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1 Background and history

1.1 Classifying exotic spheres
The Kervaire-Milnor classification of exotic spheres
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About 50 years ago three papers appeared that revolutionized algebraic and differential topology.

•

John Milnor’s On manifolds home-
omorphic to the 7-sphere, 1956.
He constructed the first “exotic
spheres”, manifolds homeomorphic
but not diffeomorphic to the stan-
dard S7. They were certain
S3-bundles over S4.

1.4

The Kervaire-Milnor classification of exotic spheres (continued)

•

Michel Kervaire 1927-2007

Michel Kervaire’s A manifold which does not admit any differentiable structure, 1960. His
manifold was 10-dimensional. I will say more about it later. 1.5

The Kervaire-Milnor classification of exotic spheres (continued)
• Kervaire and Milnor’s Groups of homotopy spheres, I, 1963.

They gave a complete classification of exotic spheres in dimensions ≥ 5, with two caveats:

(i) Their answer was given in terms of the stable homotopy groups of spheres, which remain
a mystery to this day.

(ii) There was an ambiguous factor of two in dimensions congruent to 1 mod 4. The solution
to that problem is the subject of this talk. 1.6

1.2 Pontryagin’s early work on homotopy groups of spheres
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps f : Sn+k → Sk was
• Assume f is smooth. We know that any map f can be continuously deformed to a smooth one.
• Pick a regular value y ∈ Sk. Its inverse image will be a smooth n-manifold M in Sn+k.
• By studying such manifolds, Pontryagin was able to deduce things about maps between spheres. 1.7
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Pontryagin’s early work (continued)
Let f be a smooth map with regular value y.

Sn+k f

smooth
// Sn

Sn+k f

smooth
// Sn

smooth closed k-manifold Mk //
?�

OO

{y}
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OO

regular value

Sn+k f

smooth
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Dn?
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OO

small disk

smooth closed k-manifold Mk //
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regular value

Sn+k f

smooth
// Sn

V n+k //
?�

OO

Dn?
�

OO

small disk

smooth closed k-manifold Mk //
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Sn+k f

smooth
// Sn

Mk ×Dn V n+k //
?�

OO

≈

framing
oo Dn?

�
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small disk

smooth closed k-manifold Mk //
?�

OO

{y}
?�

OO

regular value

A sufficiently small disk Dn around y consists entirely of regular values, so its preimage V n+k is
an (n+ k)-manifold homeomorphic to M×Dn. A local coordinate system around around the point
y ∈ Sn pulls back to one around M called a framing.

There is a way to reverse this procedure. A framed manifold Mk ⊂ Sn+k determines a map
f : Sn+k → Sn. 1.8
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Pontryagin’s early work (continued)
Two maps f1, f2 : Sn+k → Sk are homotopic if there is a continuous map h : Sn+k × [0,1] → Sk

(called a homotopy between f1 and f2) such that

h(x,0) = f1(x) and h(x,1) = f2(x).

If y ∈ Sk is a regular value of h, then h−1(y) is a framed (n+1)-manifold N ⊂ Sn+k × [0,1] whose
boundary is the disjoint union of M1 = f−1

1 (y) and M2 = f−1
2 (y). This N is called a framed cobordism

between M1 and M2. When it exists the two closed manifolds are said to be framed cobordant. 1.9

Pontryagin’s early work (continued)
Here is an example of a framed cobordism for n = k = 1.

Pontryagin (1930’s)

M1

M2

N

Framed cobordism

1.10

Pontryagin’s early work (continued)
Let Ω

f r
n,k denote the cobordism group of framed n-manifolds in Rn+k, or equivalently in Sn+k.

Pontryagin’s construction leads to a homomorphism

Ω
f r
n,k → πn+kSk.

Pontyagin’s Theorem (1936). The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for k > n. We denote the resulting stable groups
by simply Ω

f r
n and πS

n .

The determination of the stable homotopy groups πS
n is an ongoing problem in algebraic topology.

