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Beyond Wg,1

Let W a 2n-dimensional manifold, n ≥ 3, compact, connected. When discussing general such
manifolds, tangential structures become essential. Throughout the talk, let θ : B → BO(2n) be a
tangential structure and `W : W → B a chosen θ-structure on W.

We define the moduli space of W with θ-structures to be

Mθ(W ) := Emb(W,R∞)× Bun(TW, θ∗γ2n)/Diff(W )

As BDiff(W ) has a model given by the submanifolds of R∞ diffeomorphic to W , this moduli space
Mθ(W ) has a model consisting of all submanifolds of R∞ diffeomorphic to W together with a
choice of θ-structure.

If we fix a θ-structure `W , we denote byMθ(W, `W ) is the path component ofMθ(W ) containing
`W .

When we worked with Wg,1’s, homological stability depended on genus. What do we use here?

genus = max{g | ∃ embedding e : #gS
n × Sn \D2n →W}

when considering θ-structures, we require that such embeddings be admissible, i.e. that they respect
the tangential structure.

1 Theorems

Theorem (A). If `W is n-connected, B is simply-connected,

Mθ(W, `W )→ Ω∞MTθ

induces a homology isomorphism onto the path component of the image in degrees ≤ g−4
3 . If θ is

spherical, in degrees ≤ g−3
2 .

Remark. θ is spherical if Sn possesses a θ-structure.

Theorem A depends on the very strong hypothesis that `W is n-connected, which means that
for a fixed manifold W , it cannot be applied to any tangential structures. However, we can adapt
this result to hold in a wider range of cases.
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2 EXAMPLE

General tangential structures Given a tangential structure θ and `W a θ-structure on W
which is not n-connected, we can use the Moore-Postnikov tower for `W :

B′

W B BO(2n)

n-coconnected fibration
u

n-connected cofibration

`W

θ

which gives a new tangential structure θ′ : B′ → B → BO(2n) and the map W → B′ is an
n-connected θ′-structure for W .

Definition. We call homotopy automorphisms over u the topological monoid given by

hAut(u) := {weak equivalences of B′ over B}

with multiplication given by composition.

There is an action of hAut(u) on Mθ′(W ) by precomposing the θ-structures on W with such
weak equivalences. This action gives us fiber sequences:

hAut(u)→Mθ′(W )→Mθ(W )

Mθ′(W )→Mθ(W )→ BhAut(u)

Mθ′(W, `W )→Mθ(W, `W )→ BH

where H ⊂ hAut(u) is a submonoid.

Theorem (B). If `W any θ-structure, W simply-connected, then

Mθ(W, `W )→ Ω∞0 MTθ′ � hAut(u)

induces a H∗-isomorphism in degrees ≤ g−4
3 . If θ spherical, then in degrees ≤ g−3

2 .

These theorems are extremely important tools to understand the moduli space of manifolds, in
particular because we know how to compute the cohomology of Ω∞MTθ through different methods
(for instance using the Thom isomorphism). Explicitly, we have:

Theorem. H∗(Ω∞MTθ;Q) = Q[κc | c basis element of H>d(B;Qw1)]

2 Example

Let Vd ⊂ CPn+1 be a smooth hypersurface determined by the roots of a nondegenerate homogeneous
complex polynomial of degree d.

Fact. The diffeomorphism type of such a smooth V depends only on the degree d of the polynomial.
The resulting 2n-dimensional manifold is what we denote Vd.

Goal. To compute H∗(Mor(Vd);Q) for Vd ⊂ CP 4 a 6-dimensional manifold.
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2.1 Algebraic topology of Vd 2 EXAMPLE

Strategy:

1. Understand the algebraic topology of Vd;
2. Look at the Moore-Postnikov 3-stage for an orientation and apply Theorem A;
3. Use Theorem B to get a result about orientation.

