Talbot 2019 Talk 12 - Weiss Fiber Sequence

Speaker: Apurva Nakade
Live Tex'd by Lucy Yang
Edited by: Apurva Nakade

April 11, 2019

References: [Kup17], [Wei15], [ER17].
Overview of Talks 11-14:
Embedding calculus + Weiss fibration + Homological stability

Notation: D^{n} are discs with boundary, $\operatorname{Diff}_{\partial}(-)=$ diffeomorphisms that are the identity on a neighborhood of the boundary (this is so that we don't have to worry about corners).

There are a lot of superscripts and subscripts to keep track of. We have the following general rule: in the notation $\mathrm{Emb}_{*}^{\bullet}$: the superscripts $*$ will denote certain connected components, and the subscripts • will denote subspaces which are fixed.

1 Weiss FIBER SEQUENCE

If we want to study diffeomorphisms of the disc, the natural place to start is $M=\#_{g} S^{n} \times S^{n} \backslash D^{2 n}$.
Let M^{n} be a compact connected smooth manifold with $\partial M \equiv S^{n-1}$ (this is the only property we need for this lecture).

We can decompose the boundary of M as

$$
\partial M=\partial_{-1 / 2} M \cup \partial_{1 / 2} M
$$

where $\partial_{ \pm 1 / 2} M \cong D^{n-1}$.

Figure 1: The manifold M with the boundary divided into two parts $\partial_{-1 / 2} M \cup \partial_{1 / 2} M$. Figure from [Kup17].

Definition. Define $\operatorname{Emb}_{\partial}(M, M)$ to be the space of embeddings which fix the boundary, which is the same as $\operatorname{Diff}_{\partial}(M)$.

Definition. The space $\operatorname{Emb}_{1 / 2 \partial}(M, M)$ consists of embeddings $M \rightarrow M$ that restrict to the identity on a neighborhood of $\partial_{1 / 2} M .{ }^{1}$

There is a natural map $\operatorname{Diff}{ }_{\partial}(M) \stackrel{i}{\hookrightarrow} \operatorname{Emb}_{1 / 2 \partial}(M, M)$.
Definition. Define $\operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M)$ to be the union of the connected components of $\operatorname{Emb}_{1 / 2 \partial}(M, M)$ which intersect the image of i.

Theorem 1 (Weiss fiber sequence). The homotopy fiber of $\operatorname{Diff}_{\partial}(M) \stackrel{i}{\hookrightarrow} \operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M)$ is $\operatorname{Diff}_{\partial}\left(D^{n}\right)$.
Theorem 2 (Weiss fiber sequence). This fiber sequence can be delooped to give a fiber sequence

$$
B \operatorname{Diff}_{\partial}(M) \rightarrow B \operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M) \rightarrow B\left(B \operatorname{Diff}_{\partial}\left(D^{n}\right)\right)
$$

The original motivation for studying this fiber sequence was to study certain exotic pontrjagin classes coming from manifold bundles, [Wei15].
"Proof" of Theorem 1. We will start by defining a map $\operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M) \rightarrow B \operatorname{Diff}_{\partial}\left(D^{n}\right)$.
WLOG suppose $M \subset \mathbb{R}^{\infty}$. Pick a submanifold M^{\prime} of M obtained from M by 'pushing' the negative part of the boundary in the interior of M. This gives us a weak equivalence

$$
\operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M) \rightarrow \operatorname{Emb}_{1 / 2 \partial}^{\cong}\left(M, M^{\prime}\right)
$$

using an isotopy from $M \rightarrow M^{\prime}$.
Let e be an embedding in $\mathrm{Emb}_{1 / 2 \partial}^{\cong}(M, M)$, so that it lies in the connected component that can be isotoped to the boundary. Using an h-cobordism $\operatorname{argument}^{2}, M \backslash e(M)$ is diffeomorphic to D^{n} up to smoothing of corners.

For each e, we have the pair

$$
\left(\overline{M \backslash e(M)}, \partial(\overline{M \backslash e(M)}) \xrightarrow{e, i d} S^{n-1}\right)
$$

[^0]where the first element in the pair is a subset of \mathbb{R}^{∞} diffeomorphic to $D^{n 3}$) and the second element is an explicit diffeomorphism. This is an element in $B \operatorname{Diff}_{\partial}\left(D^{n}\right)$. So, we have constructed the desired map $\operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M) \rightarrow B \operatorname{Diff}_{\partial}\left(D^{n}\right)$.

