Talbot 2019 Talk 12 - Weiss Fiber Sequence

Speaker: Apurva Nakade Live Tex'd by Lucy Yang Edited by: Apurva Nakade

April 11, 2019

References: [Kup17], [Wei15], [ER17]. Overview of Talks 11-14:

Embedding calculus + Weiss fibration + Homological stability

$$\int_{\text{magic}}^{\text{magic}}$$
finiteness results about $\operatorname{Diff}_{\partial}(D^n)$

NOTATION: D^n are discs with boundary, $\text{Diff}_{\partial}(-) = \text{diffeomorphisms that are the identity on a neighborhood of the boundary (this is so that we don't have to worry about corners).$

There are a lot of superscripts and subscripts to keep track of. We have the following general rule: in the notation Emb^{\bullet}_{*} : the superscripts * will denote certain connected components, and the subscripts \bullet will denote subspaces which are fixed.

1 Weiss fiber sequence

If we want to study diffeomorphisms of the disc, the natural place to start is $M = \#_g S^n \times S^n \setminus D^{2n}$. Let M^n be a compact connected smooth manifold with $\partial M \equiv S^{n-1}$ (this is the only property

Let M^n be a compact connected smooth manifold with $\partial M \equiv S^{n-1}$ (this is the only propert we need for this lecture).

We can decompose the boundary of M as

$$\partial M = \partial_{-1/2} M \cup \partial_{1/2} M$$

where $\partial_{\pm 1/2} M \cong D^{n-1}$.

Figure 1: The manifold M with the boundary divided into two parts $\partial_{-1/2}M \cup \partial_{1/2}M$. Figure from [Kup17].

Definition. Define $\text{Emb}_{\partial}(M, M)$ to be the space of embeddings which fix the boundary, which is the same as $\text{Diff}_{\partial}(M)$.

Definition. The space $\operatorname{Emb}_{1/2\partial}(M, M)$ consists of embeddings $M \to M$ that restrict to the identity on a neighborhood of $\partial_{1/2}M$.¹

There is a natural map $\operatorname{Diff}_{\partial}(M) \xrightarrow{i} \operatorname{Emb}_{1/2\partial}(M, M)$.

Definition. Define $\operatorname{Emb}_{1/2\partial}^{\cong}(M, M)$ to be the union of the connected components of $\operatorname{Emb}_{1/2\partial}(M, M)$ which intersect the image of *i*.

Theorem 1 (Weiss fiber sequence). The homotopy fiber of $\operatorname{Diff}_{\partial}(M) \xrightarrow{i} \operatorname{Emb}_{1/2\partial}^{\cong}(M,M)$ is $\operatorname{Diff}_{\partial}(D^n)$.

Theorem 2 (Weiss fiber sequence). This fiber sequence can be delooped to give a fiber sequence

$$B \operatorname{Diff}_{\partial}(M) \to B \operatorname{Emb}_{1/2\partial}^{\cong}(M, M) \to B (B \operatorname{Diff}_{\partial}(D^n))$$

The original motivation for studying this fiber sequence was to study certain exotic pontrjagin classes coming from manifold bundles, [Wei15].

"Proof" of Theorem 1. We will start by defining a map $\operatorname{Emb}_{1/2\partial}^{\cong}(M,M) \to B\operatorname{Diff}_{\partial}(D^n)$.

WLOG suppose $M \subset \mathbb{R}^{\infty}$. Pick a submanifold M' of M obtained from M by 'pushing' the negative part of the boundary in the interior of M. This gives us a weak equivalence

$$\operatorname{Emb}_{1/2\partial}^{\cong}(M, M) \to \operatorname{Emb}_{1/2\partial}^{\cong}(M, M')$$

using an isotopy from $M \to M'$.

Let e be an embedding in $\operatorname{Emb}_{1/2\partial}^{\cong}(M, M)$, so that it lies in the connected component that can be isotoped to the boundary. Using an h-cobordism argument², $M \setminus e(M)$ is diffeomorphic to D^n up to smoothing of corners.

For each e, we have the pair

$$(\overline{M \setminus e(M)}, \partial(\overline{M \setminus e(M)}) \xrightarrow{e,id} S^{n-1})$$

 $^{{}^{1}\}partial_{-1/2}M$ might get mapped to the interior.

