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Overview of Talks 11-14:

Embedding calculus + Weiss fibration + Homological stability

finiteness results about Diff∂(Dn)

magic

Notation: Dn are discs with boundary, Diff∂(−) = diffeomorphisms that are the identity on a
neighborhood of the boundary (this is so that we don’t have to worry about corners).

There are a lot of superscripts and subscripts to keep track of. We have the following general
rule: in the notation Emb•∗: the superscripts ∗ will denote certain connected components, and the
subscripts • will denote subspaces which are fixed.

1 Weiss fiber sequence

If we want to study diffeomorphisms of the disc, the natural place to start is M = #gS
n×Sn \D2n.

Let Mn be a compact connected smooth manifold with ∂M ≡ Sn−1 (this is the only property
we need for this lecture).

We can decompose the boundary of M as

∂M = ∂−1/2M ∪ ∂1/2M

where ∂±1/2M ∼= Dn−1.
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1 WEISS FIBER SEQUENCE

Figure 1: The manifold M with the boundary divided into two parts ∂−1/2M ∪ ∂1/2M . Figure
from [Kup17].

Definition. Define Emb∂(M,M) to be the space of embeddings which fix the boundary, which is
the same as Diff∂(M).

Definition. The space Emb1/2∂(M,M) consists of embeddings M →M that restrict to the identity
on a neighborhood of ∂1/2M .1

There is a natural map Diff∂(M)
i
↪→ Emb1/2∂(M,M).

Definition. Define Emb
∼=
1/2∂(M,M) to be the union of the connected components of Emb1/2∂(M,M)

which intersect the image of i.

Theorem 1 (Weiss fiber sequence). The homotopy fiber of Diff∂(M)
i
↪→ Emb

∼=
1/2∂(M,M) is Diff∂(Dn).

Theorem 2 (Weiss fiber sequence). This fiber sequence can be delooped to give a fiber sequence

B Diff∂(M)→B Emb
∼=
1/2∂(M,M)→ B (B Diff∂(Dn))

The original motivation for studying this fiber sequence was to study certain exotic pontrjagin
classes coming from manifold bundles, [Wei15].

“Proof” of Theorem 1. We will start by defining a map Emb
∼=
1/2∂(M,M)→ B Diff∂(Dn).

WLOG suppose M ⊂ R∞. Pick a submanifold M ′ of M obtained from M by ‘pushing’ the
negative part of the boundary in the interior of M . This gives us a weak equivalence

Emb
∼=
1/2∂(M,M)→ Emb

∼=
1/2∂(M,M ′)

using an isotopy from M →M ′.
Let e be an embedding in Emb

∼=
1/2∂(M,M), so that it lies in the connected component that can

be isotoped to the boundary. Using an h-cobordism argument2, M \ e(M) is diffeomorphic to Dn

up to smoothing of corners.
For each e, we have the pair

(M \ e(M), ∂(M \ e(M))
e,id−−→ Sn−1)

1∂−1/2M might get mapped to the interior.
2Let us assume for now n ≥ 5.
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2 MOORE MONOIDS FOR B Diff∂(DN )

where the first element in the pair is a subset of R∞ diffeomorphic to Dn3) and the second element
is an explicit diffeomorphism. This is an element in B Diff∂(Dn). So, we have constructed the
desired map Emb

∼=
1/2∂(M,M)→ B Diff∂(Dn).

It remains to show that the following is a homotopy pullback diagram

Diff∂(M) E Diff∂(Dn)

Emb
∼=
1/2∂(M,M ′) B Diff∂(Dn)

This is a standard isotopy extension argument.

Remark. Why do we expect delooping? In the Weiss fiber sequence, the first space is a topological
group and the second is a topological monoid

Diff∂(M)→ Emb
∼=
1/2∂(M,M)→ B Diff∂(Dn).

1. Smoothing theory tells us that

B Diff∂(Dn) ' Ωn
0PL(n)/O(n)

' Ωn
0Top(n)/O(n) if n 6= 4.

2. (Fun exercise) One can explicitly show that B Diff∂(Dn) is an En-algebra, which in conjuction
with May’s recognition principle suggests delooping.