Experience has shown that unfortunately its connection with framed cobordism is not very helpful
for finding homotopy groups. It is not used in the proof of our theorem. 1.11

1.3 Exotic spheres as framed manifolds
Exotic spheres as framed manifolds

Into the 60s again

Following Kervaire-Milnor, let Θn denote
the group of diffeomorphism classes of ex-
otic n-spheres Σn. The group operation
here is connected sum.
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Each Σn admits a framed embedding into some Euclidean space Rn+k, but the framing is not
unique. Thus we do not have a homomorphism from Θn to πS

n , but we do get a map to a certain
quotient. 1.12

Exotic spheres as framed manifolds (continued)

Two framings of an exotic sphere Σn ⊂ Sn+k differ by a map to the special orthogonal group
SO(k), and this map does not depend on the differentiable structure on Σn. Varying the framing on
the standard sphere Sn leads to a homomorphism

πnSO(k) J // πn+kSk

Heinz Hopf George Whitehead
1894-1971 1918-2004

called the Hopf-Whitehead J-homomorphism. It is well understood by homotopy theorists. 1.13

Exotic spheres as framed manifolds (continued)
Thus we get the Kervaire-Milnor homomorphism

Θn
p // πS

n/ImJ.

The bulk of their paper is devoted to studying its kernel and cokernel using surgery. The two
questions are closely related.

• The map p is onto iff every framed n-manifold is cobordant to a sphere, possibly an exotic one.
• It is one-to-one iff every exotic n-sphere that bounds a framed manifold also bounds an (n+

1)-dimensional disk and is therefore diffeomorphic to the standard Sn.

They denote the kernel of p by bPn+1, the group of exotic n-spheres bounding parallelizable
(n+1)-manifolds. 1.14

Exotic spheres as framed manifolds (continued)
Hence we have an exact sequence

0 // bPn+1 // Θn
p // πS

n/ImJ.

Kervaire-Milnor Theorem (1963). • The homomorphism p above is onto except possibly when
n = 4m+2 for m ∈ Z, and then the cokernel has order at most 2.

• Its kernel bPn+1 is trivial when n is even.
• bP4m is a certain cyclic group. Its order is related to the numerator of the mth Bernoulli number.
• The order of bP4m+2 is at most 2.
• bP4m+2 is trivial iff the cokernel of p in dimension 4m+2 is nontrivial.

We now know the value of bP4m+2 in every case except m = 31. 1.15
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Exotic spheres as framed manifolds (continued)
In other words have a 4-term exact sequence

0 // Θ4m+2
p // πS

4m+2/ImJ // Z/2 // bP4m+2 // 0

The early work of Pontryagin implies that bP2 = 0 and bP6 = 0.

In 1960 Kervaire showed that bP10 = Z/2.

To say more about this we need to define the Kervaire invariant of a framed manifold. 1.16

2 The Arf-Kervaire invariant
The Arf invariant of a quadratic form in characteristic 2

Back to the 1940s

Cahit Arf 1910-1997

Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank 2n with
mod 2 reduction H. It is known that H has a basis of the form {ai,bi : 1 ≤ i ≤ n} with

λ (ai,ai′) = 0 λ (b j,b j′) = 0 and λ (ai,b j) = δi, j.
1.17

The Arf invariant of a quadratic form in characteristic 2 (continued)
In other words, H has a basis for which the bilinear form’s matrix has the symplectic form

0 1
1 0

0 1
1 0

. . .
0 1
1 0


.

1.18

The Arf invariant of a quadratic form in characteristic 2 (continued)
A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x+ y) = q(x)+q(y)+λ (x,y)

Its Arf invariant is

Arf(q) =
n

∑
i=1

q(ai)q(bi) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n) determines the isomorphism type of
q. 1.19
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Money talks: Arf’s definition republished in 2009

Cahit Arf 1910-1997
1.20

The Kervaire invariant of a framed (4m+2)-manifold

Into the 60s
a third time

Let M be a 2m-connected smooth closed
framed manifold of dimension 4m+2. Let
H = H2m+1(M;Z), the homology group in
the middle dimension. Each x ∈ H is rep-
resented by an embedding ix : S2m+1 ↪→ M
with a stably trivialized normal bundle. H
has an antisymmetric bilinear form λ de-
fined in terms of intersection numbers.

Here is a simple example. Let M = T 2, the torus, be embedded in S3 with a framing. We define
the quadratic refinement

q : H1(T 2;Z/2)→ Z/2

as follows. An element x ∈ H1(T 2;Z/2) can be represented by a closed curve, with a neighborhood
V which is an embedded cylinder. We define q(x) to be the number of its full twists modulo 2. 1.21

The Kervaire invariant of a framed (4m+2)-manifold (continued)
For M = T 2 ⊂ S3 and x ∈ H1(T 2;Z/2), q(x) is the number of full twists in a cylinder V neigh-

boring a curve representing x. This function is not additive!