²Let us assume for now $n \ge 5$.

where the first element in the pair is a subset of \mathbb{R}^{∞} diffeomorphic to D^{n3}) and the second element is an explicit diffeomorphism. This is an element in $B \operatorname{Diff}_{\partial}(D^n)$. So, we have constructed the desired map $\operatorname{Emb}_{1/2\partial}^{\cong}(M, M) \to B \operatorname{Diff}_{\partial}(D^n)$.

It remains to show that the following is a homotopy pullback diagram

$$\begin{array}{ccc} \mathrm{Diff}_{\partial}(M) & \longrightarrow & E \, \mathrm{Diff}_{\partial}(D^{n}) \\ & & & \downarrow \\ \mathrm{Emb}_{1/2\partial}^{\cong}(M,M') & \longrightarrow & B \, \mathrm{Diff}_{\partial}(D^{n}) \end{array}$$

This is a standard isotopy extension argument.

Remark. Why do we expect delooping? In the Weiss fiber sequence, the first space is a topological group and the second is a topological monoid

$$\operatorname{Diff}_{\partial}(M) \to \operatorname{Emb}_{1/2\partial}^{\cong}(M, M) \to B \operatorname{Diff}_{\partial}(D^n).$$

1. Smoothing theory tells us that

$$B\operatorname{Diff}_{\partial}(D^n) \simeq \Omega_0^n PL(n) / O(n)$$

$$\simeq \Omega_0^n Top(n) / O(n) \text{ if } n \neq 4.$$

2. (Fun exercise) One can explicitly show that $B \operatorname{Diff}_{\partial}(D^n)$ is an E_n -algebra, which in conjuction with May's recognition principle suggests delooping.

PROOF STRATEGY : if a group G acts on a space X, then

I

$$X \to EG \times_G X \to BG$$

is a fiber sequence. Analogously, we will construct Moore monoids $BM \simeq B \operatorname{Diff}_{\partial}(M), BD \simeq B \operatorname{Diff}_{\partial}(D^n)$

$$BM \to BM /\!\!/ BD \to * /\!\!/ BD$$

The hardest part of the proof is to show $BM /\!\!/ BD \simeq B \operatorname{Emb}_{1/2\partial}^{\cong}(M, M)$

2 MOORE MONOIDS FOR $B \operatorname{Diff}_{\partial}(D^n)$

We will use the identification

$$\operatorname{Diff}_{\partial}(D^n) \simeq \operatorname{Diff}_{\partial}(D^{n-1} \times [0,1]).$$

This gives us a special direction to glue diffeomorphisms.

Definition. Define

$$D_{\infty} = D^{n-1} \times [0, \infty)$$
$$D_t = D^{n-1} \times [0, t] \subset D_{\infty}$$

 $^{^{3}}$ There exists a diffeomorphism but the diffeomorphism is not part of the data.

Definition. A *Moore monoid* for $B \operatorname{Diff}_{\partial}(D^n)$ is defined to be

$$\mathbb{D} = \{(t,\varphi) \mid t \in [0,\infty), \varphi \in \text{Diff}_{\partial}(D_{\infty}), \text{supp}(\varphi) \subset D_t\}$$

where $\operatorname{supp}(\varphi) = \overline{\{x \mid \varphi(x) \neq x\}}$. This is a monoid by concatenation

$$\sqcup : \mathbb{D} \times \mathbb{D} \to \mathbb{D},$$

$$(t, \varphi_t), (s, \varphi_s) \mapsto (t + s, \varphi_t \sqcup \varphi_s).$$

Definition. Define the semi-simplicial space⁴

$$N_p \mathbb{D} = \{ (t, \varphi_1, \dots, \varphi_p) \mid \varphi_i \in \text{Diff}_{\partial}(D_{\infty}) \cup \text{supp}(\varphi_i) \subset D_t \}$$

where boundary maps are given by composition of diffeomorphisms. $N_{\bullet}\mathbb{D}$ is a monoid in simplicial spaces, where the monoid structure is given by levelwise concatenation.⁵

Definition. Finally, define

$$B\mathbb{D} = \|N_{\bullet}D\|$$

where $\|-\|$ is the thick geometric realization.

