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Applications of operads Talk 1.1

Day 1: Homotopy-theoretic foundations

Talk 1.1: Introduction and general overview (Dev Sinha)

Operads encode operations. The analogy to make is: “groups encode symmetries as operads
encode operations.” We’ll find that there’s a lot of data to deal with, but if you keep in mind
that operads want to encode a multiplication of some kind, the structure becomes clear.
The history of the idea goes back at least to 1898, with Alfred North Whitehead’s work on
Lie algebras and other algebras. But I want to talk about the history in topology: π2(X)
is the group of maps from I2 → X sending the boundary to the basepoint of X. This is
commutative. Proof by picture:

(People originally thought π2 was uninteresting, because π1 was noncommutative in general.)

What we can say is that there is a map

Rectangles2 × Ω2X × Ω2X → Ω2X

(here Rectangles2 means embeddings of 2 rectangles in a rectangle, and Ω2 is the space of
based maps Maps∗(S

2, X)) sending

If G is a group, its classifying space BG is modelled by a line segment on which the elements
gi live and can move around, where if they collide, then you multiply them; if they go off the
end, then they vanish; and if gi = e then it vanishes. An element looks like this:

Formally,

BG =
(⊔

n

(∆n ×G×n)
)/
∼

The points are (0 ≤ t1 ≤ t2 ≤ · · · ≤ 1)× (g1, . . . , gn), where the equivalence relation is given
by:

(t1 ≤ . . . . ≤ ti = ti+1 ≤ ti+2 ≤ . . . )(g1, . . . , gn) ∼ (t1 ≤ · · · ≤ ti ≤ ti+2 . . . )(g1, . . . , gi−1, gigi+1, gi+2, . . . )

There are two other relations, corresponding to the idea above about points falling off the
end or being the identity.

This has the following properties:
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Applications of operads Talk 1.1

• BG classifies principal G-bundles (and thus any bundles are made by “gluing by G”).

• If G is discrete, BG is a K(G, 1), and so

• ΩBG ' G.

This model of BG is functorial. But only for abelian groups is G×G→ G a homomorphism.

If A is abelian, then BA itself is a group, where the operation is “take the union” (and
multiply where needed). This is a group, so you can talk about B(BA). Elements look like

Equivalently, this is

B(2)A =
(⊔

n

((I2)×n)Sn

)/
∼

where now we’re thinking of points ai living in a square. We could replace 2 above by any
dimension d. In fact, we can take the space of points in X labelled by A for any X.

Proposition 1.1.1. Suppose A is discrete, e.g. Z/n or Z. B(d)A is a K(A, d), the dth

Eilenberg-Maclane space for A. That is,

πi(B
(d)A) =

{
A i = d

i 6= d.

These are building blocks for Postnikov towers, in the same way that cells are building blocks
for CW complexes. This also means that

H̃d(X;A) ∼= [X,B(d)A]

(note [−,−] means basepoint-preserving maps); that is, it is a representing object for coho-
mology. (Think of cohomology as a “representation” in the representation-theory sense.)

This generalizes to the fact that homotopy groups of this construction are the homology of
X (this is sort of the Dold-Thom theorem).

We could weaken the commutativity requirement if we had a way to define “multiplication
along directions.”

Incomplete definition 1.1.2. A group action is a continuous map G×X → X, such that
some conditions hold. An operad action is a map O(n)⊗(X ⊗ . . .⊗X

n

)→ X subject to some

conditions (remember than an example of ⊗ is product of topological spaces). So this gives
you different ways to multiply n things, with some structure, and that structure includes the
fact that this is coherent across n in a way that will be explained in a later talk.

Principle: “the smaller the operad, the more stringent the structure.” If O(n) is just a point
(if we’re working in Top) or k (if we’re working in Vectk) for all n then this says that “there
is only one way to multiply.” This means that we’re dealing with a commutative “algebra.”
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Applications of operads Talk 1.1

(Why commutative? The conditions on the operad action map include a Σn-equivariance
condition, which tells you what happens when you permute the factors X.)

Why should we do this? Here are some main payoffs (which we actually won’t talk about in
this workshop):

(1) You can interrelate such structures: ΩdX is a Disksd-algebra; that is, there is an action

of Disksd on it. E.g. this

1

2

3

is an element of Disks2(3). This tells you that H∗(Ω
dX, k) is a H∗(Disksd)-algebra

(coefficients are in a field because you need a Künneth formula).

(2) You can make Bar constructions (like B(d)A), which in turn allow one to:

• recognize homotopy invariant algebraic structures. E.g. if Y has a Disksd action and
π0Y is a group, then you can construct BDisksdY such that ΩdBDisksdY ' Y . This is
called a recognition principle.

• characterize deformations/ (co)homology, in algebraic settings.

• realize Koszul duality, which says e.g. that differential graded associative algebras
are the same as differential graded co-associative coalgebras (Moore), and differen-
tial graded commutative algebras are the same as differential graded Lie coalgebras
(Quillen). To do this in general, you need bar constructions, and to get bar construc-
tions, you need operads.
C∗(G) with the G-product is Koszul-dual to C∗(BG) with the natural diagonal map.
Similarly, given Y , C∗(ΩY ) with loop multiplication is dual to C∗(Y ) with the natural
diagonal.

(3) You can organize complicated algebraic structures, especially some arising in “physical
mathematics.” (E.g. some crazy rule for different ways n particles or n strings combine.)
This is kind of why operads were “reborn” in the 90’s.

We will treat some of the more surprising applications of operads. One can set up a ho-
motopy theory for operads themselves. (There are people in the world who like to think
about homotopy theories for anything.) This sounds somewhat formal, but it in fact encodes
connections to very geometric and number-theoretic topics. Most of the initial ideas are due
to Kontsevich.

Part of this idea: a (long) knot I ↪→ Id, i.e. knot in a box with fixed endpoints at the top
and bottom of the box, gives rise to a map of configuration spaces Confn(I) → Confn(Id).
This goes back to Gauss. If my knot is K, and I have a configuration (t1, t2, . . . ) ∈ Confn(I),
then I can come up with a configuration (K(t1),K(t2), . . . ) ∈ Confn(Id). This extends to the
Fulton-MacPherson compactification Confn[I]→ Confn[Id] which respects operad structures.

Theorem 1.1.3 (Arone-Turchin, after Goodwillie-Klein-Weiss).

HomInf.Bimod.(FM1, FMd) ' Emb(I, Id)
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Applications of operads Talk 1.2

for d > 4, where FMd is the Fulton-MacPherson operad.

When d = 3, the RHS is a space of knots.

Question: how computable is the LHS? You can get spectral sequences (“Sinha spectral
sequence”) for the LHS and they collapse; it has the same E2 as Vassiliev’s E1, but it’s not
the same spectral sequence. It’s combinatorially hard. You can get asymptotics for it.

There are theorems of Dwyer-Hess, Turchin, and Weiss that also give models for deloopings
of embedding spaces.

Hom(FM2, FM2) has deep implications for number theory.

Talk 1.2: Homotopy theory of operads and their modules
(Elaine So)

We will write Σn for the symmetric group on n letters (also called Sn); set Σ0 = Σ1. Let
(V,⊗, I) be a (closed) (symmetric) monoidal category, where I is the unit. For example, think
about (Set,×, {∗}). A nice thing about closed symmetric monoidal category is that you have
exponentiation, e.g. for sets XY = Hom(Y,X). In general, V (X ⊗ Y,Z) ∼= V (X,ZY ).

When we say “topological operad” we want to work with the categories (Top,×, {∗}) or
(sSet,×,∆[0]), and exponentiation is XY = Map(Y,X).

We also care about algebraic symmetric monoidal categories (R-mod,⊗R, R), (Ch(R),⊗[R]0).

Definition 1.2.1. Let G be a (finite) group. Define V G to be the category whose objects are
objects of V with G-action, and the morphisms V G(X,Y ) are G-equivariant maps X → Y
in V .

Definition 1.2.2. Define N(V ) to have objects X = (X(0), X(1), . . . ); these are nonsym-
metric sequences. Symmetric sequences (a.k.a. collections) are

Σ(V ) =
∏
k≥0

V Σk .

Objects: for every k, there’s an object X(k) with a Σk action for each object. Morphisms:
morphisms that respect Σk.

You can define a composition product on symmetric sequences. Given X,Y ∈ Σ(V ),

(X ◦ Y )(n) =
⊔
k≥0

X(k)⊗Σk

( ⊔
n1+···+nk=n

⊗
Y (nk)

)
⊗Σn1,...,nk

⊔
Σn

I.

If X(k) is a tree with k inputs then (X ◦ Y )(n) is the disjoint union of trees of
the form
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Applications of operads Talk 1.2

where the disjoint union is over all possible ways to plug Y -things into the k X-inputs so you
have a total of n inputs.

(There is a functor from symmetric sequences to endomorphisms, where the “composition”
above corresponds to literal composition of endomorphisms.)

Operads are symmetric sequences where the composition product satisfies certain properties.
You want commutativity, i.e. the commutativity of the diagram

X ◦X // X

X ◦X ◦X

OO

// X ◦X

OO

You want to map every tree

to .

If you have 3 layers, it shouldn’t matter in which order you compose them. If I compose the
identity in X(1) with anything in X(k), it shouldn’t do anything.

name composition objects Σk-action composition objects

I (unit) I(1) = I, empty elsewhere trivial trivial objects

I∗ (pointed unit) I(0) = I, empty elsewhere ditto ditto pointed objects

Commutative operad C(k) = I
commutative algebras,

commutative monoids

Associative operad Ass(k) =
⊔

Σk
I Σk

Given σ ∈ Ass(k), σi ∈ Ass(ni),

get block permutation

σσ(1) ⊗ . . .⊗ σσ(n)

associative monoids

There’s also a Lie operad, that’s terrible to describe, and a Poisson operad.
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Applications of operads Talk 1.2

Given X ∈ V , we have an endomorphism operad EndX , where EndX(k) = Hom(X⊗k, X)

which is still in our category because it is the exponential object XX⊗k = Hom(X⊗k, X).
Composition is just composition of functions.

Definition 1.2.3. Let O be an operad on V . An O-algebra structure on X ∈ Obj(V ) is an
operad map O → EndX .

Alternate definition 1.2.4. A non-Σ operad is where you forget all instances of Σk in the
above.

A reduced operad is where O(0) = I.

A non-unital operad is where O(0) = ∅V .

Operads on V act on symmetric collections:

Definition 1.2.5. A left O-module is a symmetric sequenceX with morphism ϕ : O◦X → X.
You want the following diagram to commute:

O ◦ O ◦X
µ◦1
//

��

O ◦X
ϕ

��

I ◦X
η◦1
oo

yy
O ◦X

ϕ
// X

To define a right O-module, dualize the above structure. Note that left and right O-modules
have really different structures.

A bimodule is a symmetric sequence such that

O ◦X ◦ O //

��

X ◦ O

��

O ◦X // X

commutes.

Example 1.2.6. If O ϕ→ O is an operad map, then you get a module structure O ◦ O ϕ◦1→
O ◦O µ→ O.

If X is an O-algebra, then (X, ∅, ∅, . . . ) is a left O-module. The only level of O ◦ X is the
zeroth level, and that is

⊔
k≥0O(k)⊗X⊗k → X = X(0).

We have adjunctions

Operads(V )
U // Σ(V )

U //

F
oo

F
��

N(V )
F

oo

BimodO(V )

U

OO

11



Applications of operads Talk 1.2

If we have an adjunction ϕ : V � W : ψ, then we also get induced adjunctions on the

categories of operads. In particular, there are induced maps Operads(Top)
C∗→ Operads(Ch),

and H∗ : Operads(Ch) → Operads(Ch). where U is the forgetful functor, and the F ’s are
left adjoints.

Definition 1.2.7. A monoidal model category is a model category such that

(1) we have a unit axiom (not necessary if the unit is cofibrant);
(2) if A ↪→ B and X ↪→ Y are cofibrations then we have

A⊗X //

��

A⊗ Y

��

ww

A⊗ Y
⊔
B ⊗X
u�

''

B ⊗X

77

// B ⊗ Y
where the marked cofibration is a trivial cofibration if A ↪→ B and X ↪→ Y are.

Theorem 1.2.8 (Transferral theorem). Suppose D has a model structure. Given an adjunc-
tion L : D � E : R (where E is sufficiently nice), then there is a transferral model structure
on E:

• f is a weak equivalence iff Rf is a weak equivalence on D.

• f is a fibration iff Rf is.

This works if L preserves small objects and R(col(po(L(J)))) is an equivalence.

A path object is a factorization of X → X×X into a weak equivalence followed by a fibration
(well, it’s the middle object in such a factorization).

In sets, recall that I = ∗, and the diagonal map can be rewritten XI → XI∪I , which is true
in general. If I can find a J and a factorization I

∼← J ←↩ I ∪ I of the right map, then then
by model categorical nonsense, you get a functorial path object XJ .

Definition 1.2.9. H is a segment object of V if I ∪ I → H → I is the right map, and there

exists v : H⊗H → H with i0⊗X
v7→ X and i1⊗X

v7→ i1. (Here I’m assuming i0 is the image
of the first I in I ∪ I → X.)

It is an interval object if i0t ii is a cofibration. Say H is coassociative if there’s an associative
comultiplication H → H ⊗H that plays nicely with the v, and similarly for cocommutative.

There’s really only one good example: in simplicial sets, let H = ∆[1] and I = ∆[0]. Then we

have ∆[0] ∪∆[0]
δ0∪δ1→ ∆[1]

∼→ ∆[0] where the first map sends the first ∗ to the first endpoint
of ∆[1] and the second ∗ to the second endpoint.

12



Applications of operads Talk 1.3

The multiplication v : ∆[1]×∆[1]→ ∆[1] sends (0, 1), (1, 1), (1, 0) in ∆[1]×∆[1] to 1 ∈ ∆[1],
and the (0, 0) 7→ ∆[1]. There’s a comultiplication on H where you include your interval into
the diagonal of the square ∆[1]×∆[1].

In Top, H = [0, 1], and I = {∗}; this is cocommutative.

Theorem 1.2.10 (Reese-Moerdijk). Let V be a monoidal category where I is cofibrant, V
has functorial fibrant replacement, V has cocommutative interval objects. Then there is an
adjunction F : Σ(V ) � Operads(V ) : U . This works for Top and sSet.

If V/I has functorial fibrant replacements, and V has a coassociative interval object, then

you get an adjunction out of Operadsred. This works when V = Ch(R).

Talk 1.3: Boardman-Vogt tensor product of operads and
their bimodules (Amelia Tebbe)

Let P and Q be operads; we want to construct P ⊗Q. Remember that elements of P or Q are

equivalence classes of labelled planar trees. For example, λ ∈ P (4) looks like , and
λ ∈ P (0) is just a single vertex (with a tail representing output). This is called a “stump”.

Grafting trees works as follows: if λ1 ∈ P (k), λ2 ∈ Q(`), and λ ∈ P (4) then the grafted tree

looks like . Then P ⊗Q is a quotient of all possible graftings of elements
from P and Q with some equivalence relations as follows:

• 1P ∼ 1Q

• (collapsing) if λ1, . . . , λk ∈ P and λ ∈ P (k), then

• (Σ-action) let T1, . . . , Tk be trees, where σ ∈ Σk; then

• (interchange) if α ∈ P (k), β ∈ Q(`), trees Tij for 1 ≤ i ≤ k, 1 ≤ j ≤ `, then
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Applications of operads Talk 1.3

Let X be a P -algebra and a Q-algebra. Then we have a commutative diagram

(Xk)` //

α`
��

(X`)k
βk

// Xk

α

��

X` β
// X

(This is usually done for simplicial sets or topological spaces.) If β ∈ Q(0) and α ∈ P (0) I
could do this diagram with zero’s everywhere, and get that α and β have to be identified. So
no matter how many 0-objects you have to start off with, P⊗Q can only have one zero-object.

You can use the collapsing relation to remove stumps:

To get a feel for this, let’s look at it in low arities.

Arity 1: If λi ∈ P , λi+1 ∈ Q, then by the interchange relation. So every

element in arity 1 can be expressed as . So P ⊗Q(1) = P (1)×Q(1).

Arity 2: Representatives look like

I claim that (P ⊗Q)(2) is the pushout of the diagram

P (2)×Q(2) //

��

P (2)×Q(1)×Q(1)

��

P (1)× P (1)×Q(2) // ?
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where these maps have the following effect on elements

(α, β) //

��

(α, β(1, 0), β(0,1))

(α(1, 0), α(0,1), β)

In general, everything can be expressed as a colimit, but things get really complicated, fast.

There’s a forgetful functor U : Operads0 → Monoids (here 0 means reduced) sending P 7→
P (1). This has a right adjoint which we call R, and RM(k) = Mk. This does something
special to the associative operad:

Ass⊗B ∼= (Ass×RU(B))/ ∼
where the relation identifies (σ, b1, . . . , bk) ∼ (τ, b1, . . . , bk) if for each (i, j) such that σ−1(i) <
σ−1(j) and τ−1(i) > τ−1(j), there exists c ∈ β(2) such that (bi, bj) = (c ◦ (1), c ◦ (0,1)).

We want to extend this to a tensor product of bimodules. Start with M ×N , where M has a
left P -action and a right Q-action, and N has a left R-action and a right T -action. We want
to end up with M⊗̃N which has a left P ⊗ R action and a right Q ⊗ T action. That is, we
want:

Bimod× Bimod //

π×π
��

Bimod

π
��

Op2 ×Op2 //

free×free

OO

Op2

free

OO

(free means it’s the thing with one generator in arity 1). On objects, this does

(P ◦Q)× (R ◦ T ) (P ⊗R) ◦ (Q⊗ T )

(P,Q)× (R, T ) //

OO

(P ⊗R,Q⊗ T )

OO

so we want (P ◦Q)⊗̃(R ◦ T ) = (P ⊗R) ◦ (Q⊗ T ).

Any bimodule is a coequalizer of free modules. So it suffices to define

FP,Q(X)⊗̃FR,T (Y ) = FP⊗R,Q⊗T (−)

where X and Y are symmetric sequences. (Here FP,Q(X) means the free left-P right-Q
bimodule.) This is hard!