1.22
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The Kervaire invariant of a framed (4m+2)-manifold (continued)
Again, let M be a 2m-connected smooth closed framed manifold of dimension 4m+ 2, and let

H = H2m+1(M;Z). Each x ∈ H is represented by an embedding S2m+1 ↪→ M. H has an antisymmetric
bilinear form λ defined in terms of intersection numbers.

Kervaire defined a quadratic refinement q on its mod 2 reduction H in terms of each sphere’s
normal bundle. The Kervaire invariant Φ(M) is defined to be the Arf invariant of q.

Recall the Kervaire-Milnor 4-term exact sequence

0 // Θ4m+2
p // πS

4m+2/ImJ // Z/2 // bP4m+2 // 0

Kervaire-Milnor Theorem (1963). bP4m+2 = 0 iff there is a smooth framed (4m+ 2)-manifold M
with Φ(M) nontrivial.

1.23

The Kervaire invariant of a framed (4m+2)-manifold (continued)
What can we say about Φ(M)?

For m = 0 there is a framing on the torus S1 ×S1 ⊂ R4 with nontrivial Kervaire invariant.

Pontryagin (1930’s)

Pontryagin used it in 1950 (after some false starts in the 30s) to show πk+2(Sk) = Z/2 for all
k ≥ 2. There are similar framings of S3 ×S3 and S7 ×S7. This means that bP2, bP6 and bP14 are each
trivial. 1.24

The Kervaire invariant of a framed (4m+2)-manifold (continued)
More of what we can say about Φ(M).

Kervaire (1960) showed it must vanish when m= 2, so bP10 =Z/2. This enabled him to construct
the first example of a topological manifold (of dimension 10) without a smooth structure.

This construction generalizes to higher m, but Kervaire’s proof that the boundary is exotic does not. 1.25
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The Kervaire invariant of a framed (4m+2)-manifold (continued)
More of what we can say about Φ(M).

Ed Brown Frank Peterson
1930-2000

Brown-Peterson (1966) showed that it vanishes for all positive even m. This means bP8`+2 = Z/2
for ` > 0. 1.26

The Kervaire invariant of a framed (4m+2)-manifold (continued)
More of what we can say about Φ(M).

•

Bill Browder

Browder (1969) showed that the Ker-
vaire invaraint of a smooth framed (4m+
2)-manifold can be nontrivial (and hence
bP4m+2 = 0) only if m = 2 j−1 −1 for some
j > 0. This happens iff the element h2

j is
a permanent cycle in the Adams spectral
sequence. The corresponding element in
πn+2 j+1−2(S

n) for large n is θ j, the subject
of our theorem. This is the stable homotopy
theoretic formulation of the problem.

• θ j is known to exist for 1 ≤ j ≤ 5, i.e., in dimensions 2, 6, 14, 30 and 62. In other words, bP2,
bP6, bP14, bP30 and bP62 are all trivial.

1.27

And then . . . the problem went viral!

A wildly popular dance craze

Drawing by Carolyn Snaith 1981
London, Ontario

1.28
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Speculations about θ j after Browder’s theorem
In the decade following Browder’s theorem, many topologists tried without success to con-

struct framed manifolds with nontrivial Kervaire invariant in all such dimensions, i.e., to show that
bP2 j+1−2 = 0 for all j > 0.

Mark Mahowald

Some homotopy theorists, most notably
Mahowald, speculated about what would
happen if θ j existed for all j. He derived
numerous consequences about homotopy
groups of spheres. The possible nonexis-
tence of the θ j for large j was known as
the Doomsday Hypothesis.

1.29

Mark Mahowald’s sailboat

1.30

3 The main theorem
Our main result

Our main theorem can be stated in three different but equivalent ways:

• Manifold formulation: It says that the Kervaire invariant Φ(M4m+2) of a smooth 2m-connected
framed (4m+2)-manifold must vanish (and bP4m+2 = Z/2) for all but 5 or 6 values of m.

• Stable homotopy theoretic formulation: It says that certain long sought hypothetical maps
between high dimensional spheres do not exist.

• Unstable homotopy theoretic formulation: It says something about the EHP sequence, which
has to do with unstable homotopy groups of spheres.

There were several unsuccessful attempts in the 1970s to prove the opposite of what we have
proved, namely that bP2 j+1−2 = 0 for all j > 0. 1.31
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Our main result
Here is the stable homotopy theoretic formulation.

