Talbot 2019 Talk 10

Speaker: Luciana Bonatto
Live Tex'd by Lucy Yang
Edited by: Luciana Bonatto

4/10/2019

Beyond $W_{g, 1}$

Let W a $2 n$-dimensional manifold, $n \geq 3$, compact, connected. When discussing general such manifolds, tangential structures become essential. Throughout the talk, let $\theta: B \rightarrow B O(2 n)$ be a tangential structure and $\ell_{W}: W \rightarrow B$ a chosen θ-structure on W .

We define the moduli space of W with θ-structures to be

$$
\mathcal{M}^{\theta}(W):=\operatorname{Emb}\left(W, \mathbb{R}^{\infty}\right) \times \operatorname{Bun}\left(T W, \theta^{*} \gamma_{2 n}\right) / \operatorname{Diff}(W)
$$

As $B \operatorname{Diff}(W)$ has a model given by the submanifolds of \mathbb{R}^{∞} diffeomorphic to W, this moduli space $\mathcal{M}^{\theta}(W)$ has a model consisting of all submanifolds of \mathbb{R}^{∞} diffeomorphic to W together with a choice of θ-structure.

If we fix a θ-structure ℓ_{W}, we denote by $\mathcal{M}^{\theta}\left(W, \ell_{W}\right)$ is the path component of $\mathcal{M}^{\theta}(W)$ containing ℓ_{W}.

When we worked with $W_{g, 1}$'s, homological stability depended on genus. What do we use here?

$$
\text { genus }=\max \left\{g \mid \exists \text { embedding } e: \#_{g} S^{n} \times S^{n} \backslash D^{2 n} \rightarrow W\right\}
$$

when considering θ-structures, we require that such embeddings be admissible, i.e. that they respect the tangential structure.

1 Theorems

Theorem (A). If ℓ_{W} is n-connected, B is simply-connected,

$$
\mathcal{M}^{\theta}\left(W, \ell_{W}\right) \rightarrow \Omega^{\infty} M T \theta
$$

induces a homology isomorphism onto the path component of the image in degrees $\leq \frac{g-4}{3}$. If θ is spherical, in degrees $\leq \frac{g-3}{2}$.

Remark. θ is spherical if S^{n} possesses a θ-structure.
Theorem A depends on the very strong hypothesis that ℓ_{W} is n-connected, which means that for a fixed manifold W, it cannot be applied to any tangential structures. However, we can adapt this result to hold in a wider range of cases.

General tangential structures Given a tangential structure θ and ℓ_{W} a θ-structure on W which is not n-connected, we can use the Moore-Postnikov tower for ℓ_{W} :

which gives a new tangential structure $\theta^{\prime}: B^{\prime} \rightarrow B \rightarrow B O(2 n)$ and the map $W \rightarrow B^{\prime}$ is an n-connected θ^{\prime}-structure for W.

Definition. We call homotopy automorphisms over u the topological monoid given by

$$
h \operatorname{Aut}(u):=\left\{\text { weak equivalences of } B^{\prime} \text { over } B\right\}
$$

with multiplication given by composition.
There is an action of $h \operatorname{Aut}(u)$ on $\mathcal{M}^{\theta^{\prime}}(W)$ by precomposing the θ-structures on W with such weak equivalences. This action gives us fiber sequences:

$$
\begin{array}{r}
h \operatorname{Aut}(u) \rightarrow \mathcal{M}^{\theta^{\prime}}(W) \rightarrow \mathcal{M}^{\theta}(W) \\
\mathcal{M}^{\theta^{\prime}}(W) \rightarrow \mathcal{M}^{\theta}(W) \rightarrow \operatorname{Bh} \operatorname{Aut}(u) \\
\mathcal{M}^{\theta^{\prime}}\left(W, \ell_{W}\right) \rightarrow \mathcal{M}^{\theta}\left(W, \ell_{W}\right) \rightarrow B H
\end{array}
$$

where $H \subset h \operatorname{Aut}(u)$ is a submonoid.
Theorem (B). If ℓ_{W} any θ-structure, W simply-connected, then

$$
\mathcal{M}^{\theta}\left(W, \ell_{W}\right) \rightarrow \Omega_{0}^{\infty} M T \theta^{\prime} / / h \operatorname{Aut}(u)
$$

induces a H_{*}-isomorphism in degrees $\leq \frac{g-4}{3}$. If θ spherical, then in degrees $\leq \frac{g-3}{2}$.
These theorems are extremely important tools to understand the moduli space of manifolds, in particular because we know how to compute the cohomology of $\Omega^{\infty} M T \theta$ through different methods (for instance using the Thom isomorphism). Explicitly, we have:

Theorem. $H^{*}\left(\Omega^{\infty} M T \theta ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{c} \mid c\right.$ basis element of $\left.H^{>d}\left(B ; \mathbb{Q}^{w_{1}}\right)\right]$

2 EXAMPLE

Let $V_{d} \subset \mathbb{C} P^{n+1}$ be a smooth hypersurface determined by the roots of a nondegenerate homogeneous complex polynomial of degree d.
Fact. The diffeomorphism type of such a smooth V depends only on the degree d of the polynomial. The resulting $2 n$-dimensional manifold is what we denote V_{d}.

Goal. To compute $H^{*}\left(\mathcal{M}^{o r}\left(V_{d}\right) ; \mathbb{Q}\right)$ for $V_{d} \subset \mathbb{C} P^{4}$ a 6-dimensional manifold.

Strategy:

1. Understand the algebraic topology of V_{d};
2. Look at the Moore-Postnikov 3 -stage for an orientation and apply Theorem A;
3. Use Theorem B to get a result about orientation.

2.1 Algebraic topology of V_{d}

The cohomology of V_{d} can be understood through some classical results in Algebraic Topology and Algebraic Geometry.

Lefschetz hypersurface theorem tells us that $V_{d} \stackrel{i}{\hookrightarrow} \mathbb{C} P^{4}$ is 3 -connected. In particular, V_{d} is simply-connected and

$$
H^{0}\left(V_{d}\right)=\mathbb{Z} \quad H^{1}\left(V_{d}\right)=0 \quad H^{2}\left(V_{d}\right)=\mathbb{Z}\{t\}
$$

By Poincaré duality,

$$
H^{6}\left(V_{d}\right)=\mathbb{Z}\{u\} \quad H^{5}\left(V_{d}\right)=0 \quad H^{4}\left(V_{d}\right)=\mathbb{Z}\{?\}
$$

The Euler characteristic can be computed using methods from Algebraic Geometry, and we get

$$
\chi\left(V_{d}\right)=d\left(10-10 d+5 d^{2}-d^{3}\right)
$$

Combining all of the above we see that $H^{3}\left(V_{d}\right)$ is free of rank $4-\chi\left(V_{d}\right)=d^{4}-5 d^{3}+5 d^{2}-10 d+4$.
In particular, this tells us what the genus of this manifold could be, since it is measured by the number of embedded $S^{3} \times S^{3}$. A precise result on the genus can be obtained using the following:

Theorem (Wall's theorem). If W simply-connected, 6 -dimensional manifold, then there exists M such that $H_{3}(M)$ is finite and $W=M \#_{g} S^{3} \times S^{3}$.

In particular, applying this result for the V_{d} 's, we get that their genus is given by

$$
g=\frac{1}{2}(3 \text { rd Betti number })=\frac{1}{2}\left(d^{4}-5 d^{3}+5 d^{2}-10 d+4\right)
$$

2.2 Moore-Postnikov 3-stage

Given a choice of orientation $V_{d} \rightarrow B S O(6)$, we can take its Moore-Postnikov 3-stage

Where $\ell_{V_{d}}$ is a 3-connected cofibration and θ_{d} is a 3-coconnected fibration.
Applying Theorem A to θ_{d} : we have a H_{*}-isomorhpism for $* \leq \frac{g-4}{3}=\frac{d^{4}+5 d^{3}+10 d^{2}-10 d+4}{4}$

$$
\mathcal{M}^{\theta_{d}}\left(V_{d}, \ell_{V_{d}}\right) \rightarrow \Omega^{\infty} M T \theta_{d}
$$

which gives us an isomorphism in the same range between

What is $H^{*}\left(B^{d} ; \mathbb{Q}\right)$? By the (co)-connectivity hypotheses,

$$
\begin{aligned}
& 0= \pi_{1}\left(V_{d}\right) \cong \\
& \mathbb{Z}=\pi_{1}\left(B^{d}\right) \\
& \pi_{2}\left(V_{d}\right) \xrightarrow{\simeq} \pi_{2}\left(B^{d}\right) \stackrel{?}{\rightarrow} \pi_{2}(B S O(6))=\mathbb{Z} / 2 \\
& \pi_{3}\left(V_{d}\right) \rightarrow \pi_{3}\left(B^{d}\right) \hookrightarrow
\end{aligned} \begin{array}{r}
3 \\
\\
\\
\\
\pi_{i}\left(B^{d}\right) \xrightarrow{\simeq} \pi_{i} B S O(6)=0 \\
(6), \quad i \geq 4
\end{array}
$$

