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EQUIVARIANT STABLE HOMOTPY THEORY AND THE

KERVAIRE INVARIANT

MENTORED BY MIKE HILL AND DOUG RAVENEL

Prerequisites

Prerequisites should include elementary category theory (everybody should know
what natural transformations, limits and colimits are), chromatic homotopy theory
(including formal group laws, the Morava stabilizer group and the statement of the
Hopkins-Miller theorem) and model categories.

The standard reference for category theory is [ML98, Chapters I–VII].
For chromatic homotopy theory, see [Rav92, Chapters 1–4]. The Hopkins-Miller

theorem is treated in [Rez98, §1-4].
The introduction to model categories can be found in [DS95] is a good start.

More thorough treatments are given by [Hov99] and [Hir03], but it is not necessary
to know all of the material they cover.

The talks outlined below are intended to cover a lot of ground. In most cases
there will not be time for detailed proofs. The speakers should aim at giving enough
definitions and background to make clear statements of the appropriate theorems.

The latter talks in the workshop will use tools developed in the earlier ones. Some
but perhaps not all of these connections are indicated in the following syllabus.
We recommend that the various speakers be in close contact with each
before the workshop in order to be sure that the necessary tools have
been developed.

Online copies of nearly all of the references cited below can be found on Doug’s
archive at

http://www.math.rochester.edu/people/faculty/doug/papers.html

One exception is the unfinished manuscript [HHRa], which will be emailed to the
participants of this workshop.

Talks

1. Historical introduction, to be given by Hill or Ravenel. The Kervaire
invariant problem originated with the work of Kervaire-Milnor [KM63] (and
before that [Ker60]) on the classification of differentiable structures on
spheres. Their work left an ambiguous factor of two in each dimension
congruent to 1 mod 4. A theorem of Browder [Bro69] a few years later re-
lated this problem to a question about the Adams spectral sequence. There
one has an element known as θj = h2

j in dimension 2j+1 − 2. The broad
impact of Milnor’s discovery in [Mil56] of exotic differentiable structures on
spheres led to great interest in the question posed by Browder’s theorem.
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In the 1970s there were numerous unsuccessful attempts to solve the prob-
lem by constructing framed manifilds rperesenting θj for all j > 0. Such
manifolds were known to exist for 1 < j < 4 and later for j = 5.

2. Overview of the proof of the Kervaire invariant theorem, to be
given by Hill or Ravenel. In 2009 we proved in [HHRb] that θj does not
exist for j ≥ 7. The status of θ6 remains open. Our made substantial use of
both chromatic and equivariant stable homotopy theory. We constructed a
ring spectrum Ω with the following three properties.
(i) Detection Theorem. It has an Adams-Novikov spectral sequence

(which is a device for calculating homotopy groups) in which the image
of each θj is nontrivial. This means that if θj exists, we will see
its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(Ω)
depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk(Ω) = 0 for −4 < k < 0. This property is our
zinger. Its proof involves a new tool we call the slice spectral sequence.

Very briefly, the spectrum Ω is the fixed point set of a C8-equivariant
spectrum related to the complex cobordism spectrum MU . The construc-
tions and calculations involved in the proof require a thorough understand-
ing of the equivariant stable homotopy category.

3. The odd primary Arf invariant theorem. In the Adams spectral se-
quence for an odd prime there are elements analogous to h2

j . As of the mid
70s it was known that the first of these for p ≥ 5 represents the homo-
topy element β1 in the (2p2 − 2p− 2)-stem, while the second one supports
a nontrivial differential, which was shown by to Toda [Tod67]. Using the
newly discovered apparatus of the chromatic spectral sequence ([MRW77]
and [Rav86, Chapter 5]), Ravenel showed in [Rav78] (equivalently [Rav86,
§6.4]) that none of the higher cases of these Adams spectral sequence el-
ements represent homotopy elements. In modern language, one has the
Morava stabilizer group Sp−1 acting on the Morava spectrum Ep−1. The
group is known to have a subgroup of order p, so one has a homotopy fixed

point set E
hCp

p−1 . It has properties similar to those of the spectrum Ω used

in [HHRb].

4. Review of category theory including adjoint functors, limits and colim-
its, ends and coends, and Kan extensions, enriched category theory, includ-
ing symmetric monoidal categories and, enriched functors and the Day con-
volution. See [HHRa, §2] (which gives many additional references), [ML98]
and [Rie14]. The speaker should consult with the person giving the defi-
nition of G-spectra to be sure all the necessary tools are introduced here.

5. and 6. Introduction to equivariant homotopy theory including the Bredon
theorem, Mackey functors, G-CW complexes, representation spheres and
orthogonal representation theory for cyclic 2-groups, RO(G)-graded homo-
topy groups and the isotropy separation sequence. This material is covered
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in [GM95], [HHRb, §2-3], and [HHRa, §5], which gives many additional
references. Also consult [HHRc, §2, §3, and §6].