But we can do it in a special case, where the symmetric sequences are concentrated in arity
1. Then the operads are simplicial monoids and the bimodules are simplicial bisets. We can
just use cartesian products: FP,Q(X) = P ×X ×Q.

In this case, we can just define

FP,Q(X)⊗̃FR,T (Y ) = FP⊗R,Q⊗T (X,Y )
by arity 1

computation
= FP×R,Q×T (X × Y )

because we have cartesian products and cartesian products do all we need. But in a general
case, we don’t have ×; we have ◦.

15



Applications of operads Talk 1.4

But in the general case, replace X×Y in the middle term by X�Y . This is called the matrix
monoidal product.

Suppose M is an R, T -bimodule. We get an adjunction

BimodP,Q
−⊗̃M

// BimodP⊗R,Q⊗T
MapR,T (M,γ∗(−))
oo

Here γn(X)(k) = i∗(X(kn)) where the Σkn action is induced by the forgetful map Σkn → Σk.

Question: is there a colored version of this?

Answer: Yes. And the tensor product gives a closed monoidal structure.

Talk 1.4: Little disks and little cubes operads (Alex Yarosh)

The word “operad” showed up when trying to figure out when a space has the homotopy type
of a loop space. What properties do loop spaces have that are special? We have concatenation
of loops, which is homotopy-associative with higher coherences. We have double loop spaces
which are not only homotopy-associative, they end up being homotopy-commutative (by
Eckmann-Hilton) as well, with higher coherences. This is too much to think about; hence,
operads.

Associative operads just have the discrete symmetric group in each level. Now we want to
encode homotopies; instead of discrete points, let’s take blobs around those points. We also
need a composition – a way to put these blobs inside each other.

Definition 1.4.1. The little n-disks operad Dn is defined by

Dn(k) = k-tuple of standard embeddings Dn ↪→ Dn with disjoint images

(where Dn = {x ∈ Rn : |x| < 1}). For example, an element of D2(3) looks like:

1

2

3

The action of Σk is by relabelling, and composition is:

1

2

1

2

1 2 3

1

2

3 4 5
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Consider the equatorial embedding Dn ↪→ Dn+1 (e.g. including D1 as the equator in D2,
and thickening the chosen subintervals of D1). We can define D∞(k) = colimnDn(k). This
inherits an operad structure.

It is obvious that Dn(k) ' F (Rn, k) where the latter is the configuration space of k points
in Rn (such that no two points are in the same place). The homotopy just shrinks the little
disks to a point. We have an equivalence of spaces D1 ' Ass given as follows: given a tuple
of intervals (c1, . . . , ck) ∈ D1(k), there’s an ordering ci1(0) < · · · < cin(0). The image of Σn

is the permutation (i1, i2, . . . , ik).

This gives a map of operads D1 → Ass, but there is no inverse map of operads.

Similarly, there is a map of operads D∞ → Comm that induces an equivalence on the space
level. (Again, no operad map the other way.)

We saw earlier that Dn acts on loop spaces. That is, we want a map Dn(k)× (Ωn)k → ΩnX.
Recall that ΩnX = [(Dn, ∂Dn) → (X, ∗)]. Given an element of D2(3) and (α1, α2, α3) ∈
(Ω2X)3, the resulting element of Ω3X can be represented by:

1

2

3

Theorem 1.4.2 (Recognition principle (Boardman-Vogt, May)). A group-like space X (i.e.
π0X is a group) has the homotopy type of a loop space iff it is a Dn-algebra.

The little cubes operads is the same, but replaces disks with cubes. This is nice because
it’s easy to suspend. Little disks are nice because of the action of the orthogonal group.
There’s an operad that has both these properties: Steiner’s operad Sn(k) is k-tuples of paths
of embeddings. (This is important when you want to find the action of the linear isometries
operad on the little cubes operad.)

Definition 1.4.3. Say that O is an En-operad if O is Σn-free and there is a chain of weak
equivalences O ∼← . . .

∼→ Cn (where Cn is the little cubes operad).

It’s not obvious that the little n-disks operad is actually an En-operad: they’re obviously
equivalent as spaces, but there isn’t an obvious operadic map. All the ingredients are in
later talks. The idea is that you build the Boardman-Vogt construction WCn, which comes
with a canonical equivalence WCn

∼→ Cn, and get an equivalence WCn → FMn (the Fulton-
MacPherson operad – a compactification of configuration spaces). The idea is that

Dn
∼←WDn

∼→ FMn
∼←WCn

∼→ Cn.

Proposition 1.4.4. An operad O is an E1-operad iff:

(1) each path component is contractible, and
(2) Σk acts freely and transitively on π0O(k).

17
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An operad O is an E∞ operad iff:

(1) each O(k) is contractible, and
(2) Σ acts freely on O(k).

Any E2-operad has a universal covering space of the braid operad.

Theorem 1.4.5 (Recognition principle for E2). An operad O is E2 iff

(1) Universal covering spaces Õ(k) are contractible on each level, and

(2) the braid group Bk acts freely and transitively on Õ(k).

What is the braid group? All the possible braids of k strands, attached at the bottom and
top.

There is no recognition principle for higher Ek (yet!). Also not clear what the applications
would be. (The recognition principle for E2 is useful for computations involving stable ho-
motopy groups of spheres.)

Definition 1.4.6. A cellular decomposition of a space X w.r.t. a poset A is a collection
{Cα}α∈A, where Cn are closed contractible subspaces of X, such that

(1) Cα ⊂ Cβ if α ≤ β
(2) X = colimACα
(3) inclusions Cα ↪→ X are cofibrations.

Note that I’m not implying that these are disks.

Note that X ' |NA|.

How do you decompose the little cubes operad? You probably want the nth level to be
n-cubes, etc.

Suppose I have three labelled little cubes. What’s the essential information?

• labels

• the cubes are disjoint, i.e. separated by hyperplanes

• where the cubes are w.r.t. the separating hyperplane

I want to abstract this definition. . .

The complete graph operad is given by

Kn(p) = {µ, σ ∈ K(p) : µij ≤ n ∀i 6= j} where K(p) = N(p2) × Σp.

Elements (µij , σ) for i < j can be represented as a graph: start with a complete graph on p
vertices, where the ij edge is labeled by µij , and with orientation given by σ. E.g. the graph
associated to
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1 2

3
is

2

1

2
@@

3

3
^^

3
oo

because cubes 1 and 3 are separated by hyperplane 3 (the one perpendicular to the z axis),
and the direction encodes which side 1 and 3 are on.

Define a partial order on K(p) as follows: (µ, σ) ≤ (ν, τ) if either µij < νij for all i < j, or
whenever µij = νij we have σ|ij ≤ τ |ij .

σ defines an acylic orientation (σn(1)→ σn(2)→ . . . ).

An operad O is a cellular En operad if

(1) O(2) has a cellular decomposition w.r.t. Kn(2)
(2) “Cells”

O(k)(µ,σ) = {x ∈ O(k) : γij(x) ∈ O(µ,σ)(2)}
where γ are the operad structure maps form a cellular decomposition of O(k) w.r.t.
Kn(k). (I.e. the cellular decomposition for k > 2 comes from the cellular decomposition
for k = 2.)

(3) Operad multiplication is compatible with complete graph operad multiplication.

Theorem 1.4.7.

(1) The little n-cubes operad is cellular;

(2) any cellular En operad O is O ∼→ |NKn|;
(3) all cellular En-operads are equivalent.

Fulton-MacPherson is cellular (in a sense?).

This is good because any cellular operad is the geometric realization of a simplicial operad.

Talk 1.5: Model categories and derived mapping spaces (Kyle
Gray)

Goals:

(1) Define simplicial localization via hammocks
(2) Define derived mapping spaces
(3) Discuss derived adjunction theorem
(4) Application to operads
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Simplicial localizations. Our setup is as follows: let C be a model category with weak
equivalences W . This gives rise to a homotopy category Ho(C), where we formally invert
the weak equivalences. Sometimes this is denoted C[W−1]. Problem: in passing from the
original category to the homotopy category, we lose “higher homotopical information” about
the original model category. One solution to this problem, proposed through a series of papers
in 1980 by Dwyer and Kan, is to study a richer object called the simplicial localization.

The following definition makes sense in a weaker setting than model categories.

Definition 1.5.1. Let C be a categories with weak equivalences W (any subcategory which
contains all the objects). The hammock localization of C w.r.t. W , denoted LHC, is the
simplicial category (i.e. enriched over simplicial sets) defined as follows:

• LHC has the same objects as C

• for objects X,Y ∈ C the simplicial set LHC(X,Y ) has as k-simplices the “reduced
hammocks” of height k + 1

C0,1

∼
��

C0,2
∼oo //

∼
��

. . . // C0,n−1

∼
��

C1,1

∼
��

C1,2
∼oo //

∼
��

. . . // C1,n−1

∼
��

X

>>

FF

  

...

∼
��

...

∼
��

...

∼
��

Y

∼

aa

∼

YY

∼
}}

Ck,0 Ck,2
∼oo // . . . // Ck,n−1

where arrows with ∼ are arrows in W . Note that n is arbitrary. k shows up as the
number of rows.

The ith face map is given by omitting the ith row (and the map is given by composition), and
the ith degeneracy map is given by repeating the ith row. Composition is just concatenation
of hammocks.

Proposition 1.5.2. For any X,Y ∈ C, there is a bijection of sets

LHC(X,Y ) = C[W−1](X,Y )

(when things are small enough for this to make sense).

Definition 1.5.3. Let C be a model category, and X,Y ∈ C. The derived mapping space
from X to Y is the following simplicial set

MaphC(X,Y ) = LHC(X,Y )

This gives a bifunctor Maph(−,−) : Cop × C → sSet which converts weak equivalences in
either variable to weak homotopy equivalences.
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Here are some other descriptions. (In the following, ∼ will mean “weakly homotopy equivalent
to.”)

• If C is a model category, then Maph(X,Y ) is ∼ the nerve of the category whose objects

are diagrams X
∼← X1 → Y1

∼← Y and whose morphisms are

X
∼
xx

//

∼

��

Y1

∼

��

X Y

∼ee

∼yy
X2

∼

ff

// Y2

Advantage: we don’t have arbitrary length anymore.

• (Dugger) Moreover, if X is cofibrant this is ∼ nerve of the less complicated category
whose morphisms are

Y1

��

X

>>

  

Y

∼
``

∼
~~

Y2

• If C is a simplicial model category, then Maph(X,Y ) ∼ MapC(Xc, Y f ) (cofibrant and
fibrant replacements, respectively).

Theorem 1.5.4 (The Derived Adjunction Theorem). Suppose we have model categories C
and D and a Quillen pair λ : C � D : ρ. For all objects A ∈ C, Y ∈ D, there is a natural
weak homotopy equivalence

MaphC(A, ρ(Y f )) ∼ MaphD(λ(Ac), Y ).

Comments on the proof. We can assume without loss of generality that A is cofibrant
and Y is fibrant; this is because the derived mapping space takes equivalences in either
variable to weak homotopy equivalences. The strategy is as follows. Let Z be the category
described by A

∼← A1→Y1
∼← Y where the gray map represents a map A1 → ρ(Y1) or

equivalently λ(Ai)→ Yi. The morphisms are “natural transformations”

A1∼
yy

//

∼

��

Y1

∼

��

A Y

∼ee

∼yy
A2

∼

ee

// Y2

The goal is to show Z ∼ MaphD(λ(A), Y ).

Consider the functor F : Zc → (M (C) ↓ A) (M is the moduli category whose morphisms
are just the weak equivalences, and ↓ denotes the overcategory over A). This “picks off”

A1
∼→ A. One can show that for all objects U ∈ (M (Cc) ↓ A),

(F ↓ U) ∼ MaphD(λ(A), Y ).

21



Applications of operads Talk 1.5

Use Quillen’s theorem B, which in this setting allows us to conclude that Maph(λ(A), Y ) is
weakly equivalent to the homotopy fiber of F . Since (M (Cc) ↓ A) has a terminal object, it
is contractible, which gives that Z ∼ MaphD(λ(A, Y )). �

Corollary 1.5.5. Let C and D be model categories. Let λ : C � D : ρ be a Quillen pair
such that λ and ρ preserve all weak equivalences. For all A ∈ C and Y ∈ D,

MaphC(A, ρ(Y )) ∼ MaphD(λ(A), Y ).

If in addition, each component ηA : A → ρλ(A) of the unit of the adjunction is a weak
equivalence, then

MaphC(A,A′) ∼ MaphD(λ(A), λ(A′))

for all A,A′ ∈ C.

If in addition, each component εY : λρ(Y ) → Y of the counit of the adjunction is a weak
equivalence, then

MaphD(Y, Y ′) ∼ MaphC(ρ(Y ), ρ(Y ′)).

An application to operads. The point is that derived mapping spaces of operads are
invariant under change of the underlying category sSet↔ Top.

If I start with the Quillen equivalence | − | : sSet � Top : S (geometric realization, singular
subfunctor), we saw earlier that such an adjunction will pass to an adjunction of operads on
the respective categories. Elaine wrote up a way to transfer the model structure on simplicial
sets and Top to the categories of operads. It turns out that this satisfies all hypotheses of
Corollary 1.5.5.

Proposition 1.5.6. If P, P ′ are operads on spaces, and Q,Q′ are operads on simplicial sets,
then

MaphOp(Top)(P, P
′) ∼ MaphOp(sSet)(SP, SP

′)

MaphOp(sSet)(Q,Q
′) ∼ MaphOp(Top)(|Q|, |Q

′|)

Point: you might not have a space of maps between two objects, but the derived mapping
space gives you one.
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Day 2: Configuration spaces and knot theory

Talk 2.1: (Co)homology and compactifications of configu-
ration spaces (Felicia Tabing)

Definition 2.1.1. The configuration space of n points in X is

Confn(X) = {(x1, . . . , xn) : xi 6= xj , i 6= j}
topologized as a subspace of the product Xn.

Let’s start by talking about Conf2(Rd). I claim it deformation retracts onto P12 = {(x1, x2) :
x1 = −x2, |xi| = 1}, which is ' Sd−1. This retract sends a configuration (y1, y2) to y1−y2

‖y1−y2‖
(i.e. direction from the midpoint to y1).

We want to know H∗(Confn(X)), especially when X = Rd. We use trees to define homology
classes. Let T be a rooted planar tree with trivalent vertices (except for the root). Here,

1 2 3 4

corresponds to the submanifold (hence, homology class) depicted below:

This diagram means the set of configurations (x1, . . . , x4) such that x1 and x2 are diamet-
rically opposed on the top circle, x3 and x4 are diametrically opposed on the bottom circle,
and these two circles are allowed to be in orbit around the big circle. (This is all in R2; for
Rd, we would have copies of Sd−1 instead of circles.)

You can talk about trees with less than n leaves; in that case, the unspecified coordinates
are free to go anywhere.

Suppose T is a tree, and let H denote its set of internal vertices. Then let

PT : (Sd−1)H → Confn(Rd)
be the map sending (uv1 , . . . , uv|H|) 7→ (x1, . . . , xn) where xi =

∑
vj
±εhiuvj . Here ε is some

fixed constant < 1
3 .

You can extend this to forests (a bunch of trees whose roots are all on a line), denoted PF .
These induce classes in H∗(Confn(Rd)).
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Proposition 2.1.2. The classes given by forests in H∗(Confn(Rd)) satisfy

(1) (anti-symmetry)

(2) (Jacobi identity) = 0.

We can describe H∗(Confn(Rd)) using graphs.

Definition 2.1.3. Let αij : Confn(Rd) → Sd−1 be the map sending (x1, . . . , xn) 7→ xi−xj
|xi−xj | .

Then let α∗ij ∈ Hd−1(Confn(Rn)) denote the pullback of the dual to the fundamental class of

Sd−1.

Definition 2.1.4. Let Γ(n) be the free module generated by graphs with labelled vertices
{1, . . . , n} with oriented and ordered edges.

We get a map Γ(n)→ H(Confn(Rd)) sending (i→ j) to α∗ij .

Example 2.1.5. This map sends 4→ 2 1→ 3 to a42a13. (Why are they multiplied in that
order? Remember that the edges of the graph are ordered.)

The graph 1
e1→ 2

e3→ 3
e2→ 4 corresponds to a12a34a23.

Cohomology classes coming from graphs satisfy relations

(1) Γ2 = (−1)d−1(sgn(σ))Γ2

(2) (Arnold relation) = 0.

Now we define the Poisson operad. Let Poisd(n) be generated by n forests moduli antisym-
metry and the Jacobi relation, and let Siopd(n) = Γ(n)/Arnold relation, arrow-reversing
relation.

Let Γ ∈ Γ(n) and T ∈ T (n) (a tree with n leaves). We can define a pairing between graphs
and trees. First, define a map

βP,T : {edges from Γ} → {internal vertices of T}
sending an edge i→ j to the highest shared vertex in the path in T from leaf i to j. Define
the configuration pairing

〈Γ, T 〉 =

{
±1 if βΓ,T is a bijection

0 otherwise.

24



Applications of operads Talk 2.1

For example, the following cohomology and homology classes are dual to each other

(i.e. they pair to ±1) but the following classes pair to zero:

Theorem 2.1.6.

Poisd(n) ∼= H∗(Confn(Rd))

Siopd(n) ∼= H∗(Confn(Rd))
Furthermore, the pairing between homology and cohomology corresponds to the configuration
pairing.

It follows from the Arnold relation and other things that any graph with a cycle goes to zero.

Compactification of Confn(M). Assume M is a submanifold of Rd.

Definition 2.1.7. Given i, j ∈ {1, . . . , n} where i 6= j let αij : Confn(Rd) → Sd−1 be the

map sending x 7→ xi−xj
|xi−xj | . This encodes the direction between 2 points.

Let I = [0,∞] and consider i, j, k be three distinct indices in {1, . . . , n}. Let ρijk : Confn(Rd)→
I be the map sending x 7→ |xi−xj |

|xi−xk| . This encodes “relative distance.”

