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In calculus, we understand smooth functions by taking (Taylor) polynomial approximations
to them. Analogously, in embeddings calculus or more generally in functor calculus we try to
approximate functors on a certain nice category via ‘polynomials.’

0 Introduction

In embeddings calculus we work with functors of the form

F : O(M)op → Top,

where O(M) is the poset of open subsets of a smooth closed manifold M . If M has boundary,
define O∂(M) category of open subsets of M containing ∂M .

Definition. A functor F : O(M)op → Top is said to be good if

1. F takes isotopy equivalences to homotopy equivalences.
2. For a filtration U1 ⊂ · · · ⊂ Ui ⊂ · · · , there is a homotopy equivalence

F (∪iUi)
∼−→ holimi F (Ui)

i.e. F behaves nicely with respect to certain homotopy limits.

Examples. Fix a smooth manifold N . Then the following functors are good functors on

Map(−, N), Imm(−, N),Emb(−, N)

when seen as Top valued functors on O(M)op.

From now on we’ll assume that all our functors are good functors of the form O(M)op → Top,
unless otherwise specified.

1 Polynomial functors

A linear function f satisfies the identity

f(x+ y)− f(x)− f(y) + f(0) = 0

The following should be thought of as a homotopy theoretic generalization of this.
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2 THE TAYLOR TOWER

Definition. A functor F is said to be linear if for all V,W ⊂M , the total homotopy fiber1 of

F (V ∪W ) F (V )

F (W ) F (V ∩W )

(1)

is contractible.

It is not obvious how to generalize this definition. Instead, we use the following equivalent
definition of a linear functor which naturally generalizes to higher degrees.

Definition. A functor F is said to be polynomial of degree ≤ 1 if for all U ∈ O(M) and disjoint,
closed, non-empty subsets A0, A1 of U , the total homotopy fiber of

F (U) F (U \A0)

F (U \A1) F (U \ (A0 ∪A1))

is contractible.

This now has an obvious generalization.

Definition. A functor F is said to be polynomial of degree ≤ k if for all U ∈ O(M) and disjoint,
closed, non-empty subsets A0, . . . , Ak of U , the homotopy fiber of the (k + 1)-cube

P(k + 1)→ Top

{0, . . . , k} ⊃ S 7→ F (U \ ∪i∈SUi)

is contractible.

Fact. • Map(−, N) is polynomial of degree ≤ 1.
• Imm(−, N) is polynomial of degree ≤ 1 if the dimension of N ¿ handle dimension of M ¿ 0,

see Section 3.
• Emb(−, N) is not polynomial of degree ≤ k for any k.

2 The Taylor tower

We’ll now define a way to construct a polynomial approximation of an arbitrary good functor.

Definition. Let Ok(M) be the full subcategory of O(M) containing open subsets of M which are
diffeomorphic to up to k open balls in M . If M has boundary, the full subcategory O∂

k (M) consists
of open subsets U = V1 t V2 where V1 is a collar nbhd of ∂M and V2 is diffeomorphic up to k open
balls.

1The total homotopy fiber of the square 1 is obtained by first taking the homotopy fibers of the vertical maps,
then taking homotopy fiber of resulting horizontal map

hofib(F (V ∪W ) → F (W )) → hofib(F (V ) → F (V ∩W )).
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2.1 Homogeneous functors 2 THE TAYLOR TOWER

Definition. For a functor F : O(M)op → Top the k-th polynomial approximation is a functor
TkF : O(M)op → Top defined as

TkF (V ) = holimU∈Ok(V ) F (U).

where V ∈ O(M).

We have natural transformations F =⇒ TkF induced by the inclusion Ok(V ) ↪→ O(V ) and
TkF =⇒ Tk−1F induced by the inclusion Ok−1(V ) ↪→ Ok(V ).

These assemble into a Taylor tower

T∞F

...

T2F

T1F

F T0F

Thus we can think of TkF as the the kth stage in the Taylor tower. The k-th layer is denoted
Lk = hofib(TkF → Tk−1F ).

Definition. We say TkF converges to F if the naturally induced map

F (V )
∼−→ T∞F (V )

is an equivalence for all V ∈ O(M), where T∞F is the inverse limit of the Taylor tower
T∞F := holimk Tk.

Theorem ( [Wei99]). If F : O(M)op → Top is good then,

1. TkF is polynomial of degree ≤ k
2. If F is polynomial of degree ≤ k then F → TkF is a homotopy equivalence.

2.1 Homogeneous functors

Definition. A functor E : O(M)op → Top is homogeneous of degree ≤ k if E is polynomial of
degree ≤ k, and Tk−1E(V ) ' ∗ for all V .

Example. For any functor F : O(M)op → Top, the kth layer in the Taylor tower LkF is homoge-
neous of degree k

It is possible to a complete classification of homogeneous functors. Let
(
M
k

)
be the space of

unordered configurations of k points in M . Let ρ : Z →
(
M
k

)
be a fibration with section. Denote

the space of sections by Γ
((

M
k

)
, Z; ρ

)
.
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3 CONVERGENCE

Definition. Define

Γ

(
∂

(
M

k

)
, Z; ρ

)
= hocolimQ∈N Γ

((
M

k

)
∩Q,Z; ρ

)
where Q is a neighborhood of the fat diagonal in Mk/Σk. When M has boundary, we take N also
including elements of Mk/Σk where one coordinate is in ∂M .

Let

Γc

((
M

k

)
, Z; ρ

)
= hofib

(
Γ

((
M

k

)
, Z; ρ

)
→ Γ

(
∂

(
M

k

)
, Z; ρ

))
be the space of compactly supported sections.

The space of compactly supported sections provides a canonical example for homogeneous func-
tors of degree k.

Example. The functor Γc
((−

k

)
, Z; ρ

)
is homogeneous of degree k.

Theorem. Let E homogeneous of degree k. Then there exists a fibration p : Z →
(−
k

)
such that E

is naturally homotopy equivalent to the space of compactly supported sections of Z,

E(−)
'−→ Γc

((
−
k

)
, Z; ρ

)
.

If E = LkF for some functor F , then the fibers of the classifying fibration are the called the
derivatives and are denoted F k(∅).

Definition. LetB1, . . . , Bk pairwise disjoint open balls inM . Then F (k)(∅) = thofib
(
S 7→ F

(⋃
i/∈S Bi

))
Example. F = Emb(−,Rn), k = 2

Emb(B1 tB2,Rn) Emb(B1,Rn)

Emb(B2,Rn) Emb(∅,Rn)

→

Sn−1 Sn−1 ∗

Conf(2,Rn) Conf(1,Rn)

Conf(1,Rn) Conf(0,Rn) ' ∗

3 Convergence

Recall: We say that the Taylor tower for F converges to F if F → T∞F is an equivalence.

Proposition. If F (k)(∅) is ck-connected, then Lk(F (M)) is (ck−km)-connected, where m = dimM .

Definition. The handle dimension is the least positive integer j such that M admits a handlebody
decomposition with handles of index ≤ j.
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Theorem. If M is a smooth manifold of handle dimension m and N is a smooth manifold of
dimension n, then the map

Emb(M,N)→ Tk Emb(M,N)

is (k(n−m− 2) + 1−m)-connected. In particular, if n−m− 2 > 0, then

Emb(M,N)→ T∞ Emb(M,N)

is an equivalence.

Fact. T1 Emb = Imm

...

T3 Emb

T2 Emb

Emb(M,N) T1 Emb Imm=

Thus the tower for the embeddings functor can be thought of as a way to remove self-intersections
iteratively.
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