Main Theorem. The Arf-Kervaire elements θ j ∈ π2 j+1−2+n(S
n) for large n do not exist for j ≥ 7.

The θ j in the theorem is the name given to a hypothetical map between spheres represented by a
framed manifold with nontrivial Kervaire invariant. It follows from Browder’s theorem of 1969 that
such things can exist only in dimensions that are 2 less than a power of 2.

Corollary. The Kervaire-Milnor group bP2 j+1−2 is nontrivial for j ≥ 7.

It is known to be trivial for 1 ≤ j ≤ 5. The case j = 6, i.e., bP126, is still open. 1.32

Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h2
j for j ≥ 7 are not permanent

cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture
about the role of the θ j (assuming that they all exist) in the unstable homotopy groups of spheres.
Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homo-
topy groups of spheres. We look forward to learning more with it in the future. I will illustrate it at
the end of the talk. 1.33

4 Our strategy

4.1 Ingredients of the proof
Ingredients of the proof

Our proof has several ingredients.
• We use methods of stable homotopy theory, which means we use spectra instead of topological

spaces. The modern definition of spectra, due to Mandell-May, will be given in a talk later this
week. It makes use of enriched category theory, which is also the subject of a later talk.

For the sphere spectrum S−0 (new notation), πn(S−0) (previously denoted by πS
n ) is the usual

homotopy group πn+k(Sk) for k > n+ 1. The hypothetical θ j is an element of this group for
n = 2 j+1 −2. 1.34

Ingredients of the proof (continued)
More ingredients of our proof:
• We also make use of newer less familiar methods from equivariant stable homotopy theory.

This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all
maps are required to commute with these actions. When we pass to spectra, we get homotopy
groups indexed not just by the integers Z, but by RO(G), the real representation ring of G. Our
calculations make use of this richer structure.

Peter May John Greenlees Gaunce Lewis
1949-2006

1.35
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Ingredients of the proof (continued)
More ingredients of our proof:

• We use complex cobordism theory. It is used in the proof in two ways:

(i) We construct a C2-equivariant spectrum MUR. Roughly speaking it is the complex Thom
spectrum MU equipped with complex conjugation.

(ii) We use related formal group law methods to prove the detection theorem, to be stated in
the next slide. 1.36

4.2 The spectrum Ω

The spectrum Ω

We will produce a map S0 → Ω, where Ω is a nonconnective spectrum (meaning that it has
nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for
calculating homotopy groups) in which the image of each θ j is nontrivial. This means that if
θ j exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(Ω) depends only on the reduction of
k modulo 256.

(iii) Gap Theorem. πk(Ω) = 0 for −4 < k < 0. This property is our zinger. Its proof involves a
new tool we call the slice spectral sequence, which I will illustrate at the end of the talk.

1.37

The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θ j exists, it has nontrivial image in π∗(Ω).
(ii) Periodicity Theorem. πk(Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The
argument for θ j for larger j is similar, since |θ j|= 2 j+1 −2 ≡−2 mod 256 for j ≥ 7. 1.38

4.3 How we construct Ω

How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C8 (the cyclic group of order 8)
on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum MU . It can be thought of as the
set of complex points of an algebraic variety defined over the real numbers. This means that it has an
action of C2 defined by complex conjugation. The geometric fixed point set of this action is the set
of real points, known to topologists as MO, the unoriented cobordism spectrum. The geometric fixed
point functor ΦG is an important tool in equivariant stable homotopy theory. 1.39

How we construct Ω (continued)
To get a C8-spectrum, we use the following general construction for getting from a space or

spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup.
Let

Y = MapH(G,X),

the space (or spectrum) of H-equivariant maps from G to X . Here the action of H on G is by
left multiplication, and the resulting object has an action of G by left multiplication. As a space,
Y = X |G/H|, the |G/H|-fold Cartesian power of X . A general element of G permutes these factors,
each of which is invariant under the action of the subgroup H. 1.40
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How we construct Ω (continued)
There is a similar construction in the category of spectra called the norm functor, denoted by NG

H .
It uses smash products rather than Cartesian products.

In particular we get a C8 commutative ring spectrum

MU ((C8))
R = NC8

C2
MUR.

We can make it periodic by inverting a certain element D ∈ π19ρ8MU (4)
R . Our spectrum Ω is its

C8 fixed point set. 1.41

4.4 The slice spectral sequence
A homotopy fixed point spectral sequence

1.42

The corresponding slice spectral sequence

1.43
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