Given An[M ] = Mn × (Sd−1)(
n
2) × I(n3), define

αn : Confn(M)→ An[M ]

where αn = i×αij×ρijk. Define Confn[M ] be the closure of the image of αn in An[M ]. This
is called the canonical compactification or completion. If M is compact, then this recovers
Confn[M ]. For example, an element of Conf5[R2] looks like

where the points 1, 3, and 5 are “infinitesimally close”, but you still remember their relative
distance and direction.

Let T be a tree with no bivalent internal vertices. Let CT (M) be the subspace of all X =
((Xi), (uij), (ρijk)) ∈ Confn[M ] where ρijk = 0 when the paths from i and j to the root meet
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each other before either meets the path from k to the root. (I.e. i and j are nestled up in
some subtree, and k is only distantly related.) Here

1, 3, and 5 all belong to the same subtree, so they are infinitesimally close in the element of
the compactification.

When T is trivalent, PT is homologous to the CT (M) stratum. (i.e. let ε go to zero, which
makes sense in the compactification).

There’s an alternate definition that says that this is an operadic completion of the configu-
ration spaces.

Properties: Confn[M ] is (/ has):

• compact

• stratified

• a manifold with corners

• smooth structure

• independent of embedding

• functorial

• the inclusion Confn(M)→ Confn[M ] is a homotopy equivalence (the former is the interior
of the latter)

{Confn[Rd]} form an operad:

1

2
3

There’s also an intrinsic definition in terms of blowups that was given first.

∂C1 2 3[Rd] ∼= C1 2 3 ∪ C 12 3 ∪ C 1 23

Talk 2.2: Formality of the En operad (Umut Varolgunes)
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We will use the Fulton-MacPherson operad as a model for En, and denote it {FMn(d)}n≥1

(the confusing notation is to be consistent with the configuration space notation). Let
Cn(Rd) = Confn(Rd)/ (dilation, translation); recall we defined FMn(d) as the closure of

Cn(Rd) inside
∏
i 6=j S

d−1 ×
∏
i 6=j 6=k[0,∞] under (x1, . . . , xn) 7→

(
xi−xj
|xi−xj | ,

|xi−xj |
|xi−xk

)
. The funnel

diagrams are nice, but remember we have equations too!

FMn(d) is a manifold with corners; its interior is canonically identified with Cn(Rd).

For a manifold, the de Rham forms is a DGA; say the manifold is formal if you can find a
zigzag (or map) ΩdR(M)

∼→ . . .
∼← H∗dR(M) that is an quasi-isomorphism of algebras. (This

condition is similar to saying that all Massey products in ΩdR(M) vanish.)

By formality of an operad, I will mean formality of the duals On in the sense of rational
homotopy theory (think of ΩdR, not APL(O(n))) where the maps in the zigzag respect the
operad structure. We have maps θij : FMn(d) → Sd−1 extending the map Cn(Rd) → Sd−1

sending (x1, . . . , xn) 7→ xi−xj
|xi−xj | . (These are the same maps that have previously been called

πij and αij .) Fix a volume form volSd−1 . For all d ≥ 2,

H∗(Fn(d)) = C[{[wij ]i 6=j}]
/

[ωij ] = −[ωji], [ωij ]
2 = 0, [ωij ][ωjk]± [ωik][ωkj ]± [ωik][ωij ] = 0.

The last relation is called the Arnold relation. For d = 2, the Arnold relation holds on the
chain level (i.e. you don’t need the [−]’s).

Exercise 2.2.1. For d > 2, ωijωjk + · · · = dβ.

You’re adding a β for each ijk; then you need to keep adding more stuff. The point of this
talk is to show how to add this stuff in a way that is systematic, i.e. in a way that respects
the operad structure.

We computed cohomology using only the Arnold forms. We want to push this strategy as far
as possible, using only formal properties and the structure of the Fulton-MacPherson operad,
but without writing down any more forms explicitly.

FM2(Rd) is naturally identified with Sd−1. With respect to this identification, we have maps

θij : FMn(Rd)→ FM2(Rd)
which remembers ij. We’ve been pulling back forms. Now we want to try to push forward
forms.

The idea is to use all of FMn+m(d) → FMn(d) and push forward; this is the strategy to
make the β’s in the exercise.

Interlude 2.2.2 (Push-forward in de Rham theory). Let X and Y be manifolds, X → Y
the locally trivial fiber bundle with compact oriented fibers of dimension ` with differential
k-form on X. Idea: take a form on X; given a (small enough) chain on Y , define the value
of the pushforward on that chain by integrating the original form on the preimage. If the
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manifolds are closed, it’s the same as doing Poincaré dual, pushforward, and Poincaré dual
again.

Problem: the maps FMn+m → FMm are not submersions, so de Rham theory doesn’t work.
But we can still make sense of the pushforward if we enlarge the class of “forms” that we
consider: replace smooth forms by semi-algebraic forms.

Exercise 2.2.3. The Fulton-MacPherson operad on R is a bunch of copies of the Stasheff
polytope. Think about FM4(R)→ FM3(R) (4! copies of the 2-Stasheff polytope maps to 3!
copies of the 1-Stasheff polytope, i.e. the interval).

Forms generated by the ωij ’s are called Arnold forms. Define generalized Arnold forms to be
pushforwards of Arnold forms under the maps FMn+m → FMm.

Generalized Arnold forms can be represented by diagrams, where there are a bunch of external
vertices labelled 1, . . . , n (represented by being on the horizontal line), and a bunch of internal
vertices labelled n + 1, . . . , n + m. It’s a graph, so there are some edges. There’s also more
rather boring data (ordering of edges etc), which should be obvious from the construction
below.

Given a graph, I can come up with a form, namely
∧

edges
i→j

ωij ∈ Ω∗(FMn+m(d)). Push this for-

ward along the map that forgets the internal vertices to get a form π∗(
∧
ωij) ∈ Ω∗(FMn(d)).

Call this I(Γ) (where Γ was the graph).

Proposition 2.2.4. Generalized Arnold forms form a subalgebra. More precisely,

d(I(Γ)) =
∑

I(Γ′)

where the sum is over edges of Γ connecting internal and external vertices, and Γ′ is the
diagram obtained by collapsing that edge.

Here’s an example of the formula for the differential

d
(
I
( ))

= I
( )

+ I
( )

+ I
( )

(2.2.1)

The formula for the wedge product is I(Γ)∧ I(Γ′) = I(Γ′′) where Γ′′ is the diagram obtained
by stacking Γ and Γ′ along the external vertices.

For example,

I
( )

∧ I
( )

= I
( )
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Using these rules, define a CDGA D̃n of diagrams with fixed n and varying m.

Question: what is the “G”? Where in this whole construction does the dimension d come
up? The map I should also preserve grading, but that’s the only place where the dimension
comes in. (This is an exercise.)

Proposition 2.2.5. I(Γ) = 0, where Γ contains a loop, double edge, or internal vertex of
valency ≤ 2.

Define Dn to be D̃n modulo the ideal of relations generated by such diagrams.

Proposition 2.2.6. {Dn}∞n=1 has the structure of a cooperad of CDGA’s.

Now we want to show formality of {FMn(d)}∞n=1. We will come up with a zigzag

H∗(FMn(d))← Dn
I→ Ω∗(FMn(d)).

We already talked about the second map. Let us describe the first map. If you have a diagram
with only external vertices and one edge, say between i and j, send that to [ωij ]. Extend
this to diagrams with only external vertices as a map of algebras. Send all the diagrams with
internal vertices to 0.

Remark 2.2.7.

• Ω∗(−) is not monoidal. Given two spaces X,Y , you don’t have a natural map

Ω∗(X × Y )→ Ω∗(X)⊗ Ω∗(Y )

but you do have a map

Ω∗(X)⊗ Ω∗(Y )→ Ω∗(X × Y ).

This is a quasi-isomorphism, but the inverse is not canonical. You should be able to work
with homotopy classes of maps instead of maps. Instead, they make do with the second
map and get some kind of zigzag.

• If d = 2, then Dn is not a CDGA model; it might have negatively graded things.

• For deformation quantization, all we need is stable formality (homology instead of coho-
mology, chains instead of cochains, and don’t care about the product structure). This is
good because chains are monoidal.

• The map FMn(Rd)→ FMn(RD) induced by Rd ↪→ RD is formal when D ≥ 2d+ 1. This
property is called relative formality.

We promised something about β: look at (2.2.1).

Talk 2.3: Universal Vassiliev invariants via integration on
configuration spaces (Daniel Alvarez-Gavela)

Plan for the talk:
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• Vassiliev’s construction

• The Birman-Lin axioms

• Chord diagrams

• The linking number

• The first Bott-Taubes integral

• The Universal Bott-Taubes integral

• The Universal Kontsevitch integral

Vassiliev’s construction. We’re interested in knots, i.e. embeddings S1 → R3. Con-
sider K = Emb(S1,R3) ↪→ C∞(S1,R3) ∼ ∗. After replacing this inclusion by a finite dimen-
sional approximation and applying Alexander duality, morally speaking the study of H∗(K)
reduces to the study of H∗(K′) where K′ = C∞(S1,R3) − Emb(S1,R3). The space K′ of
singular knots is naturally filtered

K(1) ⊂ K(2) ⊂ . . .
where you can think of K(m) as the space of m-singular knots, i.e. knots with m transverse
self-intersections. One can obtain homology classes on K′ by running a spectral sequence
on a simplicial resolution of this filtration. This is Vassiliev’s construction. By the process
described above, one obtains cohomology classes on K. Degree zero cohomology classes
are knot invariants. The knot invariants obtained in this way are called the Vassiliev knot
invariants.

The Birman-Lin axioms. We give an axiomatic description of the knot invariants
described in the previous section. Let u : K → R be a knot invariant (i.e u ∈ H0(K;R)).

Define u(m) : K(m) → R recursively via:

u(m)( ) = u(m−1)( )− u(m−1)( )

Recall K(m) is the space of immersions S1 → R3 that fail to be injective at exactly 2m points
in the source S1, and such that the image of those 2m points consists of m distinct images in
R3 at which the immersion has a transverse self-intersection (the two tangent vectors to the

knot at the self-intersection are linearly independent). Given u = u(0) : K → R, the above

recursive formula defines u(1) : K(1) → R, an isotopy invariant on singular knots with one
unique self-intersection. The we use u(1) to define u(2) an isotopy invariant on singular knots
with two distinct self-intersections, and so on.

Definition 2.3.1. A knot invariant u is a Vassiliev invariant (or invariant of finite type) of

type m if u(m+k) ≡ 0 on K(m+k) for any k > 0. Denote by Vm ⊂ H0(K;R) the real vector
subspace of Vassiliev invariants of order m.

Example 2.3.2. The Conway polynomial is a knot invariant that assigns a polynomial in
R[t] to every knot. It satisfies the relation C( )−C( ) = tC( ). By a combination of

this relation and the relation that defines u(k+1) in terms of u(k) one deduces that C(K(m)) ⊂
tmR[t]. Hence the coefficient cm of tm in the Conway polynomial is a Vassiliev invariant of
type m.
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Most of the knot invariants that we know of are Vassiliev. However, it is not known whether
all knot invariants are Vassiliev or at least can be approximated by Vassiliev invariants (does
the spectral sequence converge?).

Chord diagrams. Let K ∈ K(m) be a singular knot with m distinct transverse intersec-
tions. Define a chord diagram DK associated to K. A chord diagram is a 2m-tuple of points
on S1 divided into m pairs, up to reparametrizations of the circle.

Example 2.3.3. The singular trefoil knot on the left has the corresponding chord diagram
on the right

Each of the six points of S1 that are mapped non-injectively in the immersion K : S1 → R3

corresponds to one of the points on the chord diagram. The pairs that are connected in the
chord diagram are the pairs of points on S1 that map to the same point in R3.

In general, if a knot has m self-intersections, there are 2m points in the domain where it fails
to be injective, hence 2m points on the outside of the chord diagram. These are connected
in pairs corresponding to which points get sent to the same point of R3. Denote Cm the real
vector space generated by chord diagrams with m chords. We have defined an assignment
σ : K(m) → Cm, K 7→ DK called the symbol. Suppose u ∈ Vm.

Proposition 2.3.4. u(K) only depends on the symbol DK .

Proof. Suppose DK0 = DK1 . After an ambient isotopy we can assume that K0 and
K1 agree in a neighborhood of each of the m transverse intersections. Keeping R3 fixed
near these self-intersections, isotope K0 to K1 through a path Kt of singular knots such that
Kt ∈ K(m) is always a singular knot with m transverse self-intersections except at a finite
number of times tj for which Ktj ∈ K(m+1) is an (m+ 1)-singular knot.

Example 2.3.5.

By the Birman-Lin axioms, u(m)(Ktj+ε) = u(m)(Ktj−ε) ± u(m+1)(Ktj ) at each of the times

tj , and everywhere else u(m) does not change because it is an invariant of m−singular knots.

However, u ∈ Vm and therefore u(m+1)(Ktj ) = 0. It follows that u(K0) = u(K1). �

We have described a mapping Vm → Hom(Cm,R) which to u ∈ Vm associates the function

û : Cm → R defined by the condition that û(D) = u(K) for any K ∈ K(m) such that DK = D.
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Definition 2.3.6. The quotient Cm/{4T, FI} is obtained from Cm by imposing the following
two relations:

• (4T Four Term Relation) Any collection of four different chord diagrams which are ev-
erywhere identical except for two chords (varying as shown) satisfies the equality:

• (FI Framing Independence) Every diagram with an isolated chord is set to zero. A
diagram has an isolated chord if the diagram can be drawn in such a way that one of the
chords does not intersect any other chord.

The following is the fundamental theorem of Vassiliev theory.

Theorem 2.3.7. The assignment u 7→ û induces an isomorphism

Vm/Vm−1
∼→ Hom(Cm/{4T, FI},R)

We have almost shown that this mapping is well defined. To prove that for any u ∈ Vm we
have û = 0 on 4T , take any (m − 1)− singular knot K ∈ K(m−1) and consider u(m−1)(K).
Pick a regular point and a self-intersection point on the knot. Isotope the knot so that the
regular point and the self-intersection point are very close to each other and both lie in a
2 dimensional plane, with the self-intersection completely contained in the plane and the
regular part crossing the plane transversely. If the knot is now isotoped so that the regular
point traces a circle in the plane, moving around the self-intersection, the knot will end up
back in its starting position after crossing K(m) exactly four times. Hence the alternating
sum of u(m) evaluated on each of the four m−singular knots adds up to zero. This shows that
û descends to the quotient by the 4T relation. To shows that û descends to the quotient by
the FI relation, represent a diagram with an isolated chord by a singular knot K : S1 → R3

such that the self intersection point K(1) = K(−1) corresponding to the isolated chord is
the unique point of R3 at which two 3−balls B1 and B2 touch, with K(S1 ∩ Im(z) > 0) ⊂ B1

and K(S1 ∩ Im(z) < 0) ⊂ B2. Then u(m)(K) is equal to the difference of u(m−1) on the two
possible (m − 1)−singular knots obtained by resolving the self intersection K(1) = K(−1).

However, these two resolutions are isotopic and hence u(m)(K) = 0.

We have shown that the map Vm → Hom(Cm/{4T, FI},R) is well defined and its kernel
is clearly Vm−1. The hard part of the theorem (and our mission for the rest of this talk) is
the proof of surjectivity. We will call functions w : Cm/{4T, FI} → R weights. The rich
algebraic structure related weights and their cousins allows Vassiliev theory to be understood
through combinatorics, but this will not be discussed today.

The Linking number. For a two-component link L : S1tS1 ↪→ R3, the linking number
is defined as

Link(L) = #( )−#( )

where in both cases we are counting crossings where the first component of the link is crossing
under the second. This is the degree of a map deg(S1 × S1 → S2) defined by considering
(z, w) ∈ S1 × S1 as a choice of point z in the first component of L and a choice of point w
in the second component of L, then mapping (z, w) to the unit vector pointing from z to w
in R3. Degrees of mappings can always be calculated by integrals, this is the Gauss formula
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for the linking number.

Link(L) =

∫
S1×S1

(θ12 ◦ C2(L)|S1×S1)∗ω

where ω is an SO(3)-invariant volume form on S2, θ12 is the map C2(R3) → S2 sending
(p1, p2) 7→ (p1 − p2)/|p1 − p2| and C2(L) : C2(S1 t S1) → C2(R3) is the functorial extension
of the embedding L to the configuration spaces of two points:

C2(S1 t S1) // C2(R3)

θ12

��

S1 × S1
?�

OO

S2

Let us attempt to repeat this strategy for knots (links with one component). Then, given
K : S1 → R3 we consider θ12 ◦ C2(K) : C2(S1)→ S2. Try to define the self-linking number∫

C2(S1)
(θ12 ◦ C2(K))∗ω.

Problem: The space C2(S1) is not compact.

Solution: We have a manifold compactification C2[S1] to which the map θ12 ◦C2(K) extends
smoothly (the extension is the Gauss map sending z ∈ S1 to the unit vector tangent
to K at K(z)).

Problem: But C2[S1] has boundary.

Solution: Since ∂C2[S1] 6= ∅ there is no reason for that integral to be a knot invariant.
Indeed it is not.

Note that in some vague and imprecise sense the mapping θ12 ◦ C2(K) corresponds to the
chord diagram that has one unique chord pairing two distinct points. This chord is isolated,
hence zero by FI. The framing independence prevents such an invariant to exist. This can
be fixed by the introduction of framings, but today we are interested in unframed knots.

