Talbot 2019 Talk 11 - Embeddings Calculus

Speaker: Bridget Schreiner Live Tex'd by Lucy Yang Edited by: Apurva Nakade

April 11, 2019

In calculus, we understand smooth functions by taking (Taylor) polynomial approximations to them. Analogously, in *embeddings calculus* or more generally in *functor calculus* we try to approximate functors on a certain nice category via 'polynomials.'

0 INTRODUCTION

In embeddings calculus we work with functors of the form

$$F: \mathcal{O}(M)^{op} \to \mathbf{Top},$$

where $\mathcal{O}(M)$ is the poset of open subsets of a smooth closed manifold M. If M has boundary, define $\mathcal{O}^{\partial}(M)$ category of open subsets of M containing ∂M .

Definition. A functor $F : \mathcal{O}(M)^{op} \to \mathbf{Top}$ is said to be *good* if

- 1. F takes isotopy equivalences to homotopy equivalences.
- 2. For a filtration $U_1 \subset \cdots \subset U_i \subset \cdots$, there is a homotopy equivalence

 $F(\cup_i U_i) \xrightarrow{\sim} \operatorname{holim}_i F(U_i)$

i.e. F behaves nicely with respect to certain homotopy limits.

Examples. Fix a smooth manifold N. Then the following functors are good functors on

$$\operatorname{Map}(-, N), \operatorname{Imm}(-, N), \operatorname{Emb}(-, N)$$

when seen as **Top** valued functors on $\mathcal{O}(M)^{op}$.

From now on we'll assume that all our functors are good functors of the form $\mathcal{O}(M)^{op} \to \mathbf{Top}$, unless otherwise specified.

1 POLYNOMIAL FUNCTORS

A linear function f satisfies the identity

$$f(x+y) - f(x) - f(y) + f(0) = 0$$

The following should be thought of as a homotopy theoretic generalization of this.

Definition. A functor F is said to be *linear* if for all $V, W \subset M$, the total homotopy fiber¹ of

is contractible.

It is not obvious how to generalize this definition. Instead, we use the following equivalent definition of a linear functor which naturally generalizes to higher degrees.

Definition. A functor F is said to be *polynomial of degree* ≤ 1 if for all $U \in \mathcal{O}(M)$ and disjoint, closed, non-empty subsets A_0 , A_1 of U, the total homotopy fiber of

$$F(U) \longrightarrow F(U \setminus A_0)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(U \setminus A_1) \longrightarrow F(U \setminus (A_0 \cup A_1))$$

is contractible.

This now has an obvious generalization.

Definition. A functor F is said to be *polynomial of degree* $\leq k$ if for all $U \in \mathcal{O}(M)$ and disjoint, closed, non-empty subsets A_0, \ldots, A_k of U, the homotopy fiber of the (k + 1)-cube

$$\mathcal{P}(k+1) \to \mathbf{Top}$$

$$\{0, \dots, k\} \supset S \mapsto F(U \setminus \bigcup_{i \in S} U_i)$$

is contractible.

Fact. • Map(-, N) is polynomial of degree ≤ 1 .

- Imm(-, N) is polynomial of degree ≤ 1 if the dimension of N \downarrow handle dimension of M $\downarrow 0$, see Section 3.
- Emb(-, N) is not polynomial of degree $\leq k$ for any k.

2 The Taylor tower

We'll now define a way to construct a polynomial approximation of an arbitrary good functor.

Definition. Let $\mathcal{O}_k(M)$ be the full subcategory of $\mathcal{O}(M)$ containing open subsets of M which are diffeomorphic to up to k open balls in M. If M has boundary, the full subcategory $\mathcal{O}_k^{\partial}(M)$ consists of open subsets $U = V_1 \sqcup V_2$ where V_1 is a collar nbhd of ∂M and V_2 is diffeomorphic up to k open balls.

$$\operatorname{hofib}(F(V \cup W) \to F(W)) \to \operatorname{hofib}(F(V) \to F(V \cap W)).$$

 $^{^{1}}$ The total homotopy fiber of the square 1 is obtained by first taking the homotopy fibers of the vertical maps, then taking homotopy fiber of resulting horizontal map

Definition. For a functor $F : \mathcal{O}(M)^{op} \to \mathbf{Top}$ the *k*-th polynomial approximation is a functor $T_k F : \mathcal{O}(M)^{op} \to \mathbf{Top}$ defined as

$$T_k F(V) = \operatorname{holim}_{U \in \mathcal{O}_k(V)} F(U).$$

where $V \in \mathcal{O}(M)$.

We have natural transformations $F \implies T_k F$ induced by the inclusion $\mathcal{O}_k(V) \hookrightarrow \mathcal{O}(V)$ and $T_k F \implies T_{k-1}F$ induced by the inclusion $\mathcal{O}_{k-1}(V) \hookrightarrow \mathcal{O}_k(V)$.