It remains to show that the following is a homotopy pullback diagram

This is a standard isotopy extension argument.
Remark. Why do we expect delooping? In the Weiss fiber sequence, the first space is a topological group and the second is a topological monoid

$$
\operatorname{Diff}_{\partial}(M) \rightarrow \mathrm{Emb}_{1 / 2 \partial}^{\cong}(M, M) \rightarrow B \operatorname{Diff}_{\partial}\left(D^{n}\right)
$$

1. Smoothing theory tells us that

$$
\begin{aligned}
B \operatorname{Diff}_{\partial}\left(D^{n}\right) & \simeq \Omega_{0}^{n} P L(n) / O(n) \\
& \simeq \Omega_{0}^{n} \operatorname{Top}(n) / O(n) \text { if } n \neq 4
\end{aligned}
$$

2. (Fun exercise) One can explicitly show that $B \operatorname{Diff}_{\partial}\left(D^{n}\right)$ is an E_{n}-algebra, which in conjuction with May's recognition principle suggests delooping.

Proof strategy : if a group G acts on a space X, then

$$
X \rightarrow E G \times_{G} X \rightarrow B G
$$

is a fiber sequence. Analogously, we will construct Moore monoids $B M \simeq B \operatorname{Diff}_{\partial}(M), B D \simeq$ $B \operatorname{Diff}_{\partial}\left(D^{n}\right)$

$$
B M \rightarrow B M / / B D \rightarrow * / / B D
$$

The hardest part of the proof is to show $B M / / B D \simeq B \mathrm{Emb}_{1 / 2 \partial}^{\simeq}(M, M)$

2 Moore monoids for $B \operatorname{Diff}_{\partial}\left(D^{n}\right)$

We will use the identification

$$
\operatorname{Diff}_{\partial}\left(D^{n}\right) \simeq \operatorname{Diff}_{\partial}\left(D^{n-1} \times[0,1]\right)
$$

This gives us a special direction to glue diffeomorphisms.
Definition. Define

$$
\begin{aligned}
D_{\propto} & =D^{n-1} \times[0, \infty) \\
D_{t} & =D^{n-1} \times[0, t] \subset D_{\propto}
\end{aligned}
$$

[^1]Definition. A Moore monoid for $B \operatorname{Diff}_{\partial}\left(D^{n}\right)$ is defined to be

$$
\mathbb{D}=\left\{(t, \varphi) \mid t \in[0, \infty), \varphi \in \operatorname{Diff}_{\partial}\left(D_{\propto}\right), \operatorname{supp}(\varphi) \subset D_{t}\right\}
$$

where $\operatorname{supp}(\varphi)=\overline{\{x \mid \varphi(x) \neq x\}}$. This is a monoid by concatenation

$$
\begin{aligned}
\sqcup: \mathbb{D} \times \mathbb{D} & \rightarrow \mathbb{D}, \\
\left(t, \varphi_{t}\right),\left(s, \varphi_{s}\right) & \mapsto\left(t+s, \varphi_{t} \sqcup \varphi_{s}\right) .
\end{aligned}
$$

Definition. Define the semi-simplicial space ${ }^{4}$

$$
N_{p} \mathbb{D}=\left\{\left(t, \varphi_{1}, \ldots, \varphi_{p}\right) \mid \varphi_{i} \in \operatorname{Diff}_{\partial}\left(D_{\propto}\right) \cup \operatorname{supp}\left(\varphi_{i}\right) \subset D_{t}\right\}
$$

where boundary maps are given by composition of diffeomorphisms. $N_{\bullet} \mathbb{D}$ is a monoid in simplicial spaces, where the monoid structure is given by levelwise concatenation. ${ }^{5}$

Definition. Finally, define

$$
B \mathbb{D}=\left\|N_{\bullet} D\right\|
$$

where $\|-\|$ is the thick geometric realization.
Proposition 1. The following inclusion of monoids is a weak homotopy equivalence.

$$
\begin{aligned}
\operatorname{Diff}_{\partial}\left(D^{n-1} \times[0,1]\right) & \rightarrow \mathbb{D} \\
\varphi & \mapsto(1, \varphi)
\end{aligned}
$$

Proof. This is an 'isotopy extension' argument: $[0, \infty) \xrightarrow{\text { for all } t}[0,1) \hookrightarrow[0,1]$ defines a deformation retraction from latter onto former.

3 'Moore monoid' for B Diff $_{\partial} M$

We will costruct a space $B \mathbb{M}$ which will be a module over $B \mathbb{D}$.
Definition. Define

$$
\begin{aligned}
M_{\propto} & :=M \cup D_{\propto} \\
M_{t} & :=M \cup D_{t} .
\end{aligned}
$$

Figure 2: The manifold $M_{t} \subseteq M_{\propto}$. Figure from [Kup17].