The first Bott-Taubes integral. Continuing on the heuristics in the last paragraph,
we seek the first nontrivial weight w : Cm/{4T, FI} → R. For m = 2 the space of chords
modulo relations is one dimensional generated by the weight that sends to 1. Consider

C4[S1]×K
αij
//

π

��

S2

K
where αij

(
(z1, z2, z3, z4),K

)
= θij ◦ C4(K)(z1, z2, z3, z4) and θij : C4[R3] → R is defined by

θij(p1, p2, p3, p4) = (pi − pj)/|pi − pj | on C4(S1). For our purposes the fundamental property
that makes the manifold theoretic compactifications of configuration spaces important is that
the maps θij extend smoothly to the boundary. In some vague and imprecise sense the weight
under consideration corresponds to the form τ13 ∧ τ24, where τij = α∗ijω. This is a 4−form

on C4[S1]×K, but one can integrate along the (4−dimensional) fibres of π to get a 0−form
π∗(τ13 ∧ τ24) on K. For a 0−form (i.e a function) on K to be a knot invariant we need it to
be locally constant, in other words its exterior derivative must be zero. However, because of
Stokes’ theorem:

dπ∗(τ13 ∧ τ24) = π∗(dτ13 ∧ τ24)− (∂π)∗(τ13 ∧ τ24) = −(∂π)∗(τ13 ∧ τ24).
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where ∂π : (∂C4[S1]) × K → K is the restriction of π to the boundary. Now, ∂C4[S1] is
naturally stratified and so we must understand how the different strata (also called faces)
contribute to the pushforward of τ13∧τ24 along the fibres of ∂π. We will think of a picture like

as encoding the location of four points on the circle with each segment representing a map
θij associated to a pair of points (in this case θ13 and θ24). In the boundary of configuration

space, if any of the points in collide we can represent the resulting configuration by a
similar (degenerate) picture. For example, consider the principal faces, where only two points
collide,

the hidden faces where three points collide,

and the anomalous face, where all points collide.

Claim 2.3.8. In the formula

dπ∗(τ13 ∧ τ24) = −
∫
∂C4[S1]

τ13 ∧ τ24 ∈ Ω1(K)

only the principal faces give nonzero contributions to the integral.

Proof. The essential observation is that only faces whose image under the map α13×α24 :
C4[S1]→ S2 × S2 have dimension 3 can have nonzero contributions. In the hidden face, the
infinitesimal arrangements don’t contribute, so the image is at most 2−dimensional. In the
anomalous face, the two maps α13 and α24 agree, so the mapping α13 × α24 factors through
the diagonal S2 → S2 × S2 and is therefore also at most 2−dimensional. �

Nevertheless, the principal faces do yield nonzero contributions and so we have not con-
structed a knot invariant yet. To cancel these contributions we are going to draw some
inspiration from the land of Jacobi diagrams. Let the vector space of Jacobi diagrams Jm
with grading m be generated by chord diagrams in which we allow internal vertices to be
trivalent. The total number of vertices in an element of Jm is 2m. The STU relation is

The following isomorphism holds

Cm/4T
∼→ Jm/STU.
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Given a semi-simple Lie algebra and a representation, these roads lead to a weight system
on chords. If you integrate this using the Kontsevich integral defined below, you get the
quantum invariants obtained by quantizing the Lie algebra and solving the quantum Yang-
Baxter equation. Tri-valent vertices correspond to the fact that the Lie bracket is tri-valent
and the various relations correspond to the Jacobi relation and the bracket/commutator
relation.

Now our weight extended to Jacobi diagrams assigns −1 to the unique Jacobi diagram of
grading 2 that has a trivalent vertex. By interpreting this diagram in terms of configuration
spaces, we define C4,3[R3,K] to be the ordered configuration space of 4 points on R3, 3 of
which are restricted to lie on the image ofK. We can give manifold theoretic compactifications
of these space as in the simpler cases we have already discussed. We still have maps

C4,3[S1,K]
α̃ij
//

π̃
��

S2

K
so that we can define τ̃ij = α̃ij

∗ω.

Theorem 2.3.9.
1

4
π∗(τ13 ∧ τ24)− 1

3
π̃∗(τ̃14 ∧ τ̃24 ∧ τ̃34)

is a Vassiliev knot invariant of type 2 whose symbol maps 7→ 1.

The reason is that if one computes the exterior derivative of the 0− form π̃∗(τ̃14 ∧ τ̃24 ∧ τ̃34)
the Stokes formula yields an integral over the fibres of ∂π̃ : ∂C4,3[R3,K]→ K which as before
vanish over the hidden faces and over the anomaly. Hence only principal faces contribute.
But all the principal faces are essentially the same as the principal faces that we dealt with
when we were studying dπ∗(τ13 ∧ τ24). The integrals agree. Moreover, in the former case we
had 4 such faces and in this latter case we have 3. Hence once we add the weights 1/4 and
1/3, the difference of the two 0−forms is closed and we obtain a knot invariant.

The Universal Bott-Taubes integral. This strategy can be massively generalized.

Theorem 2.3.10. Suppose w is a weight Cm/{4T, FI} → R. Then

K 7→
∑
D∈Jm

w(D)τD(K)/|Aut(D)|+ anomaly

is a Vassiliev knot invariant of type m whole symbol corresponds to w.

If a Jacobi diagram D ∈ Jm has n univalent vertices on the circle and m − n trivalent
internal vertices, then τD(K) will be the result of wedging together the pullbacks of ω by a
bunch of maps Cm,n[R3,K] → S2 corresponding to the chords of D, then integrated along
the fibres of the map Cm,n[R3,K] → K, yielding a function τD(K) ∈ Ω0(K). One verifies
that the Universal Bott-Taubes integral constructs a knot invariant by computing its exterior
derivative. The boundary terms can be grouped in a way analogous to what we did in the
previous section in order to show that the exterior derivative of the various τD vanish in
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groups of 3 by the STU relations (after dividing by the possible symmetries). The anomaly
is a subtler term that is not know to vanish.

The punchline is that there is a systematic way to use a weight system to balance various
integrals on configuration space in such a way that a 0−form is obtained whose exterior
derivative is zero. This is a degree zero cohomology class, i.e a knot invariant. A more
careful analysis of the construction shows that the invariant obtained is Vassiliev of finite
type m and in fact its symbol is the weight that we started with. Hence the Universal
Bott-Taubes integral provides an inverse to the isomorphism of the Fundamental Theorem
of Vassiliev Theory.

The Kontsevich integral. Why did we take ω to be the SO(3)-invariant volume form
on S2? No reason. For example, one can get the combinatorial formula for the linking number
by considering instead a 2-form degenerating to a delta function on the north pole. In this
section we will use a form that is concentrated on the equator. This leads to the Kontsevich
integral.

Think of R3 = Cz × Rt where t is a Morse function on the knot K. Define an integral with
values in the completion of

⊕
mCm modulo 4T, FI.

Z(K) =

∞∑
m=0

1

(2πi)m

∫
tmin<t1<···<tmax

ti noncritical

∑
P=(zi,z′i)

(−1)↓PDP

m∧
i=0

dzi − dz′i
zi − z′i

∈ Ĉ/{4T, FI}.

At height t1, choose a pairing of points z1, z
′
1, at height t2, choose a pair of points z2, z

′
2

etc. This is a pairing P . The diagram DP is the chord diagram that corresponds to this
pairing. The sign (−1)↓P counts the total number of strands through the points zi, z

′
i pointing

downwards. The m−th integral in the sum is over a subset of the m−simplex simplex
tmin ≤ t1 ≤ · · · ≤ tm ≤ tmax, where we are integrating the pullback of the Arnold forms
(generating the cohomology of configuration spaces of points in C) by the maps corresponding
to the choices zi, z

′
i.

Example 2.3.11. This is a Trefoil for which the height function t is Morse.

The integral Z(K) does not change if K varies through Morse knots. To see this, first we
prove invariance under deformations which do not move the critical points and which preserve
the level sets of the height function t. Define the formal KZ connection

Ωm =
∑
i<j

Dij ωij

to be a 1−form on the configuration space C2m(C) with values in a strand version of the space
of Jacobi diagrams of degree m. These diagrams are graphs with univalent vertices lying on
the picture ↑ . . .m ↑↓ . . .m ↓ and trivalent interior vertices. The diagram Dij has one unique
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chord connecting a point on the i−th upwards pointing strand in the picture ↑ . . .m ↑↓ . . .m ↓
to the j−th downwards pointing strand. The form ωij is the Arnold form dzi− dzj/(zi− zj).

Claim 2.3.12. The Arnold relations on the forms ωij and the STU relations on the Jacobi
diagrams Dij imply that this connection is flat, i.e. FΩ = dΩ + Ω ∧ Ω = 0.

Flatness of this connection means that the holonomy of a path in C2m(C) only depends on
the endpoints on the path. Tracing the definitions this translates into Z(K) being invariant
under horizontal deformations. By factoring non-horizontal deformations into deformations
concentrated in a neighborhood of the critical points (needles) followed by horizontal de-
formations, one can show that Z(K) does not change as K varies through Morse knots.
However, the birth or death of two critical points of the height function t, the integral Z(K)
will change. Hence we have to normalize in order to get an invariant. The full Kontsevich
integral is

Ẑ(K) =
Z(K)

Z( )c/2

where c is the number of critical points of the function t on K. This is a Universal Vassiliev
invariant. Indeed, given a weight w : Cm/{4T, FI} → R, one can hit the diagrams in the

formula of the Kontsevich integral with w to obtain a knot invariant K 7→ w(Ẑ(K)) ∈ R.
One can check that this is a Vassiliev invariant of order m, with symbol w. Thus we obtain
another inverse for the isomorphism in the Fundamental Theorem of Vassiliev Theory. It
has been shown that the Kontsevich and the Bott-Taubes integrals agree, provided that they
anomaly vanishes.

Talk 2.4: Embedding calculus (Jeremy Mann)

Embedding calculus, sometimes called manifold calculus, is one flavor of Goodwillie calculus.

Setup: if M and N are smooth manifolds of dimensions m < n, we’re interested in the space
of embeddings Emb(Mm, Nn). If m = 1 and n = 3, this is knot theory.

View this as a functor F = Emb(−, N) : Oop → Top, where O is the category of open sets
of M . The problem is that this is not a sheaf: being an embedding isn’t a local property in
the source.

The idea is to approximate F by functors which are “locally determined” (but really, I want
“multi-locally determined”). Why is this a useful approximation? A manifold is something
that is locally trivial. If they’re locally determined, they’re designed to exploit nice properties
(e.g. handle decomposition) of manifolds. This will allow us to get the homotopy type of the
embedding space within a specific range. If we’re lucky, this will converge.

Question: approximate in what sense?

Answer: in the sense of Taylor calculus. There’s a creepily strong analogy between embedding
calculus and Taylor calculus.
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Taylor calculus Embedding calculus

f : R→ R F : Oop → Top

polynomials polynomial functors

determined by value at
0 and k distinct points

determined by value on

∅ and ≤ k disjoint balls

Taylor series Taylor tower TnF → Tn+1F → . . .

g′(0) = limh→0
f(h)−f(0)

h F ′(∅) = hofib(F (B)→ F (∅))

truncation f − Tkf maps F → TkF

Lkf = Tkf − Tk−1f LkF = hofib(TkF → Tk−1F )

|f − Tkf | → 0 as k →∞? π∗(hofibk→∞(F → TkF ))→ 0?

f = limk→∞ Tkf? F
∼→ holimk→∞ TkF?

Why is the homotopy fiber a like the norm of the difference? If the homotopy fiber is
contractible, the spaces are the same.

Definition 2.4.1. F : Oop → Top is good if

• it takes isotopy equivalences to homotopy equivalences

• For · · · ≤ Vi ≤ . . . with Vi ∈ O such that V =
⋃
i Vi, we have F (V )

∼→ holimF (Vi) (F is
determined by its value on the interior of compact submanifolds).

What is a linear functor? They had better be computable. They should also be determined
by their value at ∅ and some ball B.

Given V ∈ O, closed and disjoint A0, A1 ⊂ V , I’m going to talk about excision. “We’re going
to be puncturing holes according to A0 and A1.” If you’re only puncturing two holes, you
only need a 2-dimensional diagram to describe this.

V V −A1
oo

V −A0

OO

V − (A0 ∪A1)

OO

oo

(2.4.1)

But if you’re puncturing more holes, then you need a higher-dimensional diagram.

Definition 2.4.2. F is linear (or polynomial of degree ≤ 1) if

F (V )
∼→ holimS⊂{0,1} F (V \ ∩i∈S Ai).

This is saying that F is a homotopy sheaf. It takes homotopy pushouts into homotopy
pullbacks. Homology does this, as does stable homotopy.

Example 2.4.3. Top(−, X) is linear.
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Example 2.4.4. Imm(−, N) is linear. This looks obvious (being an immersion is a local
property) but it’s actually not obvious because we’re asking about it being a homotopy sheaf.
It’s actually highly nontrivial.

It is a theorem that Imm(M,N) ↪→ mono(TM, TN) is a weak equivalence; this is implied by
the fact that Imm(−, N) is linear.

Let Pk = P ({0, . . . , k}) (power set on the set {0, . . . , k}).

Definition 2.4.5. A (k + 1)-cube of spaces is a functor χ : P∗ → Top.

For example, if N is a manifold with boundary and metric, look at the k-cube Ek(N) defined
by S 7→ ES(N) := the space of embeddings of I−

⋃
i Ji into N that send 0 and 1 to designated

points on ∂N , and the speed is constant in each component.

More generally, define C ′`(N) as the pullback of

C ′`(N) //

��

(STN)`

��

C`(N) // N `

If F : Oop → Top and we have V,A1, . . . , Ak then consider the (k + 1)-cube

S 7→ F (V \ ∩i∈S Ai).
If k = 2, then this can be represented as (2.4.1).

Definition 2.4.6. F is polynomial of degree ≤ k if F (V ) → holimS F (V \
⋃
i∈S Ai) is an

equivalence.

Definition 2.4.7. The total fibre of χ is

tfib χ = hofib(χ(∅)→ holimS 6=∅ χ(S)).

Definition 2.4.8. F (k)(∅) = tfib(∗).

Example 2.4.9. Top((−)k, X)

Example 2.4.10. V 7→ Top(
(
V
k

)
, X) is polynomial of degree ≤ k. What does this notation

mean?

Definition 2.4.11. Define Ok ⊂ O to be the subcategory whose objects are disjoint unions
of at most k balls.
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Theorem 2.4.12. Suppose E,F are polynomial of degree ≤ k. If ω : E → F such that ω|Ok
is an equivalence, then ω is an equivalence.

We want to take a good functor and associate to it a polynomial of degree ≤ k functor, and
do it in a way that allows me to compare the two.

Define TkF as a homotopy right Kan extension.

OK
F |Ok //

� _

��

Top

O
TkF

<<

I get a natural transformation between the two ways of going around this diagram.

TkF (W ) = holim V⊂W
V ∈Ok

F (V )

Theorem 2.4.13.

(1) TkF is polynomial of degree ≤ k.
(2) If F is polynomial of degree ≤ k, then TkF ' F .

(3) TkF
Tk(ηk)→ TkTkF is an equivalence (i.e. applying Tk twice doesn’t change anything).

Example 2.4.14. Imm(B,N) ' Emb(B,N). Note that immersions are a local property.
You can show that T1Emb(−, N) = Imm(−, N).

Example 2.4.15.

T1Emb∂(I,N) //

��

Emb(I − ∗, N)

��

Emb∂(I − ∗, N) // Emb(I − ∗∗, N)

(∂ means the intervals have to get sent to fixed things) still confused about this. . .

Inclusions Ok−1 ↪→ Ok give rise to the Taylor tower:

...

Tk+1F

OO

TkF

OO

...

OO

F //

::

CC

GG

T0

OO
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We want the connectivity of TkF → Tk+1F to go to infinity as k → ∞ (this is analogous to
“the remainder going to zero” in Taylor calculus).

Theorem 2.4.16. LkF is homogenous of degree k, i.e. Tk−1Lk(V ) ' ∗ is polynomial of
degree ≤ k.

You should be thinking of Lkf = f ′(0)x
k

k! . The fibers are equivalent to F (k)(∅).

Theorem 2.4.17. Take M,N as before but assume n−m ≥ 3. (These estimates don’t work
in the case of knot theory.) Let F (V ) = Emb(V,N). Then F (V ) → TkF (V ) is (k(n −m −
2)− 1−m)-connected. In particular, it →∞ as k →∞.

This is not known in the classical knot case. Surgery arguments break down if the codimension
is too small.

Theorem 2.4.18. Let dimN ≥ 4. Emb∂(I,N) → TkEmb∂(I,N) is (k − 1)(dimN − 3)-
connected.

Theorem 2.4.19. Emb2(I,N) → holimk TkEmb(I,N) is an equivalence. This is also '
holimk holimS ES(N).

(If we’re taking a holim, we don’t want the indexing category to have a terminal object,
because then the holim is the terminal object.)

The proof is a clever combination of transversality, general position, and dimension-counting
arguments.

The kth approximation is sort of saying “what’s the closest I can get to embedding with only
looking at k points at a time.”

Talk 2.5: Cosimplicial models for spaces of long links and
long knots (Kim Nguyen)

What we’ve seen today:

• Fulton-MacPherson compactification Cn[M ]

• Embedding calculus Emb∂(I,M) = holim(T0Emb(I,M)← T1Emb(I,M), . . . )

Plan for this talk:

• Mapping space model

• Cosimplicial models for Emb(I,M)

• Some spectral sequences

Emb∂ meant you fix two endpoints and two tangent vectors. We’ll have to modify the Fulton-
MacPherson operad to account for this. Consider a subspace Cn[M,∂] ⊂ Cn+2[M ]: we’re
given two points in the boundary, and the subspace of the configuration space consists of
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these extra two points (y0, x1, . . . , xn, y1). We also have tangent vectors we want to get in
the game.

Define C ′n(M) as the pullback

C ′n(M) //

��

TM×n

��

Cn(M) // M×n

Definition 2.5.1. Let AMn(M) denote the space of aligned maps C̃1
k [I, ∂] → C ′n[M,∂],

where C̃1
k [I, ∂] is the component of those configurations where the order agrees with the

order in I. I’m not following the discussion of what an aligned map is.

Recall: elements of C1
T [M,∂] look like

I want to describe a map Emb(I,M)→ AMn(M). Start with an embedding f ; this gets sent
to a map Ck(I, ∂)→ Ck(M,∂) sending (x1, . . . , xk) 7→ (f(x1), . . . , f(xk)).