2.1 Algebraic topology of Vd

The cohomology of Vd can be understood through some classical results in Algebraic Topology and
Algebraic Geometry.

Lefschetz hypersurface theorem tells us that Vd
i
↪→ CP 4 is 3-connected. In particular, Vd is

simply-connected and

H0(Vd) = Z H1(Vd) = 0 H2(Vd) = Z{t}

By Poincaré duality,

H6(Vd) = Z{u} H5(Vd) = 0 H4(Vd) = Z{?}

The Euler characteristic can be computed using methods from Algebraic Geometry, and we get

χ(Vd) = d(10− 10d+ 5d2 − d3)

Combining all of the above we see that H3(Vd) is free of rank 4−χ(Vd) = d4− 5d3 + 5d2− 10d+ 4.
In particular, this tells us what the genus of this manifold could be, since it is measured by the

number of embedded S3 × S3. A precise result on the genus can be obtained using the following:

Theorem (Wall’s theorem). If W simply-connected, 6-dimensional manifold, then there exists M
such that H3(M) is finite and W = M#gS

3 × S3.

In particular, applying this result for the Vd’s, we get that their genus is given by

g =
1

2
(3rd Betti number) =

1

2
(d4 − 5d3 + 5d2 − 10d+ 4)

2.2 Moore-Postnikov 3-stage

Given a choice of orientation Vd → BSO(6), we can take its Moore-Postnikov 3-stage

Bd

Vd BSO(6)

θd`Vd

Where `Vd
is a 3-connected cofibration and θd is a 3-coconnected fibration.

Applying Theorem A to θd: we have a H∗-isomorhpism for ∗ ≤ g−4
3 = d4+5d3+10d2−10d+4

4

Mθd(Vd, `Vd
)→ Ω∞MTθd
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2.3 Change of tangential structure 2 EXAMPLE

which gives us an isomorphism in the same range between

H∗(Mθd(Vd, `Vd
))
∼=←− Q[κc | c basis element of H>d(Bd;Q)] (1)

What is H∗(Bd;Q)? By the (co)-connectivity hypotheses,

0 = π1(Vd) ∼= π1(Bd)

Z = π2(Vd)
'−→π2(Bd)

?−→ π2(BSO(6)) = Z/2
π3(Vd) � π3(Bd) ↪→ π3BSO(6) = 0

πi(B
d)
'−→ πiBSO(6), i ≥ 4

These maps tell us basically everything about the homotopy groups of Bd, except in degree 2. So
it remains to understand the map on π2, which is detected by w2, the 2nd Stiefel-Whitney class:

w2 ≡ 5− d mod 2

Then the map will be different depending on d being even or odd, however in either case,

Bd
h−→ BSO(6)×K(Z, 2)

is a rational homotopy equivalence over BSO(6). Therefore

H ∗ (Bd;Q) ∼= Q[p1, p2, e, t] (2)

Combining 1 and 2, we get that

H∗(Mθd(Vd, `Vd
),Q) ∼= Q[κtic|c is a monomial in p1, p2, e, with |c|+ 2i > 6]

in degrees ∗ ≤ d4+5d3+10d2−10d+4
4 .

2.3 Change of tangential structure

We now want to use what we know aboutMθd(Vd, `Vd
) to understandMor(Vd), by using Theorem

B. However, hAut(−) is generally hard to understand, so to compare these two spaces, we will make
use of the fact that Bd is rationally homotopy equivalent to BSO(6)×K(Z, 2) over BSO(6):

Bd BSO(6)×K(Z, 2)

Vd BSO(6)

θd

∼Q
u

µ
`Vd

It is much easier to understand the homotopy automorphisms of BSO(6) ×K(Z, 2) over µ, so
we will try to understand Mor(Vd) by comparing it to Mµ(Vd, h ◦ `Vd

). We will do this in two
steps:
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2.3 Change of tangential structure 2 EXAMPLE