[^2]Definition. A 'Moore monoid' for $B \operatorname{Diff}_{\partial}(M)$ is defined to be

$$
\mathbb{M}=\left\{(t, \varphi) \mid t \in[0, \infty), \varphi \in \operatorname{Diff}_{\partial}\left(M_{\infty}\right), \operatorname{supp}(\varphi) \subset M_{t}\right\}
$$

This is a module over \mathbb{D} by concatenation

$$
\begin{aligned}
\sqcup: \mathbb{M} \times \mathbb{D} & \rightarrow \mathbb{M}, \\
\left(t, \varphi_{t}\right),\left(s, \varphi_{s}\right) & \mapsto\left(t+s, \varphi_{t} \sqcup \varphi_{s}\right) .
\end{aligned}
$$

Definition. Define the semi-simplicial space ${ }^{6}$

$$
N_{p} \mathbb{M}=\left\{\left(t, \varphi_{1}, \ldots, \varphi_{p}\right) \mid \varphi_{i} \in \operatorname{Diff}_{\partial}\left(M_{\propto}\right) \cup \operatorname{supp}\left(\varphi_{i}\right) \subset M_{t}\right\}
$$

where boundary maps are given by composition of diffeomorphisms. $N_{\bullet} \mathbb{M}$ is a module in simplicial spaces over $N_{\bullet} \mathbb{D}$.

Definition. Finally, define

$$
B \mathbb{M}=\left\|N_{\bullet} M\right\|
$$

We now have the setup of a group $B \mathbb{D}$ acting on a space $B \mathbb{M}$. By formal properties of simplicial sets, we have a fiber sequence (since $B D$ is connected)

$$
\begin{array}{r}
B \mathbb{M} \rightarrow B \bullet(B \mathbb{M}, B \mathbb{D}, *) \rightarrow B \bullet(*, B \mathbb{D}, *) \\
\text { written equivalently as, } B \mathbb{M} \rightarrow \quad B \mathbb{M} / / B \mathbb{D} \rightarrow \quad * / / B \mathbb{D}
\end{array}
$$

where $B \bullet(-, B \mathbb{D},-)$ is the two sided bar construction.
By Proposition 1 we have levelwise equivalences between simplicial spaces, giving us equivalences on thick geometric realizations [ER17].

$$
\begin{aligned}
B M & \simeq B \operatorname{Diff}_{\partial}(M) \\
B D & \simeq B \operatorname{Diff}_{\partial}\left(D^{n}\right)
\end{aligned}
$$

The final hard theorem ${ }^{7}$ in $[\operatorname{Kup} 17]$ shows $B M / / B D \simeq B \operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M)$.

IDEA BEHIND THE PROOF OF THE HARD THEOREM We wish to show that $B \mathbb{M} / / B \mathbb{D} \simeq B \operatorname{Emb}_{1 / 2 \partial}^{\cong}(M, M)$. If the action of $B \mathbb{D}$ on $B \mathbb{M}$ were free then we would have

$$
\begin{aligned}
B \mathbb{M} / / B \mathbb{D} & =B(\mathbb{M} / \mathbb{D}) \\
& =B \mathrm{Emb}_{1 / 2 \partial}^{\cong}(M, M)
\end{aligned}
$$

However, this is not true. Much of the work in the proof goes in replacing the $B \mathbb{M}$ and $B \mathbb{D}$ so that the action of the latter on the former is free, and then showing that the homotopy type is unchanged when we make this replacement.

[^3]
References

[ER17] Johannes Ebert and Oscar Randal-Williams. Semi-simplicial spaces. arXiv e-prints, May 2017.
[Kup17] Alexander Kupers. Some finiteness results for groups of automorphisms of manifolds. Geom. Topol., 2017.
[Wei15] Michael S. Weiss. Dalian notes on rational Pontryagin classes. arXiv e-prints, Jul 2015.

[^0]: ${ }^{1} \partial_{-1 / 2} M$ might get mapped to the interior.
 ${ }^{2}$ Let us assume for now $n \geq 5$.

[^1]: ${ }^{3}$ There exists a diffeomorphism but the diffeomorphism is not part of the data.

[^2]: ${ }^{4}$ 'fake nerve'
 ${ }^{5}$ This is a monoid as concatenation commutes with composition.

[^3]: ${ }^{6}$ 'fake nerve'
 ${ }^{7}$ Read the details if you want to be amazed by isotopy extension theorems.