Theorem 2.5.2. AMk(M) ' TkEmb(I,M)

Rough sketch. AMk(M) ' holimP0(n+1)Dk [M ] where Dn [M ] is a functor P0(n+1)→
Top sending S 7→ C ′#S−1 [M,∂]. Induced maps are given by “diagonals.” Here P0(n+ 1) is
the power set poset, where 0 means that the empty set is not allowed.

Dn[M ] is levelwise weakly equivalent to the cubical functor Ek(M) that punctures the knot
in k places. �

Cosimplicial model. We want a cosimplicial space X : ∆ → Top such that TotXf '
Emb(I,M). Totalizations are dual to geometric realizations. One way to write it down is
as the space of natural transformations Nat(∆•, X). I need to take the fibrant replacement,
because I need things to be homotopy-invariant. Recall that geometric realizations are not
homotopy-invariant unless things are “really cofibrant”.

There’s a way to go from a cubical diagram to a cosimplicial diagram.

Definition 2.5.3. Define Gn : P0(n+ 1) → ∆n ⊂ ∆ by sending S 7→ [#S − 1], and S ⊂
S′ 7→ [#S − 1] ∼= S ⊂ S′ ∼= [#S′ − 1]]

Theorem 2.5.4. Given X : D → Top, then we have Totfn i∗X ' holimP0(n+1)X ◦Gn.
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We get a tower Tot0X ← Tot1X . . . where TotnX = Nat(i∗∆, inX). nth truncation is
composition with i∗ : ∆n ↪→ ∆.

Sketch of proof. We need two ingredients:

• Quillen’s theorem A: suppose we have F : C → D such that |F ↓ d| ' ∗ for all d ∈ D (this
condition is called (left?) cofinal). Then for G : D → Top, holimDG ' holimC G ◦ F .

• holim∆n inX ' TotnX
f .

We need to show that Gn is (left? right?) cofinal. Exercise: find a nice simplicial complex
that is ' the geometric realization of this comma category, and show that this is contractible.

Tot1X = Nat(i∆, i1X)

∆0 f0
//

����

X0

�� ��

∆1

OO

f1
// X1

Exercise: show that this is a weak equivalence: TotnX ' holim(X0
d0→ X1

d1← X0). �

The cosimplicial model is C∗ [M ] : ∆→ Top sending [n] 7→ C ′n [M,∂]; the cosimplicial maps
are “doubling” and “forgetting.”

We have Dn [M ] = inC
∗ [M ] ◦Gn, so

holimP0(n+1)Dk [M ] ' holim∆n ikC
∗ [M ] ' TotnC

∗ [M ] .

Conclusion:
TotC• [M ]f ' Emb(I,M).

Now that we have a cosimplicial space, we can write down spectral sequences.

Suppose we have a tower of fibrations

X0 X1
oo X1

oo X2
oo . . .oo

F0

OO

F1

OO

Apply homotopy groups. Since these are fibrations, we get connecting maps

π∗(X0)

∂

%%

π∗(X1)

∂

%%

oo π∗(X2)oo . . .oo

π∗(F0)

OO

π∗(F1)

OO

This gives rise to an exact couple, and from this a spectral sequence. For a cosimplicial space
X : ∆→ Top we get a spectral sequence associated to the tower of fibrations

Tot0X
f ← Tot1X

f ← Tot2X
f ← . . .

so you get a spectral sequence for X which converges (sometimes) to π∗(TotXf ).
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This also works for homology. The forgetful functor TopAb→ Top has a left adjoint Z (free

topological abelian group). This has the property that π∗(ZX) ∼= H̃∗(X,Z) (Dold-Thom).1

Make a new cosimplicial space ∆
X→ Top

Z→ Top, and take the homotopy spectral sequence
to compute the homology of your original cosimplicial space.

But there’s a subtlety: in principle when we compute this, you want π∗(ZTotX) instead of
π∗(TotZX). . .

Theorem 2.5.5. There is a spectral sequence converging to π∗(Emb(I,M)) with E1-page

E−p,q1 =
⋂

ker sj∗ ⊂ πϕ(C ′p [M,∂])

(where the sj’s are the degeneracies) with differential d1 =
∑

(−1)idi∗ (alternating sum of
coface maps). There is a spectral sequence converging to H∗(Emb(I,M)) where

E−p,q1 = coker
∑

(si)
∗ : Hq(C ′p−1 [M,∂])→ Hq(C ′p [M,∂])

and the differential is given by d1 =
∑

(−1)i(di)∗. This is the Sinha spectral sequence.

1Qiaochu mutters something about basepoints being needed.
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Day 3: Formality and its consequences

Talk 3.1: Formality of models for spaces of long knots
(John Berman)

This talk is about the rational homotopy type of the space of long knots.

Let’s first recall some notation. If X• is a cosimplicial space, then the homotopy totalization

hoTot(X•) is equivalently the fibrant replacement Tot(X•)f , or holim(∆
X→ Top).

Recall from yesterday that compactified configuration spaces C∗[M ] give rise to a cosimpli-
cial space, which induces spectral sequences converging to H∗Emb(I, Id), H∗Emb(I, Id), or
π∗Emb(I, Id), depending on what we want to calculate.

Umut talked about formality of Dn with real coefficients.2 This implies that these spectral
sequences collapse with Q-coefficients, provided d ≥ 4. Unfortunately, most knot theorists
like to set d = 3, but then the Goodwillie tower may not converge to the right space, and the
spectral sequence may not converge.

If you have never worked with spectral sequences, this one may be a little daunting. The
best thing we can possibly hope for is that there are no differentials beyond the Er page. In
this case, Er = E∞. We’re working with vector spaces, so there are no extensions to resolve,
at least if we are only interested in additive structure.

Theorem 3.1.1 (Sinha, Lambrechts-Volic-Turchin). The Sinha spectral sequence for rational
homology collapses at the E2 page, and

H∗(Ω
2Sd−1,Q)⊗H∗(Emb(I, Id);Q) = HH∗Poisd−1.

We know that the spectral sequence arises from configuration spaces, so we might ask if it
arises from the little disks operad. Indeed, it does! Plan:

• Show that multiplicative operads give rise to a cosimplicial space;

• The Fulton-MacPherson operad gives rise to a cosimplicial space, and hence a Sinha
spectral sequence;

• Formality of the Fulton-MacPherson operad implies that the cosimplicial space is formal
as a diagram, and hence the spectral sequence collapses.

Then we will try to compute the rational homology and homotopy of the embedding space.

Definition 3.1.2. A non-Σ operad (i.e. no action of Σn) O is multiplicative when it comes
with an operad map Ass→ O.

In particular, the map Ass(n)→ O(n) gives preferred multiplications.

2It turns out that Dn is formal with Q-coefficients, but that’s extremely recent.
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Given a multiplicative operad Ass→ O, we get a cosimplicial space

O(0) //
// O(1)oo

//

//
// O(2)oo

oo . . . (3.1.1)

Where do the maps come from? We have preferred elements m ∈ O(2) and e ∈ O(0).
Given x ∈ O(2), you get four things in O(3): m(−, x(−,−)), m(x(−,−),−), x(m(−,−),−),
x(−,m(−,−)), etc. Similarly, you can get two things in O(1) by x(e,−) and x(−, e). In
general, an element x ∈ O(n) induces n+ 2 elements of O(n+ 1) given by multiplication on
the left or right outside of x, or multiplication of two adjacent inputs to x. It also induces n
elements of O(n− 1) given by inputting one identity e ∈ O(0).

Unfortunately, Dd is not quite multiplicative (it is only multiplicative up to homotopy).
Possible fixes:

(1) take a strict multiplicative replacement. This will be the Kontsevich operad. Recall that
the FM operad kept track of direction and relative distance. We will just keep track of

direction now. Consider the map f : Conf(n,Rd) → (Sd−1)(
n
2) sending

(x1,...,xn)7→{xi−xj
|xi−xj |}ij .

Define Kd(n) = im(f). This forms an operad, called the Kontsevich operad, which is
an Ed-operad. The map Ass = K1 → Kd gives rise to a multiplicative structure. The
Bousfield-Kan spectral sequence is, in this case, the Sinha spectral sequence.

(2) In order to prove collapse, FMd is not multiplicative, but there is a map of ∞-operads
Ass → FMd. This induces an ∞-map N∆ → Top. (Basically, just use ∞-language
instead of trying to get strict models for things.) This still requires some work to make
rigorous, and I am not aware of anywhere it is written up.

The spectral sequence is

E1
−p,q = Hq(FMd(p),Q) =⇒ H∗(Emb(I, Id),Q).

We need to take a quick digression on this Emb(I, Id). Define

Emb(I, Id) := hofib
(
Emb(I, Id)

f→ Imm(I, Id) ' Hom(S1, Sd−1) = ΩSd−1
)
.

The map Emb(I, Id)→ ΩSd−1 takes g 7→ (t 7→ g′(t)) (take the unit tangent vector). This is
nullhomotopic: a nullhomotopy comes from

∆2 × Emb(I, Id)→ ΩSd−1 taking (t0 ≤ t1), g 7→ g(t1)− g(t0)

|g(t1)− g(t0)|
.

So Emb(I, Id) = Emb(I, Id)× Ω2Sd−1, which is no longer so intimidating.

Recall that the homology of an Ed-operad is the Poisson (d− 1)-operad. The equatorial em-
bedding D1 ↪→ Dd induces a canonical map AssVectk = H∗(D1,Q)→ H∗(Dd,Q) = Poisd−1, so
Poisd−1 is a multiplicative operad, and hence we get a cosimplicial vector space Poisd−1(0)→
. . . as in (3.1.1).

The Dold-Kan correspondence says that there is a Quillen equivalence of model categories
between cosimplicial Q-vector spaces and (positive-degree) cochain complexes over Q. The
associated cochain complex to the Poisson cosimplicial object above looks like

Poisd−1(0)
d0−d1→ Poisd−1(1)

d0−d1+d2→ . . .
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Definition 3.1.3. Hochschild homology HH∗Poisd−1 is defined to be the cohomology of the
above cochain complex.

At least in theory, this is computable: we know what all the terms and differentials are.

(Why is this called Hochschild homology? If A is an algebra, you get a multiplicative operad
Ass→ EndA. If you do this same construction, you get the Hochschild cohomology of A.)

The E1 page looks like

The E2 page is HH∗Poisd−1.

We want to see that the spectral sequence collapses at E2.

Recall: not only was FMd formal, but also relatively formal: the maps FM1 → FMd are
formal as maps of diagrams. That is, we can replace these maps of operads (over rational
spaces) by maps of operads over commutative graded algebras. Let’s quickly review the
notion of formality in rational homotopy theory:

Definition 3.1.4. A diagram I → Top is formal if a lift exists (up to homotopy)

CGAopQ (no differential)
� _

��

I //

44

TopQ ' CDGAopQ

Recall that TopQ is Top modulo maps that induce equivalences on π∗ ⊗Q.

Definition 3.1.5. I → Top is stably formal if there is a lift (up to homotopy)

GrV ectQ� _

��

I

55

// TopQ H∗(−,Q)
// Ch∗(Q)

Theorem 3.1.6. If we have a cosimplicial space X∗ : ∆ → Top and this is formal (as a
diagram), then the Bousfield-Kan spectral sequence collapses at E2.
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Corollary 3.1.7. As a result, all we need to show to prove collapse is that the assignment
from multiplicative operads to cosimplicial spaces preserves formality. (We won’t talk about
this, but it’s not too bad. There are subtleties, especially if you don’t want to use higher
categorical language.)

The E0 page is C∗X
i (with vertical d0 differentials).

The E1 page looks like

By formality, the vertical d0’s are zero. I claim this implies that all differentials d≥2 are zero.
For example, if a survives to the E2 page, then d1(a) = 0 at the E1 page, so d1(a) = d0(b) at
the E0 page, and d2(a) is constructed from b. But since d0 = 0, we just have d1(a) = 0, so
we can choose b = 0, so d2(a) = 0.

So d≥2 = 0, and the spectral sequence collapses at E2 = HH∗Poisd−1.

E2 E∞

HH∗Poisd−1 H∗(Emb(I, Id);Q)

H∗(Emb(I, Id);Q)⊗H∗(Ω2Sd−1,Q)

The LHS is computable (if a little difficult). Also H∗(Ω
2Sd−1,Q) is computable: rationally,

being a loop space is enough to be an infinite loop space, so by a recognition principle, this
is just the free commutative algebra on H∗(S

d−3,Q).

Remark 3.1.8. H∗(Emb(I, Id);Q) depends (up to grading) only on the parity of d (for
d ≥ 4). Because (rationally) embedding spaces are loop spaces, to compute rational homology,
it’s enough to know the Q-homotopy type.

The little disks operad is also coformal (paper only written in the last few years; result maybe
older?). This can be used to work out rational homotopy groups.
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Finally, I want to say a word about actually computing the rational homology. In principle,
this amounts to computing some terms of Poisson operads, which are well-understood: ele-
ments of Poisd−1 look like products of iterated brackets [[X3, X4], X1][X2, X3] ∈ Poisd−1(5),
where the grading of a term involving n iterated brackets is (d− 1)n.

Example 3.1.9. α = [X1, X3][X2, X4] lives in the fourth column (decreasing indexing) and
has grading 2d− 2.

α might live in H∗Emb(I, Id). In fact it does, and we can describe it topologically. Pick any
knot

with 2 crossings. We want to resolve both crossings. The crossing lives in R2, and the orthog-
onal complement is Rd−2. Send Sd−3 → Emb(I, Id) sending t 7→ what happens when you
resolve one strand through point of Sd−3 in the orthogonal complement of the 2-dimensional
crossing space. To resolve both crossings, take Sd−3 × Sd−3 → Emb(I, Id). This represents
a nonzero homology class, which has to do with doing Bott-Taubes in higher dimensions. In
fact, it is the homology class for α, a product of two brackets. For iterated brackets, the
topological realization of the homology classes are not yet fully understood.

Talk 3.2: Deformation quantization (Felix Wierstra)

In physics we have classical mechanics and quantum mechanics. They are kind of different.

Classical mechanics Quantum mechanics

Manifold X Hilbert space

Observables A = C∞(X) operators on a Hilbert space

Time evolution {−,−} commutator [−,−]

Idea: what if the quantum observable algebra is a deformation of the classical one? You have
to let go of the interpretation, and just think about the algebra.

Definition 3.2.1. A Poisson algebra is a commutative algebra with a Lie bracket {−,−}
satisfying the Jacobi identity {f, g}h+ g{f, h}.

We would like to find a “star-product” ? : A[[~]] ⊗ A[[~]] → A[[~]], written f ? g = f · g +
β1(f, g)~+

∑
βi(f, g)~i, and the Poisson bracket is defined to be {f, g} = β1(f, g)− β1(g, f).

Question: do star products exist?
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Disclaimer: for simplicity, I will completely ignore the action of gauge groups.

First we translate the problem into differential graded Lie algebras.

The Maurer-Cartan algebra is

MC(L) = {γ ∈ L1 : dγ +
1

2
[γ, γ] = 0}.

Define the algebra of polyvector fields

Tnpoly(X) = Γ(X,Λn+1TX)

with differential zero. The bracket is the Schouten-Nijenhuijs bracket, which is a complicated
formula that is just taking the Lie bracket on vector fields and extending it. MC(Tpoly(X))
corresponds to Poisson structures.

There is the Lie algebra of polydifferential operatorsDpoly(X), a subcomplex of the Hochschild
complex, given by

Dn
poly(X) =

{
f ∈ Hom(A⊗n+1, A) : f is a polydifferential operator

}
(polydifferential operators are just differential operators in each variable; they are polynomials
in differential operators). Its differential is the Hochschild differential. Note the degree
shift ensures the bracket is in degree zero. Since this is a subcomplex of the Hochschild
complex, these correspond to small deformations. The Mauer-Cartan algebra corresponds
to the algebra you get after deforming is associative. MC(Dpoly(X)) corresponds to star
products.

Theorem 3.2.2 (“Formality conjecture”). Dpoly and Tpoly are quasi-isomorphic.

This was proven by Kontsevich. He constructed an explicit L∞ morphism Tpoly → Dpoly.
The formulas come from ideas in string theory.

Since Tpoly has zero differential, it is the homology of Dpoly. But this is not completely
trivial. . .

We have a map U
(0)
1 : Tpoly → Dpoly that sends (ξ0 ∧ · · · ∧ ξn) 7→ (f0 ⊗ . . . ⊗ fn 7→

1
(n+1)!

∑
σ∈Σn+1

sgn(σ)
∏k
i=0 ξσ(i))(fi).

Theorem 3.2.3 (Hochschild, Konstant, Rosenberg). U
(0)
1 is a quasi-isomorphism of com-

plexes. U
(0)
1 does not commute with brackets.

Definition 3.2.4. An L∞ morphism U : L1 → L2 is a sequence of maps Ui : ΛiLi → L2[1−i]
(that’s a degree shift) satisfying certain identities.

Kontsevich gave specific formulas for Rd, so restrict to X = Rd.

Definition 3.2.5. An admissible graph Γ is a directed graph such that:

50



Applications of operads Talk 3.2

(1) we have two types of vertices {1, . . . , n} (type 1), {1, . . . ,m} (type 2).
(2) every edge starts at a type 1 vertex

(3) define star(k) to be the set of outgoing edges of a type 1 vertex k. Label these e1
k, . . . , e

#star(k)
k .

These are related to the type 1 vertices from before, but don’t think about that because
you’ll get confused.

Recall, we’re trying to construct a map from Tpoly → Dpoly. To each graph we associate a
polydifferential operator: define the map UΓ :

⊗
γ1⊗...⊗γn Tpoly → Dpoly as follows (where the

γi’s are poly vector fields). To each type 1 vertex we attach〈
ψi,
〈
γi, dx

I(e′i) ⊗ . . .⊗ dxI(e
#star(i)
i )

〉〉
where I is a map from edges to {1, . . . , d}. To type 2 vertices we associate the inputs. We
decorate the edges with partial derivatives: put ∂

∂xI(i)
on each edge. Then our map does

UΓ(γ1 ⊗ . . .⊗ ψn)(f1, . . . , fm) =
∑

I:EΓ→{1,...,d}

ΦI

where

ΦI =
∏
x

(∏
e

∂

∂xI(e)

)
ψi

Example:

ψ2 2

2
∂
∂x2

��

∂
∂x1

1

||

ψ1 1

∂
∂x2

2

��

3

∂
∂x3

!!1
f1

2
f2

Here ψ1 =
〈
ψ1, dx

2 ⊗ dx3
〉
.

