Talbot 2018: Model-independent theory of ∞ -categories

Exercises

Talk 2

- 1. Exercise 1.1.iv in [RV] (to understand the homotopy coherent isomorphism $\mathbb{I}).$
- Prove from axioms (i) and (ii) in the definition of ∞-cosmos that every trivial fibration has a section.
- 3. Exercise 1.2.ii in [RV] on enriched products.
- 4. For $A \in qCat$ describe explicitly $A^{\Delta[1]}(=A^2) \in qCat$.

Talk 3

- 1. Prove that a class of maps given by a right lifting property is closed under limits of towers.
- 2. What is the homotopy 2-category of the ∞ -cosmos **Cat**?
- 3. Find new examples of ∞ -cosmoi (and tell Emily and Dom what they are).

Talk 4

- 1. Prove that adjunctions compose.
- 2. Prove:
 - (a) $f \dashv u$ and $f' \dashv u$ implies $f \cong f'$.
 - (b) $f \dashv u$ and $f \cong f'$ implies $f' \dashv u$.
- 3. Formulate "the notion of adjunction between ∞ -categories is equivalence invariant" and prove it.
- 4. Exercise 2.4.i in [RV] (proving "cheap RAPL" using adjunction facts).
- 5. Exercise 2.4.iii in [RV] (proving RAPL in the usual way).

Talk 5

1. Use the isomorphism $\operatorname{Fun}(X, A^2) \cong \operatorname{Fun}(X, A)^2$ that defines the simplicial cotensor to define

$$A^2 \xrightarrow[cod]{dom} A$$
 in h \mathcal{K}

2. Explain how $X \to A^2$ encodes a 2-cell

$$X \xrightarrow{\Downarrow} A \qquad \text{in } \mathbf{h}\mathcal{K}$$

3. If the 2-cell

$$X \underbrace{\cong \Downarrow \gamma}_{g} A^2$$

is such that dom γ and cod γ are the identity (here dom and cod are the maps from problem 1 in Talk 5), prove that f and g represent the same 2-cell

$$X \xrightarrow{\downarrow} A$$

Hint: horizontal composition.

Talk 6

- 1. For $1 \xrightarrow{b} B$ prove $B \downarrow b$ has a terminal element.
- 2. Prove that two terminal elements $\mathbf{1} \xrightarrow[s]{t} A$ are isomorphic in $ho(A) \coloneqq hFun(\mathbf{1}, A).$

Talk 7

- 1. Use the graphical calculus to prove that **Adj** contains an adjunction and **Mnd** contains a monad.
- 2. Exercise 8.1.vi in [RV] expressing Adj as a hammock localization.

Talk 8

1. Given a homotopy coherent adjunction, build a *u*-split augmented simplicial object in *A*.

$$\begin{array}{ccc} A \longrightarrow B^{\Delta_{\top}} \\ \downarrow & & \downarrow^{\text{res}} \\ A^{\Delta_{+}^{op}} \xrightarrow{} & B^{\Delta_{+}^{op}} \end{array}$$

2. Explain why the weighted limit definition of the ∞ -category of *T*-algebras computes the right Kan extension.

Talk 9

1. If p is cartersian, the 2-cell ϕ admits a p-cartesian lift as below

and thus

$$B \downarrow p \xrightarrow{\uparrow} E = B \downarrow p \xrightarrow{\bar{r}} E^2 \xrightarrow{p_1} E$$

Prove that $K \dashv \bar{r}$ with ε an isomorphism.

Talk 10

1. Prove that $A^2 \xrightarrow{(p_1,p_0)} A \times A$ is discrete in $\mathcal{K}_{/A \times A}$.

Talk 11

1. Prove that modules $A \xrightarrow{E} B$ and $A \xrightarrow{E'} B$ are equivalent over $A \times B$ if and only if they are vertically isomorphic in $\mathbf{Mod}(\mathcal{K})$.

Talk 12

- 1. Define the limit of a diagram $A \xrightarrow{d} E$ between ∞ -categories in a not-necessarily-cartesian closed cosmos.
- 2. Prove directly from the definition above that right adjoints preserve limits.

Talk 13

1. Pick one of the things that cosmological functors preserve (e.g. adjunctions, limits) and prove it.

- 2. Suppose that $\mathcal{K} \xrightarrow{\sim} f$ **1** are biequivalent.
 - (a) Prove that $A \xrightarrow{u} B \in \mathcal{K}$ has a left adjoint if and only if $FA \xrightarrow{Fu} FB \in \mathbf{1}$ has a left adjoint.
 - (b) Prove that $\mathbf{1} \stackrel{d}{\longrightarrow} C^J \in \mathcal{L}$ has a limit if and only if any corresponding diagram in \mathcal{K} does.

Talk 14

1. If $E \xrightarrow{p} B$ is cocartesian, define the functor E_f .

Talk 15

- 1. Compute the homotopy coherent n-simplex $FU_{\bullet}[n] \in \mathbf{sSet} \mathbf{Cat}$.
- 2. If A has limits of shape I and J and products, prove that A has limits of shape $I \coprod J$.

Talk 16

1. Is the cosmological functor $\mathbf{qCat} \xrightarrow{\sim} \mathbf{CSS}$ Toën's Quillen equivalence? Emily said she wasn't sure.

References

[RV] Emily Riehl and Dominic Verity. ∞-categories for the working mathematician (version 6/1/2018). Preliminary draft version available from www.math.jhu.edu/~eriehl/ICWM.pdf.