These assemble into a *Taylor tower*

Thus we can think of $T_k F$ as the the k^{th} stage in the Taylor tower. The k-th layer is denoted $L_k = \text{hofib}(T_k F \to T_{k-1} F)$.

Definition. We say $T_k F$ converges to F if the naturally induced map

$$F(V) \xrightarrow{\sim} T_{\infty}F(V)$$

is an equivalence for all $V \in \mathcal{O}(M)$, where $T_{\infty}F$ is the inverse limit of the Taylor tower $T_{\infty}F := \operatorname{holim}_{k} T_{k}$.

Theorem ([Wei99]). If $F : \mathcal{O}(M)^{op} \to \text{Top}$ is good then,

- 1. $T_k F$ is polynomial of degree $\leq k$
- 2. If F is polynomial of degree $\leq k$ then $F \to T_k F$ is a homotopy equivalence.
- 2.1 Homogeneous functors

Definition. A functor $E : \mathcal{O}(M)^{op} \to \text{Top}$ is homogeneous of degree $\leq k$ if E is polynomial of degree $\leq k$, and $T_{k-1}E(V) \simeq *$ for all V.

Example. For any functor $F : \mathcal{O}(M)^{op} \to \mathbf{Top}$, the k^{th} layer in the Taylor tower $L_k F$ is homogeneous of degree k

It is possible to a complete classification of homogeneous functors. Let $\binom{M}{k}$ be the space of unordered configurations of k points in M. Let $\rho: Z \to \binom{M}{k}$ be a fibration with section. Denote the space of sections by $\Gamma\left(\binom{M}{k}, Z; \rho\right)$.

Definition. Define

$$\Gamma\left(\partial\binom{M}{k}, Z; \rho\right) = \operatorname{hocolim}_{Q \in \mathcal{N}} \Gamma\left(\binom{M}{k} \cap Q, Z; \rho\right)$$

where Q is a neighborhood of the fat diagonal in M^k/Σ_k . When M has boundary, we take \mathcal{N} also including elements of M^k/Σ_k where one coordinate is in ∂M .

Let

$$\Gamma^{c}\left(\binom{M}{k}, Z; \rho\right) = \operatorname{hofib}\left(\Gamma\left(\binom{M}{k}, Z; \rho\right) \to \Gamma\left(\partial\binom{M}{k}, Z; \rho\right)\right)$$

be the space of compactly supported sections.

The space of compactly supported sections provides a canonical example for homogeneous functors of degree k.

Example. The functor $\Gamma^{c}\left(\binom{-}{k}, Z; \rho\right)$ is homogeneous of degree k.

Theorem. Let E homogeneous of degree k. Then there exists a fibration $p: Z \to {\binom{-}{k}}$ such that E is naturally homotopy equivalent to the space of compactly supported sections of Z,

$$E(-) \xrightarrow{\simeq} \Gamma^c\left(\binom{-}{k}, Z; \rho\right)$$

If $E = L_k F$ for some functor F, then the fibers of the classifying fibration are the called the derivatives and are denoted $F^k(\emptyset)$.

Definition. Let B_1, \ldots, B_k pairwise disjoint open balls in M. Then $F^{(k)}(\emptyset) = t \operatorname{hofib} \left(S \mapsto F\left(\bigcup_{i \notin S} B_i \right) \right)$ Example. $F = \operatorname{Emb}(-, \mathbb{R}^n), k = 2$

3 Convergence

Recall: We say that the Taylor tower for F converges to F if $F \to T_{\infty}F$ is an equivalence.

Proposition. If $F^{(k)}(\emptyset)$ is c_k -connected, then $L_k(F(M))$ is (c_k-km) -connected, where $m = \dim M$.

Definition. The *handle dimension* is the least positive integer j such that M admits a handlebody decomposition with handles of index $\leq j$.

Theorem. If M is a smooth manifold of handle dimension m and N is a smooth manifold of dimension n, then the map

$$\operatorname{Emb}(M, N) \to T_k \operatorname{Emb}(M, N)$$

is (k(n-m-2)+1-m)-connected. In particular, if n-m-2 > 0, then

$$\operatorname{Emb}(M,N) \to T_{\infty}\operatorname{Emb}(M,N)$$

is an equivalence.

Fact. $T_1 \operatorname{Emb} = \operatorname{Imm}$

Thus the tower for the embeddings functor can be thought of as a way to remove self-intersections iteratively.

References

- [Kup17] Alexander Kupers. Some finiteness results for groups of automorphisms of manifolds. Geom. Topol., 2017.
- [MV15] Brian Munson and Ismar Volić. *Cubical Homotopy Theory*. New Mathematical Monographs. Cambridge University Press, 2015.
- [Wei99] Michael Weiss. Embeddings from the point of view of immension theory : Part I. Geometry and Topology, 3:67–101, 1999.
- [Wei15] Michael S. Weiss. Dalian notes on rational Pontryagin classes. arXiv e-prints, Jul 2015.