The L∞ morphism Un :
⊗n Tpoly → Dpoly is

Un =
∑
m≥0

∑
graph Γ with n type 1,
m type 2 vertices

WΓ · UΓ

where WΓ are weights to be defined below.

Theorem 3.2.6. This is an L∞ quasi-isomorphism.

Define
Confn,m = {P1, . . . , Pn : g1, . . . , gm : Pi ∈ H, g/j ∈ R, Pi 6= Pj}

Draw these graphs in the upper half-plane. Then there is an action of G(1) = translation by
R and scaling by R. Define Cn,m to be Confn,m/G

(1).
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We want to integrate, so we want to compactify first in the style of Fulton-MacPherson.

C2,0 can be drawn as . Say ϕ is an angle map if it measures the angle with `.
Each edge gives a function ϕ∗ on Cn.m.

∧
e∈EΓ

dϕe is a volume form on Cn,m. Then

WΓ = const.

∫
Cn,m

∧
e

dϕe.

“Certain conditions” correspond to some integral over configuration spaces, and that integral
is zero by Stokes’ theorem.

∫
Cn,m

d
∧
e dϕe = 0. (In Cn,m we use graphs with 2n + m − 3

edges.) Use Stokes’ theorem to say
∫
∂Cn,m

∧
e dϕe =

∫
Cn,m

d(
∧
e dϕe) = 0. So the vanishing

of the “certain condition” follows from Stokes’ theorem.

Tamarkin’s proof of the formality conjecture. We wanted to show that Tpoly is
quasi-isomorphic to Dpoly. These algebras contain much more structure than we’ve been
considering above. Recall that Dpoly is a subcomplex of the shifted Hochschild complex. We
want to give it more structure. At this point it’s important to shift everything back in degree,
so our new Tpoly is old Tpoly[−1] and new Dpoly is old Dpoly[−1].

Theorem 3.2.7 (Deligne conjecture). There is an E2-action on the Hochschild complex
CH∗(A) such that this descends to a Gerstenhaber algebra on H∗(A).

Tpoly has a wedge product and is also a Gerstenhaber algebra.

Let P be an operad in chain complexes. Its minimal model P∞ → P is a quasi-free operad3

such that it’s quasi-isomorphic to P and “is as small as possible.” (Over Q, minimal models
always exist. Characteristic 6= 0 might be harder.) Minimal models are unique up to quasi-
isomorphism. If two algebras are quasi-isomorphic, then they have the same minimal model.
For example, if P = Ass, then P∞ is an A∞-operad.

Theorem 3.2.8 (Homotopy transfer theorem). Let A be a dg P -algebra and let p : A→ H(A)
be the map from A to its homology H(A). The map p is in general not a quasi isomorphism,
but we can define a P∞-structure on H(A) such that

A
∼→ H(A) + P∞-structure

is a quasi-isomorphism of P∞ algebras.

So we have an E2-structure on Dpoly, and a G-structure (Gerstenhaber) on Tpoly ∼= H(Dpoly).
But we don’t know if the map between them is a quasi-isomorphism. We could look at
Dpoly → H(Dpoly), and transfer the structure of the minimal model (E2)∞ to H(Dpoly).

Theorem 3.2.9 (Tamarkin). E2 is formal.

3meaning the underlying operad in vector spaces is free (no relation among the operad structure maps), but
it has a differential, and the homology is far from free
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By uniqueness of minimal models, the (E2)∞-structure is the same as the G∞-structure.
Tpoly is also a G∞-structure. Now we have two G∞-structures on Tpoly. To show formality,
we have to show that these two structures are the same. If Tpoly 6∼= H(Dpoly), then there are
certain obstructions.
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Day 4: Delooping embedding spaces

Talk 4.1: Rational homotopy of spaces of long embeddings
(Robin Koytcheff)

Look at Emb(M,Rn), where for this entire talk, M will be an open subset of Rm, viewed
as a fixed subspace of Rn. (Recall that Emb is the homotopy fiber from embeddings to
immersions.) We’re also going to consider the “long” version Embc(Rm,Rn) (where c means
the embedding is fixed outside of a compact set). If m = 1, Embc(R1,Rn) is your standard
space of long knots.

Reference: Arone–Turchin (a.k.a. Tourtchine), “On the rational homology . . . .” (published
in Geometry & Topology).

Theorem 4.1.1 (Arone–Turchin). Assume n−m ≥ 3. Then

Embc(Rm,Rn) = hInfBimodDm(Dm,Dn)

where hInfBimodDn means the derived mapping space in the category of infinitesimal bimod-
ules over the little disks operad Dn.

There is a similar result for Emb(M,Rn). Proposition 4.1.6 at the end of this section should
makes clear what the precise statement is in this case.

Is the RHS any easier than the LHS? (Yes: it leads to calculations of rational homology and
rational homotopy.)

Motivation and consequences:

• For m = 1, this recovers the cosimplicial model for the knot space.

• H∗(Embc(Rm,Rn);Q) “depends only on the parity of m and n” (well, it’s built out of
the same pieces if your manifolds have the same parity).

• H∗(Emb(M,Rn);Q) depends only on H∗(M ;Q) if 2m + 1 < n. (Recall that in this
setting, M is an open subset of Rm.)

• In the next talk, we’ll see a double delooping of Embc(Rm,Rn), and that will use the
structure of maps of modules over operads.

Plan:

(1) Modules over operads
(2) Modules over operads as functors
(3) Specialize to the operad Dm
(4) Taylor tower
(5) Sketch proof of result above

Recall, a right-module M over an operad O is a sequence of spaces {M(n)}n∈N, together
with maps M(k)×O(`)→M(k + `− 1)
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such that the following hold:

• the order of insertions in this diagram doesn’t matter:

• the order of insertions in this diagram doesn’t matter:

• an identity condition.

An infinitesimal right module is one where you have to do the insertions one at a time. This
is exactly the same as a right module.

An infinitesimal left module M over O is {M(n)}n∈N with maps O(k)×M(`)→M(k+`−1)

such that the following hold:

• the order of insertions in this diagram doesn’t matter:

• an identity condition.

A (non-infinitesimal) left module is one where you can plug multiple M -trees into an O-slot.
Neither of these conditions implies the other one.

An infinitesimal bimodule M over O is M with both infinitesimal left- and right-module
structures such that the order of insertions in

doesn’t matter. Sometimes the word “infinitesimal” is replaced by “weak” or “linear.”

Let F be the category of finite sets, with all maps. Define F(O) to be the category of finite
sets A, B, . . . with morphisms

Hom(A,B) =
⊔

α:A→B

⊗
b∈B
O(α−1(b)).

Example:
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where the summand corresponding to the indicated map A→ B is O(2)×O(2)×O(0).

Proposition 4.1.2. A right module over O is a (contravariant) functor from F(O).

Let Γ be the category of pointed finite sets and pointed maps. Out of this we can build the
category Γ(O) of pointed sets S, T . Then Hom(S, T ) is the same as for F(O).

Γ̃(O) is the same as Γ(O), but with “composition at the basepoint reversed.” (I’ll say what
this means in the case of the little disks operad.)

Proposition 4.1.3. An infinitesimal bimodule over O is a (contravariant) functor from

Γ̃(O).

Let M be the category of open subsets of Rm, where the morphisms are affine-linear (the
composition of a scaling and a translation, a.k.a. “standard”) embeddings on each component.

We can describe the k-th space in the little disks operad as Dm(k) = sEmb(
⊔
kD

m, Dm)
(standard embeddings). We can also think of Dm as the operad End(Dm) of endomorphisms
of Dm in the category M. Then F(Dm) is the category of finite sets A, B, . . . where mor-
phisms in Hom(A,B) are standard embeddings A×Dm → B ×Dm.

Proposition 4.1.4. We can identify Γ̃(Dm) with the category of finite pointed sets S, T, . . . ,
where

Hom(S, T ) = sEmb(S\{∗} ×Dm t (Rm\Dm), T\{∗} ×Dm t (Rm\Dm)).

Call Rm\Dm the “antiball.” Notation: Arone and Turchin write sEmb(S �Dm, T �Dm).

Idea of this proposition: for the anti-ball, an embedding α : Dm ↪→ Dm gives rise to α−1 :
Rm\Dm ↪→ Rm\Dm.

When discussing the Taylor tower we were looking at functors F : O(M)op → Top. Now

we also want to consider F : Õ(Rn)op → Top, where Õ(Rn) is the category of open sets
with bounded complement and inclusions (i.e., an object is an open set that contains some
antiball). This variation is required to handle “long embeddings,” i.e. those which are
standard outside a compact set.

Recall that for F : O(M)op → Top, we defined TkF := holimU∈Ok F (U), the degree-k
polynomial approximation to F . Here Ok ⊂ O(M) is the subcategory of disjoint unions of at
most k balls. (See Talk 2.4 for the definition of “degree-k polynomial functor.”) We had an
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equivalence F (U)
∼→ TkF (U) for U ∈ Ok, and this property together with being polynomial

of degree k, uniquely characterize TkF .

For F : Õ(Rn)→ Top, define TkF := holim
U∈Õk F (U), where Õk ⊂ Õ(Rn) is the subcategory

of disjoint unions of at most k balls and one antiball. As in the previous case, this TkF is

polynomial of degree k, and we have an equivalence F (U)
∼→ TkF (U) for every U ∈ Õk. Once

again, these properties uniquely characterize TkF .

Definition 4.1.5. A functor F : O(M)op → Top is context-free if it factors through M. A

functor F : Õ(Rn)op → Top is context-free if it factors through M̃, where instead of open
sets, the objects are disjoint unions of open sets, one of which has bounded complement (i.e.
contains an antiball).

The term “context-free” means you don’t care which manifold the open subsets live in.

For example, Emb(−, N) : O(M)op → Top is context-free.

An example of a functor that is not context-free is the space of sections of a bundle over
some fixed manifold.

One can show that Emb(−,Rn) : O(M)op → Top and Embc(−,Rn) : Õ(Rn) → Top are

(weakly equivalent to) context-free functors. Recall that M (resp. M̃) contains F(Dm)

(resp. Γ̃(Dm)) as a subcategory. Hence Emb(−,Rn) (resp. Embc(−,Rn)) is a right module
(resp. infinitesimal bimodule) over Dm.

Proposition 4.1.6. For any U in O(M), resp. Õ(Rm),

TkEmb(U,Rn) ' hRMod
Dm ≤k

(sEmb(−, U),Dn)

TkEmbc(U,Rn) ' hInfBimod
Dm ≤k

(sEmb(−, U),Dn).

Idea of proof: the proofs of the two statements are similar, so we sketch the proof of the
first statement. First, the functor F := Emb(−,Rn) is equivalent as a right module over
Dm to Dn. Then the right-hand side above can be written as a holim of spaces of the form
holimV,Y Map(sEmb(V,U), F (Y )). Considering this space as the value of a functor G at U ,
one can show that G is a degree-k polynomial functor. By the (enriched) Yoneda Lemma,
G(U) is equivalent to F (U) for any U ∈ Ok. Thus by the two properties that characterize
TkF , G is equivalent to TkF , meaning that TkF (U) ' G(U) for any U ∈ O(M).

Putting U = M (resp. U = Rm) and k = ∞ and using that sEmb(−,Rm) is equivalent to
Dm yields Theorem 4.1.1.

Talk 4.2: Double delooping theorem for spaces of long
knots (Rebecca Wei)

Let A denote the associative operad.

57



Applications of operads Talk 4.2

Theorem 4.2.1 (Dwyer, Hess). Given a map of nonsymmetric simplicial operads ω : A → O
(with O0 ' O1 ' ∗), there’s a natural weak equivalence

Ω2 MaphOp(A,O)ω ' holimO•

where O• is the cosimplicial space associated to O.

Context:

• Sinha showed that for O = Km (the Kontsevich operad, which is like the Fulton-
Macpherson operad where you only care about relative directions and not relative dis-
tances), the RHS is weakly equivalent to Embc(I, I

m). Note that long knots have a
multiplication, namely concatenation of the compact support part.

• Given ω : A → O, McClure-Smith defined O• and showed that the totalization is an
E2-algebra.

Exercise/ example 4.2.2. If O = EndX , then (O•, d = Σ(−1)idi) is the Hochschild
cochain complex.

Exercise/ example 4.2.3. If (X, e) is a topological monoid, show that On = Xn defines
an operad with multiplication whose totalization is ' ΩeX (loop space based at the
identity).

Outline:

(1) Proof sketch of main theorem
(2) Computation and example related to main theorem
(3) More details of the proof

Proof sketch of main theorem. The proof depends on a more general theorem.

Theorem 4.2.4 (Fiber sequence theorem). Let (C, �, e�) be a model category with monoidal
product �. Let ω : R→ S be a map of monoids.

Suppose C, CS (category of right S-modules), CR,S (category of R-S bimodules), MonC (cat-
egory of monoids in C) have compatible model category structures.4

Then, under some conditions I won’t describe, there is a natural fiber sequence

Ω MaphMonC
(R,S)ω → MaphCR,R(R,R)→ MaphC(e�, S)

(derived mapping space based at the map ω).

These conditions hold in all the examples we care about, but they can be really hard to check.

We want to apply this in two different settings.

4Kathryn: this is not a strong hypothesis.
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Consider C = graded spaces, � = composition product (written ∗); monoids are operads.
Then e� = ∗ in level 1. Use R = A, S = O. The conditions work, so the theorem says that

Ω MaphOp(A,O)ω ' MaphA,A(A,O)

(the last term in the sequence is contractible).

We could also think about this where C = right (A,O)-modules, � = the graded cartesian
product (written �), i.e. (X�Y )m =

⊔
i1+i2=mXi1×Yi2 . Monoids w.r.t. the graded cartesian

product are the same as left (A, ∗)-modules.

Notation: write A for (A, composition product), and A = (A,�).

In both settings, our map ω is the given map A → O. The fiber sequence theorem says

Ω MaphA-A,∗(A,O) ' MaphA-A,�,mods A,∗(A,O)

and hence
Ω2 MaphOp(A,O)ω ' MaphA-A,�,mods A,∗(A,O).

Computation. holimO• ' MaphA-A,mods A.

Idea: give a simplicial resolution for A in (A-A-bimods�,mods A) whose diagonal is weakly
equivalent to A.

We’ll write down the cosimplicial resolution.

HnA = A�n+2

(HnA)m =
⊔

i1+···+in+2=m

Ai1 × . . .×Ain+2

and one of the face maps takes that to Ai1+i2 ×Ai3 × . . .×An+1 ∈ (HmA)m. The degeneracy
maps are insertions of A0 in the appropriate places.

There is a diagonal map diag : ssSet→ sSet; then diagX.,. ' hocolimX.,•.

diagHA
'→ A because we have an extra degeneracy in ⇒

⊔
i1+i2=mAi1 ×Ai2 → An.

So:

Maph(A,O) ' Maph(diagHA,O)

' Maph(hocolimHA,O)

' holim Maph(HA,O)

Claim 4.2.5. O• ' Maph(H•A,O)

I can take the definition of (A�n)m and stick in an extra factor of the point, written ∗n in
front of each piece of the coproduct. This shows (A�n)m = (∗n ◦ A)m where ∗n is a graded
space empty in all levels except for a point in level n. So,
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HnA = FreeA-A,�(A�n) = FreeA-A,�(Freemods-A,◦(∗n))

MaphA-A,mod-A(HA,O) ' Maphmod−A(Free(A�n),O)

' MaphgrSpaces(∗n,O) ' On = On

Example. The example pertains to a variant of the fiber sequence theorem.

Definition 4.2.6. A pointed right S-module M is called distinguished (d) if S ∼= e� � S →
M � S →M is an equivalence.

A right S-module is called potentially distinguished (pd) if there is a zig-zag of weak equiva-
lences between S and M . (This might not necessarily be pointed.)

Examples? S is distinguished!

Theorem 4.2.7 (Prelooped fiber sequence theorem). Given some conditions, there is a nat-
ural fiber sequence

M(CdR,S)→M(CpdR,S)→M(CpdS )

where M is the nerve of the subcategory of weak equivalences (i.e. where the morphisms are
weak equivalences).

M is a moduli space – it tells you about “weak automorphisms”.

Consider C = symmetric sequences in spaces, � = ◦, R = a cofibrant operad, S = EndX .
Then the monoids are Σ-operads.

Choose M ∈ M(CpdEndX
). This means we have a zigzag of weak equivalences of right S-

modules Mn ×Xn ∼→ M ′n ×Xn ∼← . . .
∼← (EndX)n ×Xn. In particular, we have the above

zigzag for n=0. We claim that once we choose the zigzag for n=0, the space of choices of
zigzags for higher n is contractible.

Claim 4.2.8. M(CpdEndX
) ∼M(Spaces)X (i.e. this is the only choice I had to make)

More details of the proof.

Theorem 4.2.9. Maph(R,S)ω 'M(CdR,S)

We assume that we have an adjunction Free: CR,S � MonR,S : Forget, and that Freeh(X) :=
Free(Xc) preserves distinguished objects. (This preservation of distinguished objects is the
key technical condition to check for all the categories to which we want to apply the fiber
sequence theorem.) Then we have Freeh ◦ Forget →← 1, Forget ◦ Freeh →← 1, which is
enough to show that M(MondR,S) 'M(CdR,S).
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We make assumptions sufficient to show that M(MondR,S) 'M(MondRc,S) where Rc
'→ R is

a cofibrant replacement in MonC .

When R is cofibrant, our hammock localization diagrams

. //

∼~~
↓

.