These maps tell us basically everything about the homotopy groups of B^{d}, except in degree 2. So it remains to understand the map on π_{2}, which is detected by w_{2}, the 2nd Stiefel-Whitney class:

$$
w_{2} \equiv 5-d \quad \bmod 2
$$

Then the map will be different depending on d being even or odd, however in either case,

$$
B^{d} \xrightarrow{h} B S O(6) \times K(\mathbb{Z}, 2)
$$

is a rational homotopy equivalence over $B S O(6)$. Therefore

$$
\begin{equation*}
H *\left(B^{d} ; \mathbb{Q}\right) \cong \mathbb{Q}\left[p_{1}, p_{2}, e, t\right] \tag{2}
\end{equation*}
$$

Combining 1 and 2, we get that

$$
H^{*}\left(\mathcal{M}^{\theta_{d}}\left(V_{d}, \ell_{V_{d}}\right), \mathbb{Q}\right) \cong \mathbb{Q}\left[\kappa_{t^{i} c} \mid c \text { is a monomial in } p_{1}, p_{2}, e, \text { with }|c|+2 i>6\right]
$$

in degrees $* \leq \frac{d^{4}+5 d^{3}+10 d^{2}-10 d+4}{4}$.

2.3 Change of tangential structure

We now want to use what we know about $\mathcal{M}^{\theta_{d}}\left(V_{d}, \ell_{V_{d}}\right)$ to understand $\mathcal{M}^{\text {or }}\left(V_{d}\right)$, by using Theorem B. However, $h A u t(-)$ is generally hard to understand, so to compare these two spaces, we will make use of the fact that B^{d} is rationally homotopy equivalent to $B S O(6) \times K(\mathbb{Z}, 2)$ over $B S O(6)$:

It is much easier to understand the homotopy automorphisms of $B S O(6) \times K(\mathbb{Z}, 2)$ over μ, so we will try to understand $\mathcal{M}^{o r}\left(V_{d}\right)$ by comparing it to $\mathcal{M}^{\mu}\left(V_{d}, h \circ \ell_{V_{d}}\right)$. We will do this in two steps:
(a) Comparing $\mathcal{M}^{\theta_{d}}\left(V_{d}, \ell_{V_{d}}\right)$ with $\mathcal{M}^{\mu}\left(V_{d}, h \circ \ell_{V_{d}}\right)$. We have a fiber sequence

$$
\begin{equation*}
\mathcal{M}^{\theta_{d}}\left(V_{d}, \ell_{V_{d}}\right) \rightarrow \mathcal{M}^{\mu}\left(V_{d}, h \circ \ell_{V_{d}}\right) \rightarrow B H \tag{3}
\end{equation*}
$$

where $H \subseteq h \operatorname{Aut}(h)$ is the subgroup that stabilizes that path component. Since h is a rational homotopy equivalence, $\pi_{i}(h \operatorname{Aut}(h)) \otimes \mathbb{Q}=0, i>0$ and $\pi_{0}(h \operatorname{Aut}(h))=0$ (by obstruction theory). Hence the first map in 3 is a rational homotopy equivalence and

$$
H^{*}\left(\mathcal{M}^{\mu}\left(V_{d}, h \circ \ell_{V_{d}}\right) ; \mathbb{Q}\right) \cong H^{*}\left(\mathcal{M}^{\theta_{d}}\left(V_{d}, \ell_{V_{d}}\right) ; \mathbb{Q}\right)
$$

(b) Comparing $\mathcal{M}^{\mu}\left(V_{d}, h \circ \ell_{V_{d}}\right)$ with $\mathcal{M}^{o r}\left(V_{d}\right)$. Now we want to understand $h A u t(\mu)$. We have maps

and we want a self map of $B S O(6) \times K(\mathbb{Z}, 2)$ which respects the projection onto the first factor. We have no freedom in the first coordinate, only freedom in the second coordinate. Hence

$$
h \operatorname{Aut}(\mu) \cong \operatorname{Map}(B S O(6), h \operatorname{Aut}(K(\mathbb{Z}, 2)))
$$