7. and 8. Model categories including cofibrantly generated ones, Bousfield localiza-
tion and maybe enriched model categories. Model category structures for
the category of pointed G-spaces (Mandell-May [MM02, III.1]) and for clas-
sically defined spectra (Bousfield-Friedlander [BF78]). Explain why Bous-
field localization (of either spaces or spectra) and the passage from “spec-
tra” to “Ω-spectra” are both forms of fibrant replacement. State the Kan
Recognition and Transfer Theorems of [HHRa, §3.8]. See [HHRa, §3] and
the references therein. Consult with the person giving the lecture on the
positive complete model structure.

9. The Mandell-May [MM02] definition of G-spectra including Yoneda
spectra (aka S−V ), the tautological presentation and smash product via
the Day convolution. This is explained in [HHRa, §6] and the references
therein. It relies heavily on categorical concepts developed earlier in the
book and hopefully covered in lecture 4. You should consult with the per-
son doing that lecture. For an expository talk on this topic, see Doug’s
lecture at the Lehigh conference of May, 2015. There is a link to it at at
http://www.math.rochester.edu/people/faculty/doug/AKtalks.html.
Also see [HHRb, §A.2]. Consult with the person giving the lecture on the
positive complete model structure.

The definition of spectra, meaning the foundation of stable homotopy
theory, has changed several times since they were first introduced over fifty
years ago. Remarkably, no new definition has invalidated any calculations
based on previous definitions. This validates the adage “computation pre-
cedes theory.” It seems that our intuition about spectra has been right all
along, despite the shifting sands upon which the edifice rests.

The first definition with a strictly associative and commutative smash
product was that of [EKMM97]. Prior to its appearance in the mid ’90s,
there were many technical headaches associated with the smash product.
The definition given in [MM02] a few years later, along with similar def-
initions discussed in [MMSS01], is far simpler. Amazingly, the wonderful
properties of the smash product (in all cases except [EKMM97]) follow for-
mally using categorical tools (the Day convolution) available since the early
70’s. A very helpful discussion of this development can be found in [Sch07,
pp. 2-3].

10. The homotopy of G-spectra including long exact sequences of homotopy
groups for fiber and cofiber sequences. See [HHRa, §7], [HHRb, §B.1-3] and
[MM02]. The results here can be stated before defining a model category
structure on SG, the category of G-spectar and equivaraint maps defined
in the provious talk. One only needs to know what a weak equivalance is,
and this is dictated by our long standing intuition about stable homotopy
theory. This leads to the notion of a homotopical category, first introduced
by Kan et al in [DHKS04], the “blue beast.” Be sure to include a discussion
of h-cofibrations and flat maps. Consult with the person giving the lecture
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on the positive complete model structure, for which these concepts are
needed.

11. The positive complete model category structure and why we need
it. See [HHRa, §8] and [HHRb, §B.4]. You will need material from the
previous 4 lectures, so you should consult with the people giving them.
This structure differs from the positive stable model category structure
given by [MM02]. It plays more nicely with change of group functors and
with wedges and smash products indexed by G-sets. See [HHRb, Remark
2.23].

One odd feature of ths model category structure is the fact that the
sphere spectrum, which we denote in [HHRa] by S−0, is not cofibrant.
This has to do with the bad behavior of the nth symmetric power functor
Symn, which fails to preserve weak equivalences. For example applying it
to the weak equivalence S−1∧S1 → S−0 does not yield a weak equivalence.
In order to get a model category stucture on the category of commutative
G-equivariant ring spectra, we need a model structure for which Symn

preserves weak equivalences between cofibrant objects.

12. The norm functor, multiplicative properties and their relation
to geometric fixed points. These two constructions are the compu-
tational mainsprings of the proof of the Kervaire invariant theorem. See
[HHRb, §2.5] for an introduction to the geometric fixed point functor. For
a G-spectrum X, the geometic fixed point spectrum ΦG(X) is defined to
be the G-fixed point set of the fibrant replacement of the smash product
of X with a certain G-space EP+. This functor is shown to preserve weak
equivalances, smash products and filtered colimits, and we have a conve-
nient description of it when X is a suspension spectrum, spelled out in
[HHRb, Prop. 2.45]. There is a similar functor denoted in [HHRb] by ΦG

M

(monoidal geometric fixed points) defined in [MM02] that is more explicit
in that its definition does not involve fibrant replacement. The relation
between ΦG and ΦG

M is studied in [HHRb, B.10].
Meanwhile for a subgroup H ⊆ G we have the norm functor NG

H from
H-spectra to G-spectra. It is introduced in [HHRb, §2.2.3]. Roughly
speaking, for an H-spectrum X, the G-spectrum NG

HX is the smash power

X∧|G/H| where the action of G permutes the smash coordinates with each
factor being invariant under H. The functor NG

H converts commutative
H-ring spectra to commutative G-ring spectra and is the left adjoint of the
forgetful functor from the latter to the former.

At this point a serious technical issue arises. The spectra underlying
commutative rings are almost never cofibrant since the sphere spectrum is
not cofibrant. This means that there is no guarantee that the norm of a
commutative ring has the correct homotopy type. The fact that it does is
one of the main results of [HHRb, Appendix B]. (This paragraph appears
nearly verbatim just before [HHRb, Prop. 2.30].)