↓

Rc S

∼

__

∼
��. //

∼

``

.

simplify to

Rc //

""

M
↓

S'
oo

'}}
Mpd

Talk 4.3: Right-angled Artin operads and their resolutions
(Dimitri Zaganidis)

Theorem 4.3.1. If P,Q are cofibrant simplicial operads and Z is a P ⊗ Q-bimodule, there
is a natural weak equivalence

MaphP⊗A(P ⊗Q,Z) = MaphP (P,MaphQ(Q, γ•Z)).

Recall γn(X) is a symmetric sequence given by γ(X)(k) = γ(n · k). The Σk action is by the
forgetful map Σn × Σk ↪→ Σnk.

Recall: if M is a P ′, Q′ bimodule, you can take the Boardman-Vogt tensor product −⊗̃M :
BimodP,Q → BimodP⊗P ′,Q⊗Q′ and that has a right adjoint MapP ′,Q′(M,γ•(−)).

The theorem looks like a derived adjunction statement. But note that this is P ⊗ Q, not
P ⊗̃Q.

The motivation will be in Inbar’s talk, where it is used to prove that

Embc(Rm,Rn) ' Ωm+1 MaphOp(Dm, Dn)

. We will discuss the proof of the theorem in a simple case, where P , Q are free. This does
not imply that P ⊗Q is free, though. They are, however, all right-angled Artin operads.

Strategy of the proof:

(1) Solve the problem when P,Q are free. P , Q, P ⊗Q are right-angled Artin operads. Come
up with a resolution of right-angled Artin operads as bimodules over themselves. Since
we only know about ⊗̃ for free things, this resolution should be in free bimodules.

(2) Construct a resolution of an operad by free operads.
(3) Combine the above using bisimplicial techniques.
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Right-angled Artin operads. As a warm-up, let us consider the case of right angled
monoids.

Right-angled Artin monoids. Consider the map non-directed graphs→ Monoids sending
G = (V,E) 7→ MG = F (V )/ ∼, where vw ∼ wv iff {v, w} ∈ E. Right-angled monoids are
monoids arising in this way.

If W ⊂ V is a clique (subgraph that is a complete graph), we call it spherical.

If W is a spherical subset, define λW =
∏
w∈W w.

Preliminary 4.3.2. I will give a model for ∆[1]. First, I claim that ∆op
+
∼= ∆−∞,+∞. The

first category is the category of finite ordinals (possibly empty), with non decresing maps.
The second category is the category of non empty finite ordinals, with non decresing maps
that preserve smallest and biggest element (which can be equal). The maps sends the ordinal
n = {0, . . . n− 1} to n+ 1 = {0, . . . n}.

On morphisms, it takes a map f depicted in black to a morphism fop pointing in the other
direction and that preserves smallest and biggest elements, represented in red:

∆[1]n = {f : [n]→ [1]} = {f : [2]→ [n+ 1] : f ∈ ∆−∞,+∞} = {0, . . . , n}.

Define

Xn = {(W, f) : W ⊂ V spherical, f : W → {1, . . . , n} ⊂ {0, . . . , n+ 1}}
and define Rn(G) = FMG

(Xn) = MG ×Xn ×MG (free MG-bimodule).

If ϕ : [m] → [n], then you get an induced map R(G)(ϕ) : Rn(G) → Rm(G). To define it, by
the universal property of the free bimodule, it is enough to define a map Xn → Rm(G).

Let (W, f) ∈ Xn that is, f lands in {1, . . . , n}. Morally, want you want to do this by
postcomposing f by ϕop. But this is not well defined, because in general, im(ϕop ◦ f) 6⊆
{1, . . . ,m}.

What we do instead, is restricting to the sub-spherical subset W ′ = (ϕop ◦ f)−1{1, . . . ,m}.

More precisely, we define

R(G)(ϕ)(W, f) = λ(ϕop◦f)−1{0} · (W ′, ϕop ◦ f) · λ(ϕop◦f)−1{m+1}

We have the following proposition, which indicates that R•(G) is indeed a resolution of MG.
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Proposition 4.3.3. |R(G)| 'MG.

Let us start now the real work and go on to Right-angled Artin Operads.

Right-Angled Artin Operads.

Definition 4.3.4. Consider the map from graded graphs to operads sending a graph G =
(V,E) with grading g : V → N to FOp(Vn ·Σn)/ ∼ (where Fop(−) denotes the free operad on
−), where Vn = {v ∈ V : g(v) = n}. The relation ∼ is:

Let OG,g := FOp(Vn,Σn)/ ∼.

Notice that free operads on free Σ-sequences are right-angled Artin operads, and so is their
Bordman-Vogt ⊗-product. Indeed, we have the following proposition:

Proposition 4.3.5. Suppose (G, g) and (G′, g′) are graded graphs. Then

OG,g ⊗OG′,g′ ∼= O(G∗G′,gtg′)

where
G ∗G′ = (V t V ′, E t E′ t (V × V ′)).

Let Xn(k) = {(W, f) : W
f→ {1, . . . , n}, g(W ) = k}, where g(W ) =

∏
w∈W g(w).

Define Rn(G, g) = FOG,g(Xn) = OG,g ◦ Xn ◦ OG,g. Then a map ϕ : [n] → [m] induces a map
Rn(G, g)→ Rm(G, g), in a similar fashion (replace · by ⊗).

This is also a resolution of the operad as a bimodule over itself, since we have the following
proposition:

Proposition 4.3.6. |R•(G, g)| ' OG,g.

Proposition 4.3.7.
Rn(G, g)⊗̃Rn(G′, g′) ∼= Rn(G ∗G′, g ∗ g′).

Proof. This involves the � product of symmetric sequences, which is defined by

(X�Y )(n) =
∐

k,l:kl=n

X(k)×X(l)×Σk×Σl Σn.

Recall that if M = P ◦ X ◦ P and M ′ = P ◦ X ′ ◦ P are free bimodules over P , M⊗̃M ′ =
P ◦ (X�X ′) ◦ P , by definition.
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Remark that if Xn,X ′n and X ′′n are respectively the symmetric sequences used to define
Rn(G, g)⊗̃Rn(G′, g′) ∼= Rn(G ∗G′, g ∗ g′), then

Xn�X ′n = X ′′n .

�

Now let’s describe how you take a free resolution of operads.

Free resolution of operads. There is an adjunction F : symmetric sequences � Op : U
(where U is the forgetful functor).

Definition 4.3.8. Let P be an operad. Define Gk(P ) = (FU)k+1(P ).

This is kind of like how you build cofibrant replacement of a category.

Here is a picture of an element of G1(P )n = (FU)2(P )n (tree (black) labelled by elements of
FU(P ), that is, (green) trees labeled by elements of Pn):

If you want to talk about (FU)k(P )n, iterate this, so you have more nested trees.

Fact 4.3.9. If P is a simplicial operad, G•P is a bisimplicial operad. diag(G•P ) = W (∆[1], P )
(the W -construction, a cofibrant replacement of P ).

Intuitively, this fact can be understood in the following way: Given a element of the free
operad on P , giving a m + 1-fold nesting of the operations is equivalent to giving lengths
from 1 to m+ 1 to the inner edge, like in the W -construction.

Let us now give a sketch of the proof of the theorem we stated in the beginning of the talk:

MaphP⊗Q(P ⊗Q,Z)

base
change' Maphdiag(G•(P )⊗G•Q)(diag(G•(P )⊗G•(Q)), diagc•Z)

diag is
Q. equiv' MaphG•(P )⊗G•(Q)(G•(P )⊗G•(Q), c•(Z))

operads
are RAAO= MaphO(GP•,• )⊗O(GQ•,• )

(O(GP•,•)⊗O(GQ•,•), c•(Z))

cof.
repl.' MapO(GP•,• )⊗O(GQ•,• )(|R(GP•,•)|⊗̃|R(GQ•,•))|, c•(Z))

enhanced
⊗̃−hom' MapO(GP•,• )(|R(GP•,•)|,BiMapO(GQ•,• )(|R(GQ•,•)|), γ•(c•(Z)))
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' . . . (diagonal magic)

' Maph(P,MaphQ(Q, γ•(Z)))

Talk 4.4: The iterated delooping theorem for spaces of
long embeddings (Inbar Klang)

Theorem 4.4.1.
Embc(Rm,Rn) ' Ωm+1 MaphOpΣ

(Dm, Dn)

for n ≥ m+ 3.

Theorem 4.4.2. For n ≥ m+ 3,

MaphDm-lin.(Dm, Dn) ' Embc(Rm,Rn)

(Dm-linear is the same as the infinitesimal bimodules from earlier).

Remark 4.4.3. A map of P -bimodules from P → M (where M is a P -bimodule) gives a
P -linear bimodule structure on M . Why? Imagine trees with M on only one of their leaves,
you can plug in 1P into all the other slots.

In the m = 1 case: in Rebecca’s talk, we saw the double delooping theorem, which said:

Theorem 4.4.4.
Embc(R,Rn) ' Ω2 MaphOp(A,Kn)

What’s the difference? This is with nonsymmetric operads. Also, this is simplicial operads
and the theorems for this talk are on topological operads. These are not hard to fix, because
of some good adjunctions:

| − | : sSet� Top : S•

·Σ : Op� OpΣ : U

Recall:

Theorem 4.4.5 (Fiber sequence theorem). Let C be a monoidal category, and ω : R→ S a
map of monoids. Then under some assumptions, there is a natural fiber sequence

Ω MaphMon(R,S)→ MaphR(R,S)→ MapC(I, S)

where MapR = maps of R-bimodules.

The first loop in the m = 1 case came about by taking C to be the category of non-symmetric
sequences with composition product, and S(1) contractible. There were equivalences

Ω MaphOp(R,S) ' MaphR(R,S)

We can apply the symmetric, topological operad version of this with R = Dm and S = Dn

to obtain the first delooping in the iterated delooping theorem. The second loop in the
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m = 1 case was obtained by applying the fiber sequence theorem to sequences with �
(graded cartesian product), S(0) contractible, and R = A (the associative operad). We got
Ω MaphA(A, S) ' MaphA-linear(A, S). Maybe you remember a different category instead of
A-linear. It ends up being the same thing as this. We’ll phrase it this way because that’s
convenient for this theorem.

Now imagine all of the above with symmetric sequences and Σ-operads instead of nonsym-
metric sequences and non-Σ-operads.

Now here’s where the other loops in the iterated delooping theorem come from: Suppose B
is an En-operad, M is a B-bimodule, ϕ : B → M is a map of B-bimodules, and M(0) ' ∗ .
We’ll see that

Ωm MaphB(B,M) ' MaphB-linear(B,M) (4.4.1)

Recall there was a fixed linear embedding (e.g. the standard equatorial embedding) which
induced a map ϕm,n of operads from Dm to Dn. This makes Dn into a Dm-linear bimodule
(see Remark 4.4.3), so taking B = Dm, M = Dn,

MaphDn-linear(Dm, Dn) ' Ωm
ϕm,n MaphBn(Dm, Dn)

' Ωm+1
ϕm,n MaphOpΣ

(Dm, Dn)

Which gives the iterated delooping theorem.

Our goal is to prove by induction (4.4.1). In the m = 1 case, if B is an E1 operad, then
ϕ : B →M is a map of bimodules, M(0) ' ∗, then

Ω MaphB(B,M) ' MaphB-lin(B,M)

(this follows from the earlier m = 1 result, plus the adjunctions stated above).

Now do the inductive case. The main ingredient is the ⊗-Hom adjunction. But first, “recall”:

Theorem 4.4.6. If P is a cofibrant enough Ek-operad and Q is a cofibrant enough E`-operad,
then P ⊗Q is an Ek+`-operad.

(Note: this is really nonobvious. Here’s an example of a failure of this when things aren’t
cofibrant enough: if A is the associative operad, then A⊗A = the commutative operad. This
is not an E2-operad!)

Fortunately we have the W construction, a cofibrant replacement. This allows us to turn the
little disks operad into something that satisfies the above theorem.

So pretend that D1 ⊗Dn = Dn+1. To be precise about this, there would need to be W ’s in
everything.

Now we can show (4.4.1) by induction on m.

Ωm+1 MaphDm+1
(Dm+1,M) ' Ωm+1 MaphD1⊗Dm(D1 ⊗Dm,M) pretending + base change

' Ωm+1 MaphD1
(D1,MaphDm(Dm, γ•M)) ⊗-Hom
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Aside about Maph(Dm, γ•M): MaphDm(Dm, γkM) is a simplicial set. If replacing k with

•, this is a simplicial set at each arity, therefore Maph(Dm, γ•M) is a symmetric sequence.
This is a D1-bimodule. We’re also pretending that simplicial sets are topological spaces: for
example, Dm really means the singular simplicial set of Dm.

' Ω MaphD1
(D1,Ω

m MaphDm(Dm, γ•M))

The reason you can do this is D1 ' ∗ ×Σ, and if you have maps from a point to something,
loops can move inside.

' Ω MaphD1
(D1,MaphDm-lin(Dm, γ•M)) induction hypothesis

' MaphD1-lin(D1,MaphDm-lin(Dm, γ•M)) m = 1 case

' MaphD1⊗Dm-lin(D1 ⊗Dm,M) ⊗-Hom adjunction

MaphDm+1-lin(Dm+1,M) pretending + base change

Reminder about γ: we had the divided powers functor (γnX)(m) = X(nm).

Boardman-Vogt W construction. What is a free algebra? For a vector space V , we
can take TV =

⊕
n≥0 V

⊗n as the free associative algebra on V .

What is a free operad? For a pointed symmetric sequence X (i.e. distinguished point at arity
1), the free operad on X consists of planar rooted trees with internal vertices labelled by X;
i.e. F (X)(n) = such trees with n leaves, and internal vertices of valence k are labelled by
elements of X(k), modulo unit and equivariance. Picture:

Definition 4.4.7. The W -construction on a topological operad O is the same as the free
operad on O, except edges have length in [0, 1]. If an edge has length 0, then that is the same
as the one where you compose the two nodes that are distance zero from each other. Also,

Idea: this is a mapping cylinder in an operad-y way, which is why we expect cofibrancy out
of these things. It is a cofibrant replacement if O is well-pointed. In simplicial sets, replace
[0, 1] with ∆[1].
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Day 5: The Grothendieck-Teichmüller group

Talk 5.1: The profinite Grothendieck-Teichmüller group
(Massimiliano Ungheretti)

If you look up the definition of the Grothendieck-Teichmüller group, you are told something
like this:

Definition 5.1.1. Let ĜT be the subset of (λ, f) ∈ Ẑ× × F̂ ′2 satisfying some conditions. . .

During this talk I will try to give you some idea of what this group is and where the conditions
come from. Let’s start by saying what these hats mean.

Profinite groups.

Definition 5.1.2. Let C be a category. We want to construct a category ProC in which
the objects are inverse limits of objects in C. So, an object in ProC should be viewed as
lim←−
I

Gi for Gi ∈ C where I is a poset such that for all a, b ∈ I there exists c such that a ≤ c

and b ≤ c. More generally, we can let I be a cofiltered category. Morally, the morphisms
should be HomProC(lim←−G, lim←−H) = lim←−

J

lim−→
I

HomC(Gi, Hj). See Artin & Mazur’s book on

étale homotopy theory.

Rather than look at the formal definition of ProC, let’s do the example of C being the
category of finite groups, thought of with discrete topology.

Definition 5.1.3. A profinite group G is a topological group G = lim←−Gi where Gi are finite.

These show up when you’re doing infinite Galois theory and the étale fundamental group.

Definition 5.1.4. Let G be any (discrete) group. We can associate to it the profinite com-

pletion Ĝ = lim←−
|G:H|<∞
H≤G

G/H ⊂
∏
G/H. This is a profinite group by definition.

Example 5.1.5.

• The p-adic integers are Zp = lim←−
n

Z/pnZ.

• The profinite completion of Z is Ẑ = lim←−Z/nZ, with maps Z/nZ � Z/mZ iff m | n.

• We have Z ⊂ Ẑ ⊂
∏

Z/nZ by viewing an integer λ as a family λn = (λ modulo n).

• If G is profinite, it is not necessarily the case that Ĝ ∼= G.

• The map G→ Ĝ is injective iff G is residually finite.
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The étale fundamental group πét
1 is a functor from certain schemes to profinite groups. For

now, all you need to know is that when X is a nice scheme over C (i.e. finite type), then
πét

1 X = π̂1X
an. This talk will not mention base-points, even though they do matter a lot.

Proposition 5.1.6. When a group G is profinite, the power map (not necessarily a homo-

morphism) Z×G→ G sending (λ, g) 7→ gλ, extends to powers λ ∈ Ẑ.

While you could use that Z is dense in Ẑ, let’s instead see what happens in terms of elements.
To see what these profinite powers are, we first define them on finite groups and see that
they extend to profinite groups by showing a compatibility along group homomorphims.

If λ ∈ Z and g ∈ G = lim←−Gi, then (gλ)i = (gi)
λ ∈ Gi. If Gi is finite, then gλi only depends

on λ modulo |Gi|. Using that λ ∈ Z ⊂ Ẑ as a family λn = λ modulo n ∈ Z/nZ, we have that

gλi = g
λ|Gi|
i . Now for λ ∈ Ẑ, we promote this description to a definition: gλi := g

λ|Gi|
i = g

λ|gi|
i

(here λ|Gi| denotes the projection of λ to the Z/|Gi|Z piece). For any map ϕ : Gi → Gj , we
have a commuting square (of maps of sets):

Gi
(−)λ

//

ϕ

��

Gi

ϕ

��

Gj
(−)λ

// Gj

This coherence implies that the power map extends to profinite groups by acting on each
finite Gi in the described way.

Outer Galois actions. Let GQ = Gal(Q/Q); fix an embedding Q ⊂ C. This group
contains a lot of information but is hard to study. For example, the only obvious elements
you can write down are the identity and complex conjugation.

Let X be a scheme over Q (i.e. it has a map X → SpecQ). We can take the pullback of this

XQ
//

��

X

��

SpecQ // SpecQ

which is called “base change.” If you think in terms of polynomials and solution sets, then
the XQ knows about solutions in Q, but forgot about the polynomials only having coefficients
in Q. This gives rise to a SES in fundamental groups.