We can understand $h \operatorname{Aut}(K(\mathbb{Z}, 2)) \subset \operatorname{Map}(K(\mathbb{Z}, 2), K(\mathbb{Z}, 2))$ looking at the following fibre sequence

Then

$$
\begin{aligned}
& \pi_{0}\left(M_{*}\right) \simeq H^{2}(K(\mathbb{Z}, 2))=\mathbb{Z} \\
& \pi_{1}\left(M_{*}\right) \simeq\left[S^{1} \wedge K(\mathbb{Z}, 2), K(\mathbb{Z}, 2)\right] \cong[K(\mathbb{Z}, 2), K(\mathbb{Z}, 1)]=H^{1}(K(\mathbb{Z}, 2))=0 \\
& \pi_{i}\left(M_{*}\right)=0 \quad i>1
\end{aligned}
$$

This gives us $h \operatorname{Aut}(K(\mathbb{Z}, 2)) \simeq \mathbb{Z}^{\times} \ltimes K(\mathbb{Z}, 2)$ and therefore

$$
h \operatorname{Aut}(\mu) \simeq \mathbb{Z}^{\times} \rtimes \operatorname{Map}(B S O(6), K(\mathbb{Z}, 2)) \simeq \mathbb{Z}^{\times} \rtimes K(\mathbb{Z}, 2)
$$

If we just want to consider elements which stabilize our path component, do not include -1 (which reverses orientation). We have a fiber sequence

$$
\begin{equation*}
\mathcal{M}^{\mu}\left(V_{d}, h \circ \ell_{V_{d}}\right) \rightarrow \mathcal{M}^{o r}\left(V_{d}\right) \rightarrow \Sigma K(\mathbb{Z}, 2)=K(\mathbb{Z}, 3) \tag{4}
\end{equation*}
$$

where we know the rational cohomology of the base and the fiber: by item (a) and section 2.2,

$$
H^{*}\left(\mathcal{M}^{\mu}\left(V_{d}, h \circ \ell_{V_{d}}\right) ; \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{t^{i} c} \mid c \text { is a monomial in } p_{1}, p_{2}, e, \text { with }|c|+2 i>6\right]
$$

and

$$
H^{*}(K(\mathbb{Z}, 3) ; \mathbb{Q})=\bigwedge\left[i_{3}\right]
$$

This implies that the Serre spectral sequence associated to the fibration 4 has at most two non-zero columns: when $p=0$ and $p=3$. In particular, this implies that the only possible nontrivial differential is d_{3}.
Result: $d_{3}\left(\kappa_{t^{n} e}\right)=i_{3} \otimes n \cdot \kappa_{t^{n-1} e} \Longrightarrow d_{3}$ is surjective!
Therefore we have

$$
H^{*}\left(\mathcal{M}^{o r}\left(V_{d}\right) ; \mathbb{Q}\right)=\operatorname{ker}\left(d_{3} \circlearrowright \mathbb{Q}\left[\kappa_{t^{i} c} \mid c \text { is a monomial in } p_{1}, p_{2}, e, \text { with }|c|+2 i>6\right]\right)
$$

Remark. At first glance, it may seem from our computations that the cohomology of $\mathcal{M}^{\text {or }}\left(V_{d}\right)$ does not depend on d, however this is not the case. Actually, we can see that d_{3} is immediately related to d, with $d_{3}\left(\kappa_{t e}\right)=\chi\left(V_{d}\right)$, which is a function of d.

Interlude By Oscar

What are these κ classes? How can they be defined intrinsically?
Look at $\mathcal{M}^{\theta}(W)$ classifies fiber bundles $W \rightarrow E \xrightarrow{\pi} X$ and a θ-structure on the vertical tangent bundle $T_{\pi} E=\operatorname{ker} D \pi$

Let $c \in H^{*}(B ; \mathbb{Q})$. Then $c\left(T_{\pi} E\right)=\ell^{*} c \in H^{|c|}(E ; \mathbb{Q})$ and $\kappa_{c}(\pi)=\int_{\pi} c\left(T_{\pi} E\right)=\pi_{!} c\left(T_{\pi} E\right) \in H^{|c|-2 n}(X ; \mathbb{Q})$ where $\pi_{!}$is referred to as (fiber integration, Gysin map, pushforward) give the generalized Miller-Morita-Mumford classes. This is the 'down-to-earth' way of describing them.