(a) Comparing Mθd(Vd, `Vd
) with Mµ(Vd, h ◦ `Vd

). We have a fiber sequence

Mθd(Vd, `Vd
)→Mµ(Vd, h ◦ `Vd

)→ BH (3)

where H ⊆ hAut(h) is the subgroup that stabilizes that path component. Since h is a rational
homotopy equivalence, πi(hAut(h)) ⊗ Q = 0, i > 0 and π0(hAut(h)) = 0 (by obstruction
theory). Hence the first map in 3 is a rational homotopy equivalence and

H∗(Mµ(Vd, h ◦ `Vd
);Q) ∼= H∗(Mθd(Vd, `Vd

);Q)

(b) Comparing Mµ(Vd, h ◦ `Vd
) with Mor(Vd). Now we want to understand hAut(µ). We have

maps

BSO(6)×K(Z, 2)

Vd BSO(6)

µ

and we want a self map of BSO(6) × K(Z, 2) which respects the projection onto the first
factor. We have no freedom in the first coordinate, only freedom in the second coordinate.
Hence

hAut(µ) ∼= Map(BSO(6), hAut(K(Z, 2)))

We can understand hAut(K(Z, 2)) ⊂ Map(K(Z, 2),K(Z, 2)) looking at the following fibre
sequence

M∗ := Map∗(K(Z, 2),K(Z, 2)) Map(K(Z, 2),K(Z, 2))

K(Z, 2)

Then

π0(M∗) ' H2(K(Z, 2)) = Z
π1(M∗) ' [S1 ∧K(Z, 2),K(Z, 2)] ∼= [K(Z, 2),K(Z, 1)] = H1(K(Z, 2)) = 0

πi(M∗) = 0 i > 1

This gives us hAut(K(Z, 2)) ' Z× nK(Z, 2) and therefore

hAut(µ) ' Z× o Map(BSO(6),K(Z, 2)) ' Z× oK(Z, 2)

If we just want to consider elements which stabilize our path component, do not include −1
(which reverses orientation). We have a fiber sequence

Mµ(Vd, h ◦ `Vd
)→Mor(Vd)→ ΣK(Z, 2) = K(Z, 3) (4)

where we know the rational cohomology of the base and the fiber: by item (a) and section
2.2,

H∗(Mµ(Vd, h ◦ `Vd
);Q) = Q[κtic|c is a monomial in p1, p2, e, with |c|+ 2i > 6]
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2.3 Change of tangential structure 2 EXAMPLE

and
H∗(K(Z, 3);Q) =

∧
[i3]

This implies that the Serre spectral sequence associated to the fibration 4 has at most two
non-zero columns: when p = 0 and p = 3. In particular, this implies that the only possible
nontrivial differential is d3.
Result: d3(κtne) = i3 ⊗ n · κtn−1e =⇒ d3 is surjective!
Therefore we have

H∗(Mor(Vd);Q) = ker (d3 � Q[κtic|c is a monomial in p1, p2, e, with |c|+ 2i > 6])

Remark. At first glance, it may seem from our computations that the cohomology ofMor(Vd) does
not depend on d, however this is not the case. Actually, we can see that d3 is immediately related
to d, with d3(κte) = χ(Vd), which is a function of d.

Interlude by Oscar

What are these κ classes? How can they be defined intrinsically?
Look atMθ(W ) classifies fiber bundles W → E

π−→ X and a θ-structure on the vertical tangent
bundle TπE = kerDπ

TπE θ∗γ

E B BO(2n)

X

` θ

Let c ∈ H∗(B;Q). Then c(TπE) = `∗c ∈ H |c|(E;Q) and κc(π) =
∫
π
c(TπE) = π!c(TπE) ∈ H |c|−2n(X;Q)

where π! is referred to as (fiber integration, Gysin map, pushforward) give the generalized Miller-
Morita-Mumford classes. This is the ‘down-to-earth’ way of describing them.
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