorname{Diff}_{\partial}\left(W_{g, 1}\right) \longrightarrow B \operatorname{Emb}_{1 / 2 \partial}^{\simeq}(M, M) \longrightarrow B\left(B \operatorname{Diff}_{\partial}\left(D^{2 n}\right), \mathfrak{\natural}\right) \\
& \quad{ }^{H_{*} \text {-iso in range of degrees } \leq \frac{g-3}{2}} \\
& \Omega_{0}^{\infty} M T \theta
\end{aligned}
$$

where we are choosing θ to be $W_{g, 1} \rightarrow B S O(2 n)\langle n\rangle \xrightarrow{\theta} B S O(2 n)$.
$\Longrightarrow B \operatorname{Diff}_{\partial}\left(D^{2 n}\right) \in$ HFin. π_{1} finite implies that \in Fin, all π_{*} are finitely generated, thereby finishing the proof.

Remark (by Oscar). There is a missing step in the above proof: we need to say something about finitely generated π_{1}-modules, we have only shown H_{*} is iso for \mathbb{Z}-coefficients.

4 Odd-dimensional case

The odd dimensional case is treated similarly, but the manifolds W_{g} have to be replaced by $H_{g}=$ $\#_{g}\left(D^{n+1} \times S^{n}\right)$, and the results by GRW get replaced by a theorem due to Botvinnik and Perlmutter in [BP17]. As their results only hold in odd dimensions greater than 7 , the dimensions 5 and 7 have to be excluded in Kuper's main theorem.

References

[BP17] Boris Botvinnik and Nathan Perlmutter. Stable moduli spaces of high-dimensional handlebodies. Journal of Topology, 10(1):101-163, 2017.
[GW99] Thomas Goodwillie and Michael Weiss. Embeddings from the point of view of immension theory : Part II. Geometry and Topology, 3:103-118, 1999.
[Kup17] Alexander Kupers. Some finiteness results for groups of automorphisms of manifolds. Geom. Topol., 2017.
[Wei99] Michael Weiss. Embeddings from the point of view of immension theory : Part I. Geometry and Topology, 3:67-101, 1999.

[^0]: ${ }^{1}$ Proved both proofs can be found in [Kup17].

[^1]: ${ }^{2}$ Recall: $\Gamma=\pi_{0} \operatorname{Diff}_{\partial}(M)$ an arithmetic group if $\Gamma \subset G \subset G L_{n}(\mathbb{Q})$ where G is \mathbb{Q}-algebraic and $\Gamma \cap G L_{n}(\mathbb{Q})$ has finite index in both Γ and $G \cap G L_{n}(\mathbb{Q})$
 ${ }^{3}$ This is proven by a hands-on geometric argument.