Proof strategy : if a group G acts on a space X, then

X → EG×G X → BG

is a fiber sequence. Analogously, we will construct Moore monoids BM ' B Diff∂(M), BD '
B Diff∂(Dn)

BM → BM � BD → ∗ � BD

The hardest part of the proof is to show BM � BD ' B Emb
∼=
1/2∂(M,M)

2 Moore monoids for B Diff∂(Dn)

We will use the identification

Diff∂(Dn) ' Diff∂(Dn−1 × [0, 1]).

This gives us a special direction to glue diffeomorphisms.

Definition. Define

D∝ = Dn−1 × [0,∞)

Dt = Dn−1 × [0, t] ⊂ D∝
3There exists a diffeomorphism but the diffeomorphism is not part of the data.
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3 ‘MOORE MONOID’ FOR B Diff∂ M

Definition. A Moore monoid for B Diff∂(Dn) is defined to be

D = {(t, ϕ) | t ∈ [0,∞), ϕ ∈ Diff∂(D∝), supp(ϕ) ⊂ Dt}

where supp(ϕ) = {x | ϕ(x) 6= x}. This is a monoid by concatenation

t : D× D→ D,
(t, ϕt), (s, ϕs) 7→ (t + s, ϕt t ϕs).

Definition. Define the semi-simplicial space4

NpD = {(t, ϕ1, . . . , ϕp) | ϕi ∈ Diff∂(D∝) ∪ supp(ϕi) ⊂ Dt}

where boundary maps are given by composition of diffeomorphisms. N•D is a monoid in simplicial
spaces, where the monoid structure is given by levelwise concatenation. 5

Definition. Finally, define

BD = ‖N•D‖

where ‖ − ‖ is the thick geometric realization.

Proposition 1. The following inclusion of monoids is a weak homotopy equivalence.

Diff∂(Dn−1 × [0, 1])→ D
ϕ 7→ (1, ϕ)

Proof. This is an ‘isotopy extension’ argument: [0,∞)
for all t−−−−−→ [0, 1) ↪→ [0, 1] defines a deformation

retraction from latter onto former.

3 ‘Moore monoid’ for B Diff∂ M

We will costruct a space BM which will be a module over BD.

Definition. Define

M∝ := M ∪D∝

Mt := M ∪Dt.

Figure 2: The manifold Mt ⊆M∝. Figure from [Kup17].

4‘fake nerve’
5This is a monoid as concatenation commutes with composition.
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3 ‘MOORE MONOID’ FOR B Diff∂ M

Definition. A ‘Moore monoid’ for B Diff∂(M) is defined to be

M = {(t, ϕ) | t ∈ [0,∞), ϕ ∈ Diff∂(M∝), supp(ϕ) ⊂Mt}.

This is a module over D by concatenation

t : M× D→M,

(t, ϕt), (s, ϕs) 7→ (t + s, ϕt t ϕs).

Definition. Define the semi-simplicial space6

NpM = {(t, ϕ1, . . . , ϕp) | ϕi ∈ Diff∂(M∝) ∪ supp(ϕi) ⊂Mt}

where boundary maps are given by composition of diffeomorphisms. N•M is a module in simplicial
spaces over N•D.

Definition. Finally, define

BM = ‖N•M‖

We now have the setup of a group BD acting on a space BM. By formal properties of simplicial
sets, we have a fiber sequence (since BD is connected)

BM→B•(BM, BD, ∗)→B•(∗, BD, ∗)
written equivalently as, BM→ BM � BD→ ∗ � BD

where B•(−, BD,−) is the two sided bar construction.
By Proposition 1 we have levelwise equivalences between simplicial spaces, giving us equivalences

on thick geometric realizations [ER17].

BM ' B Diff∂(M)

BD ' B Diff∂(Dn)

The final hard theorem7 in [Kup17] shows BM � BD ' B Emb
∼=
1/2∂(M,M).

Idea behind the proof of the hard theorem We wish to show that BM�BD ' B Emb
∼=
1/2∂(M,M).

If the action of BD on BM were free then we would have

BM � BD = B(M/D)

= B Emb
∼=
1/2∂(M,M)

However, this is not true. Much of the work in the proof goes in replacing the BM and BD so
that the action of the latter on the former is free, and then showing that the homotopy type is
unchanged when we make this replacement.

6‘fake nerve’
7Read the details if you want to be amazed by isotopy extension theorems.
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