Finally one has the fact that the functors ΦGNG
H and ΦH are weakly

equivalent. This is discussed in [HHRb, §2.5.4].
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13. Slice filtration and slice spectral sequence. Classically one can attach
cells to a space or spectrum X to kill off all of its homotopy groups above
dimension n. We denote the resulting space or spectrum by PnX, the nth
Postnikov section of X. The fiber of the map X → PnX is Pn−1X, the
n-connected cover of X. The map X → PnX factors through Pn+1X, and
the fiber Pn

nX of the map Pn+1X → PnX is an Eilenberg-Mac Lane space
or spectrum capturing πnX. This construction can be done functorially and
described in terms of Dror localization as in [Far96]; see also [HHRa, §10].
For each n the subcategory of (n − 1)-connected spaces or spectra is the
smallest subcategory containing Sn that is closed under certain operations.
Formally this collection of subcategories determines all the functors in sight.

The slice filtration is a similar construction in the category SG ofG-spectra.
The point of departure is a collection of subcategories generalizing those of
(n−1)-connected spectra for all n. The nth subcategory is the smallest one
that is closed under similar operations and contains a certain collection of
finite G-CW spectra, each of which is underlain by a finite wedge of spheres
of dimension ≥ n. This leads to functors Pn, Pn and Pn

n as before.
In favorable cases Pn

nX, the nth slice of X, is a G-spectrum related to
the integer Eilenberg-Mac Lane spectrum HZ, but its equivariant homo-
topy groups are not concentrated in a single dimension. This means we
get an interesting spectral sequence associated with the filtration of X by
its “connective” covers. This is the slice spectral sequence, the main
computational tool of [HHRb].

The first reference is [HHRb, §4]. Also consult [Hil].

14. Dugger’s computation for real K-theory. The slice spectral sequence
for Atiyah’s real K-theory spectrum KR was worked out by Dugger in is
thesis [Dug05]. The group here is C2, which acts on the complex K-theory
spectrum by conjugation. It is described in more modern language as a
spectral sequence of Mackey functors in [HHRc, §8]. Also see Doug’s talk
at the Northwestern University conference of March, 2013, for which there
is a link at
http://www.math.rochester.edu/people/faculty/doug/AKtalks.html

15. The construction of MUR and its slice differentials. This C2-spectrum
is the star of our show. It is obtained from the complex cobordism spec-
trum MU by defining a group action in terms of complex conjugation. See
[HHRb, §5 and B.12]. It is a commutative ring in the category SC2 . Apply-

ing the norm functor NC2n

C2
(which we abbreviate by N2n

2 ) gives a commu-

tative ring in the category SC2n . One can show that ΦC2MUR = MO, the
unoriented cobordism spectrum. By comparing the long known homotopy
groups of MO with those of MU , one finds some nontrivial differentials in
the slice spectral sequence for N2n

2 MUR. These are spelled out in [HHRb,
Thm. 9.9]. They determine the slice spectral sequence completely for the
case n = 1. For n > 1 (in particular for n = 3, the case relevant to the
spectrum Ω) they give enough information for the computations we need.

16. The Slice, Reduction and Gap Theorems. The slice theorem enables
us to identify the slices for spectra of interest, which are related to MUR.
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Formally his problem can be reduced to identifying the 0-slice, which is
the subject of the reduction theorem. Once this has been done, the gap
theorem is an easy corollarly See [HHRb, §6-8]. For an expository talk on
the gap theorem, see Doug’s lecture at the Princeton Conference of March,
2015. There is a link to it at at
http://www.math.rochester.edu/people/faculty/doug/AKtalks.html.

17. The Periodicity Theorem. The spectrum Ω is constrcuted as follows.
One starts with the C8-spectrum N8

2MUR described above. For reasons
which become apparent in the proof, one inverts a certain elementD ∈ π19ρ8

(where ρ8 denotes the regular representation of C8) by forming a mapping

telescope, which we denote by Ω̃. Then Ω itself is the fixed point spectrum

Ω̃C8 . The element D is chosen so that inverting it will convert a certain
element into a permanent cycle in the slice spectral sequence even though
it supports a nontrivial differential before inverting D. This permanent
cycle enables us to construct the desired equivalence Σ256Ω → Ω. The
construction can be adapted to N

n

2 MUR for any n. The dimension of the

resulting periodicity is 2n+1+2n−1

. For n = 1, this value is 8, and it is
related to classical Bott periodicity. See [HHRb, §9].

This lecture and the next one could be cut if we run out of time.

18. The Detection Theorem. This guarantees that if θj exists we will see it
in π∗Ω. It is the reason for choosing n = 3. This theorem fail for smaller n.
It holds for larger n but would yield a weaker result about the nonexistence
of θj . For example the peridocity dmnsion for n = 4 is 213, so we would get
a theorem saying that θj does not exist for j ≥ 12.

The proof involves some 2-adic number theory and a study of the classical
Adams-Novikov 2-line. See [HHRb, §11].

19. Future directions: the 3-primary problem, the C4 computation, the
prospects for θ6 and questions related to the slice filtration. To be given by
Hill or Ravenel.
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