Proposition 1. The following inclusion of monoids is a weak homotopy equivalence.

$$\operatorname{Diff}_{\partial}(D^{n-1} \times [0,1]) \to \mathbb{D}$$
$$\varphi \mapsto (1,\varphi)$$

Proof. This is an 'isotopy extension' argument: $[0, \infty) \xrightarrow{\text{for all } t} [0, 1) \hookrightarrow [0, 1]$ defines a deformation retraction from latter onto former.

3 'Moore monoid' for $B \operatorname{Diff}_{\partial} M$

We will costruct a space $B\mathbb{M}$ which will be a module over $B\mathbb{D}$.

Definition. Define

$$M_{\infty} := M \cup D_{\infty}$$
$$M_t := M \cup D_t.$$

Figure 2: The manifold $M_t \subseteq M_{\infty}$. Figure from [Kup17].

⁵This is a monoid as concatenation commutes with composition.

 $^{^4`{\}rm fake}$ nerve'

Definition. A 'Moore monoid' for $B \operatorname{Diff}_{\partial}(M)$ is defined to be

$$\mathbb{M} = \{(t,\varphi) \mid t \in [0,\infty), \varphi \in \text{Diff}_{\partial}(M_{\infty}), \text{supp}(\varphi) \subset M_t\}.$$

This is a module over \mathbb{D} by concatenation

$$\sqcup: \mathbb{M} \times \mathbb{D} \to \mathbb{M},$$

(t, \varphi_t), (s, \varphi_s) \dots (t + s, \varphi_t \dot \varphi_s).

Definition. Define the semi-simplicial space⁶

$$N_p\mathbb{M} = \{(t,\varphi_1,\ldots,\varphi_p) \mid \varphi_i \in \text{Diff}_{\partial}(M_{\infty}) \cup \text{supp}(\varphi_i) \subset M_t\}$$

where boundary maps are given by composition of diffeomorphisms. $N_{\bullet}\mathbb{M}$ is a module in simplicial spaces over $N_{\bullet}\mathbb{D}$.

Definition. Finally, define

$$B\mathbb{M} = \|N_{\bullet}M\|$$

We now have the setup of a group $B\mathbb{D}$ acting on a space $B\mathbb{M}$. By formal properties of simplicial sets, we have a fiber sequence (since BD is connected)

$$B\mathbb{M} \to B_{\bullet}(B\mathbb{M}, B\mathbb{D}, *) \to B_{\bullet}(*, B\mathbb{D}, *)$$
written equivalently as, $B\mathbb{M} \to B\mathbb{M} /\!\!/ B\mathbb{D} \to * */\!\!/ B\mathbb{D}$

where $B_{\bullet}(-, B\mathbb{D}, -)$ is the two sided bar construction.

By Proposition 1 we have levelwise equivalences between simplicial spaces, giving us equivalences on thick geometric realizations [ER17].

$$BM \simeq B \operatorname{Diff}_{\partial}(M)$$
$$BD \simeq B \operatorname{Diff}_{\partial}(D^n)$$

The final hard theorem⁷ in [Kup17] shows $BM /\!\!/ BD \simeq B \operatorname{Emb}_{1/2\partial}^{\cong}(M, M)$.

IDEA BEHIND THE PROOF OF THE HARD THEOREM We wish to show that $B\mathbb{M}/\!\!/B\mathbb{D} \simeq B \operatorname{Emb}_{1/2\partial}^{\cong}(M, M)$. If the action of $B\mathbb{D}$ on $B\mathbb{M}$ were free then we would have

$$B\mathbb{M} /\!\!/ B\mathbb{D} = B(\mathbb{M}/\mathbb{D})$$
$$= B \operatorname{Emb}_{1/2\partial}^{\cong}(M, M)$$

However, this is not true. Much of the work in the proof goes in replacing the $B\mathbb{M}$ and $B\mathbb{D}$ so that the action of the latter on the former is free, and then showing that the homotopy type is unchanged when we make this replacement.

⁶'fake nerve'

⁷Read the details if you want to be amazed by isotopy extension theorems.

References

- [ER17] Johannes Ebert and Oscar Randal-Williams. Semi-simplicial spaces. arXiv e-prints, May 2017.
- [Kup17] Alexander Kupers. Some finiteness results for groups of automorphisms of manifolds. Geom. Topol., 2017.
- [Wei15] Michael S. Weiss. Dalian notes on rational Pontryagin classes. arXiv e-prints, Jul 2015.