πét
1 XQ → πét

1 XQ → πét
1 SpecQ.

Audience: You can think of this as Mayer-Vietoris, where πét
1 SpecQ = 0.

By a version of the Lefschetz principle, πét
1 XQ = πét

1 XC = π̂1X
an.

In general, for a SES of groups, i.e. N ≤ G some normal subgroup, you get a map G/N →
OutN (automorphisms modulo inner automorphisms, i.e. conjugation automorphisms). This
is done by picking a representative, conjugating by that representative and then showing that,
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up to conjugation by N , the automorphism didn’t depend on the representative. In our case,
we get a map GQ = πét

1 SpecQ→ Out(π̂1X).

Let Mg,n = the moduli space of curves of genus g with n marked points. Points are
iso classes of Riemann surfaces of type (g, n). Modular (complex) dimension dimMg,n =
3g − 3 + n. So dimM0,4 = 1. In fact, as PGL2C acts triply transitively on P1, M0,n =
(ConfnP1)/PGL2C ∼= (P1\{0, 1,∞})n−3\∆. This is especially nice forM0,4 = P1\{0, 1,∞}.
This has étale fundamental group F̂2 (profinite completion of the free group on 2 generators).
Its automorphisms are S3, which are exactly those Möbius transformations that permute the
removed points. This will be important later on.

So this scheme gives us an outer Galois action GQ → Outπét
1 M0,4 = OutF̂2. In fact, Belyi

showed there is a lift GQ ↪→ Aut F̂2. Write

F2 = 〈x, y, z : xyz = 1〉
(where the generators are loops around the three removed points).

Fun fact 5.1.7. M0,n+1 is an awesome operad. (It’s almost the Fulton-MacPherson operad.)

History. In Esquisse d’un Programme (recommended read), Grothendieck sketches some
ideas that have now grown into the study of GT , the Grothendieck-Teichmuller group. He
said that the rich structure of Mg,n (erasing points /gluing) should be reflected in towers of

fundamental groupoids T̂g,n and that this structure is respected by an action of GQ. Look

at the first non-trivial such groupoid, T̂0,4, containing πét
1 (P1 \ {0, 1,∞}) = Ẑ. The Galois

action on this will determine some necessary conditions for automorphisms of Ẑ to really
come from GQ. With hard work, it might be possible to get enough necessary conditions to
really say something about GQ, possibly even finding sufficient conditions. He then states
what is called the two level principle: knowing the Galois action in modular dimensions 1

and 2 is enough to build the action on all of T̂ .

Then came Drinfeld: In a paper on quasitriangular quasi-Hopf algebras, a version of the
Grothendieck-Teichmuller group pops up for the first time. Here the conditions (0-3) that
we’ll see later come from the pentagon and hexagon relations. From his construction, parts

of which we’ll see in a talk later today, ĜT is automatically seen to act on braid groups.
Drinfeld does talk about how this group is related to Grothendieck’s vision and says that
GQ should be a subgroup. Later Ihara gave a geometric description, arriving at the same

conditions (0-3). From his construction he is able to show that GQ injects into ĜT .

Schneps’s version of Ihara’s story.

Fact 5.1.8. The GQ action preserves inertia subgroups up to conjugation. For now, inertia

subgroups are copies of 〈x〉 = {xλ} = Ẑ ⊂ F̂2, profinitely generated by loops around 0, 1, or

∞. Concretely, 〈x〉 7→ h−1〈x〉h for some h ∈ F̂2. This h can be different for the different
generators and σ’s.
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Let’s see what information this buys us. Let σ ∈ GQ. Using conjugation, you can arrange

the action such that it sends x 7→ xλ, y 7→ f−1yµf , and z 7→ g−1zνg, for some λ, µ, ν ∈ Ẑ,

f, g ∈ F̂2 all depending on the σ. We have xyz = 1 which implies xλf−1yµfg−1zλg = 1 if
we want σ to induce an automorphism. In the abelianization, this implies xλyµzν = 1 so
λ = µ = ν. Also note that we didn’t really need g because the action on z can be computed
using z = (xy)−1.

For each σ, the pair (λ, f) is almost unique. But, if we had changed f to yαf this would

define the same automorphism. We can get rid of this freedom by requiring f ∈ F̂ ′ (de-
rived subgroup, where you take all commutators). It turns out that the f is then uniquely
determined by σ.

We can compare this action to the action on P1\{0,∞}. This has πét
1 = Ẑ, generated by a

small loop around 0. So we have a map χ : GQ → AutẐ = Ẑ×. The comparison (see Ihara)
tells you that our λ = χ(σ). This coincides with what is called the cyclotomic character,
which evaluates the action on roots of unity:

If you have σ ∈ GQ and an embedding Q ⊂ C, identify Z/nZ with the nth roots of unity. σ
sends roots of unity to roots of unity. If you stare at it, you realize that it has to take an
element to some power of that element. That power is the cyclotomic character.

Exercise 5.1.9. Every pair (λ, f) ∈ Ẑ× × F̂ ′2 gives rise to an element of End F̂2 by x 7→ xλ

and y 7→ f−1yλf . The multiplication on Ẑ× × F̂ ′2 making this

GQ → Ẑ× × F̂ ′2 → End F̂2

a homomorphism of monoids is

(λ, f) · (µ, g) = (λµ, fF (g))

where F is the element of End F̂2 associated to (λ, f).

Let’s go back to the definition.

Definition 5.1.10. Let ĜT be the subset of (λ, f) ∈ Ẑ× × F̂ ′2 satisfying:

(0) The induced endomorphism F is invertible

(1) θ(f)f = 1

(2) ω2(fxm)ω(fxm)fxm = 1, where m = (λ− 1)/2.

(3) ρ4(f̂)ρ(f̂)ρ2f̂ρ(f̂)f̂ = 1 (Here ρ ∈ Aut(M0,5). This comes from modular dimension 2.

πét
1 M0,5 is the mapping class group of the 5-punctured sphere. This is generated by Dehn

twists.)

We have now made sense of what the Ẑ× × F̂ ′2 is, and what (0) means. As for the remaining
conditions, they reflect the compatibility of the Galois action with the AutM0,n action on

πét
1 (groupoid). For example, S3 = AutM0,4 as mentioned earlier. Let θ ∈ S3 be the

element that swaps the generators x and y. This is given by the Möbius transformation
θ : t 7→ 1 − t. Compatibility with this implies condition (1). Similarly, there’s another
generator ω : t 7→ (1− t)−1 which cyclically permutes x, y, z. Compatibility with this implies
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condition (2). Note that these change basepoints, which is why we need to be careful and
use πét

1 groupoids with tangential basepoints, which was developed by Serre I believe. We
will not do this now, see Ihara. If you play a similar game with M0,5 plus the map to M0,4,
you get condition (3).

Proposition 5.1.11. If [θ, F ] = 1 ∈ OutF̂2 then condition (1) holds.

Proof. (Proof not in lecture) F and θ commuting in the outer automorphisms means

that there is some γ ∈ F̂2 for which inn(γ)Fθ = θF in Aut F̂2. Evaluating both sides of this
on x and y gives

Fθ(x) = F (y) = f−1yλf

θF (x) = θ(xλ) = yλ

Fθ(y) = F (x) = xλ

θF (y) = (θ(f))−1xλθ(f)

The first two equations imply that y−1f−1yλfγ = yλ. But which elements can commute

with yλ? Only powers of y can! So fγ = yk, k ∈ Ẑ. The second two equations similarly
imply that there is an m such that θ(f) = xmγ = xmf−1yk. In the abelianization we have
θ(f) = f = id, so m = k = 0. The conclusion is that θ(f) = f−1 which is condition (1). �

Proposition 5.1.12. By magic or intimidation, this is a group.

(You need to check that all these relations are respected by the multiplication rule. The fact
that inverses exist is artificially imposed using condition 0)

Injection GQ ↪→ ĜT . Because of the recipe we gave for GQ → Ẑ× × F̂ ′2 plus the calcu-

lations implying (1-3), we know that GQ → ĜT . Belyi showed injectivity of GQ ↪→ OutF̂2,

meaning that GQ ↪→ ĜT . This was all put together by Ihara, confirming a prediction Drinfeld
made when defining GT .

GQ
� � //
� q

Belyi

##

l�

Ihara

��

OutF̂2

Aut(F̂2)

OOOO

ĜT

OO

Example 5.1.13. What is the image of complex conjugation? The cyclotomic character is
−1. I claim f = 1, because y has to be mapped to its own inverse. To see this, draw P1 and
the generators and act by complex conjugation on the picture.
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Actions of GQ and ĜT . GQ maps to Outπ̂1X for most reasonableX’s, which is expected

to usually be injective. Almost by definition, ĜT acts on πét
1 of a few moduli spaces. Whenever

you can write down the action of GQ in terms of (λσ, fσ), you are in business and can try

to extend this action to ĜT . This can be done for example for braid groups (configuration
spaces) and genus zero mapping class groups (moduli spaces of curves). When done correctly,
the action has all sorts of coherence for these families.

If GQ ↪→ ĜT was an iso, this would be great. This is an open problem though.

Nakamura describes the action in terms of (λ, f) on mapping class groups of surfaces with

any genus, and 0 or 1 marked point. That doesn’t necessarily show that ĜT acts, as you

have to check the defining conditions of ĜT are respected. The action of GQ gives an extra
condition, which could be added as a fourth condition, but no one knows if it’s implied by

the ĜT axioms. If it is not, then GQ 6= ĜT , but the smaller group that satisfies the extra
condition still might be.

Talk 5.2: Little 2-disks and the profinite Grothendieck-
Teichmüller group (Chris Owens)

Goal:

Theorem 5.2.1. The group of homotopy automorphisms of profinite completions of Dn is

isomorphic to ĜT .

Definition 5.2.2. A space X is π-finite if it has a finite number of connected components,
and |πnX| <∞ and almost all zero.

This is an interesting condition because I’m interested in minimal models for X: I want a
map from a π-finite version of X to all the other π-finite ones. But there is no initial object.

Artin-Mazur pro-category of Ho(Spaces). This is a replacement for our non-existent
universal object. There are several ways to do this; one was constructed by Quick. The profi-

nite completion Ŝet is equivalent to the category of compact Hausdorff totally disconnected
spaces where the morphisms are continuous maps.

Little 2-disks. We said that the nth space of the little 2-disks operad had homotopy
type of Confn(R2); it’s equivalent to the classifying space of the pure braid group Kn. This
is the kernel in Kn → Bn → Σn where Bn is the ordinary braid group; it consists of braids
that end where they started.

Operads in groupoids. Because of the above, we have that there is an operad in
groupoids that is a model for the little 2-disks operad. We can talk about operads in groupoids
in the first place, because the category of groupoids is symmetric monoidal w.r.t. the cartesian
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product, where the arity-0 element is the point. The classifying space functor B : Cat→ sSet
is symmetric monoidal.

Let PaB denote the operad of parenthesized braids, where in arity n the objects are we have
parenthesized words in {x1, . . . , xn}, and the morphisms are braids (ignoring the parentheses)
with strands labelled by x1, . . . , xn.

Alternatively, you can view x1(x2 x3)x4 as the data of a tree

or as balls, where x2 and x3 are smaller than x1 and x4 (this kind of ties in with the
“infinitesimal points” idea of the Fulton MacPherson operad).

It has really good categorical properties, and it provides a way to encode the braided monoidal
structure on a category in a weak sense. There is a functor ϕ : PaB → EndC .

Grothendieck-Teichmüller. This is based on a paper of Horel, who looked at Drin-
feld’s papers and wrote them in operadic language.

Theorem 5.2.3 (Drinfeld). The monoid ĜT is the monoid of endomorphisms of P̂ aB which

induce the identity on ObjP̂ aB.

Let S be the category of simplicial sets, Ŝ the profinite completion in the category of

groupoids, the category G of groupoids, and its profinite completion Ĝ. There are clas-

sifying space functors (which are right Quillen) B : G → S, B : Ĝ → Ŝ, and profinite

completion functors (̂−) : S → Ŝ and (̂−) : G → Ĝ which are left Quillen. The category Ĝ

has a functorial path object C → CI(1) in OpĜ. (Here I(1) is the completion of the category
[1].)

In the following, π will mean the homotopy category.

Theorem 5.2.4. ĜT → End
πOp(Ĝ)

(P̂ aB) is an isomorphism induced by ĜT → End(P̂ aB).

Important issue: profinite completion doesn’t work well with products. If you take levelwise
completion of an operad, it’s most likely not an operad anymore. It’s a weak operad. But,
this is OK for groupoids.

Horel’s original approach was via dendroidal sets. But he recently revised the paper and used
weak operads instead. These are defined via algebraic theories of operads.
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If we have weak operads, we need to know they have the same homotopy type as what we
started with:

End
πOpĜ

(PaB) ∼= End
πWOpĜ

(N)

where N is the dendroidal nerve.

The takeaway is that, even on the space level, ĜT is the automorphisms of the parenthesized
braid operad.

There should be an action of the absolute Galois group: think of configurations of points in
R2 as points in C, and that’s a variety. But you should only see this action up to completion.
You can do this over other fields.

There’s a similar result for the pro-` completion.

Talk 5.3: Little disks and the pro-unipotent Grothendieck-
Teichmüller group (Joshua Wen)

A Drinfeld story. Let g be a complex semisimple Lie algebra. t ∈ g⊗ g is an r-matrix
if it satisfies the classical Yang-Baxter equations:

• [t12, t13] + [t12, t23] + [t13, t23] = 0

(Don’t worry about what tij means, or read your favorite book on quantum groups.) If you
have one of these things, you can make a knot invariant. Drinfeld cared because they’re good
for physics.

Given g and an r-matrix t, you can get a quantum universal enveloping algebra A, and
Rep(A) is braided monoidal. t corresponds to the twisting isomorphism V ⊗W → W ⊗ V
on the Rep(A) side.

There’s also an associativity axiom:

α : ((V1 ⊗ V2)⊗ V3)
'→ (V1 ⊗ (V2 ⊗ V3))

When this is an equality on the nose, this is a strict braided monoidal category; Kirillov et
al. say they don’t know any good examples of non-strict ones.

In conformal field theory, there’s a God-given connection called the KZ connection. We need
t ∈ g⊗ g and an action of g on V . You end up with a connection on Confr(C)× V ⊗r:

wKZ =
∑

1≤i≤r
tij ⊗ d log(zi − zj).

If t is an r-matrix, then wKZ is flat. Parallel transport only depends on the homotopy class
of the path, so I get an action of the fundamental group.

Drinfeld studied the monodromy π1(ConfrC) acting on V ⊗r. He found these associativ-
ity isomorphisms and “Drinfeld’s associators.” He defined the pro-unipotent Grothendieck-
Teichmüller GT (Q) group with an action on associators, and showed that these associators
are a torsor for it.
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Theorem 5.3.1 (Fresse). Let R̂2 be a cofibrant-fibrant model for the rationalization of D2.
Then

hAutsSetOp(R̂2) ' GT (Q) o S1
Q

where S1
Q is the rational circle (a K(Q, 1)). Also,

AuthsSetOp(R̂2) = GT (Q).

Fact 5.3.2.
E2(r) ' Confr(C) ' K(PaB, 1)

where PBr is the pure braid group.

Parenthesized braid operad. The parenthesized braid operad PaB is an operad in
groupoids, where in the rth level the objects are fully parenthesized words in {x1, . . . , xr}
(e.g. ((x1x2)x3)). Alternatively, think of this as planar binary trees with r labelled leaves.
The morphisms between two words a, b are isotopy classes of braids linking xi to xi (where
you don’t care about the parentheses).

This is an operad. We will show that Aut(g) ' PBr, and B(PaB(r)) ' E2. What’s g?

Algebras for PaB in Cat are braided monoidal categories.

Malcev completion of group(oid)s. Let G be a group, g ∈ G. We want to be able
to take rational powers of g. How? If we can write g = exp(ξ) and the product aξ for a ∈ Q
makes sense.

Hopf trivia: Q[G] is a Hopf algebra with ∆(g) = g ⊗ g. Let H be a Hopf algebra. The
grouplike elements are G(H) = {x ∈ H : ∆(x) = x ⊗ x}, the primitives are P(H) = {x ∈
H : ∆(x) = x⊗ 1 + 1⊗ x}, and the augmentation ideal is I(H) = ker ε.

You can show that G(H) is a group, I(H) is an ideal, and P(H) is a Lie algebra.

We have a filtration H = I0(H) ⊃ I1(H) ⊃ I2(H) ⊃ . . . . Define Ĥ = limsH/Is(H).

Definition 5.3.3. The Malcev completion of G is Ĝ := GQ̂[G].

This is left adjoint to the forgetful functor from Malcev-complete groups down to groups.

Proposition 5.3.4. There are inverse bijections

exp : P(Ĥ) � G(Ĥ) : log .
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P(Ĥ) is filtered from H and complete. The grouplikes G(Ĥ) have a filtration FnG(Ĥ) =

{g ∈ G(Ĥ) : g − 1 ∈ Fn(Ĥ)}. This is complete.

In particular,

FnG(Ĥ)
/
Fn+1G(Ĥ)

is a Q-module. The associated graded is a Lie algebra.

Let G be a groupoid. I can contemplate Q[G ], which has the same objects as G , and mor-
phisms HomQ[G ](x, y) = Q[HomG ](x, y) (“morally free” vector space – it needs to be compat-
ible with composition). The coproduct is still ∆ϕ = ϕ ⊗ ϕ. Let I(Q[Hom(x, y)]) = ker ε be
the augmentation ideal, and define the filtration In(Q[Hom(x, y)]) = the set of

x0 = x
ϕ1 // x1

ϕ2 // . . . xn−1
ϕn // y = xn

such that ϕi ∈ I(Q[Hom(xi, yi)]).

If I have G = {x1, . . . , xn : relations w1 = 1, . . . , wm = 1}. The Lie algebra P(Q̂[G]) is the
free Lie algebra on ξ1, . . . , ξn modulo the ideal generated by logwi exp ξi.

Notice that B(PaBQ) = K(BPaBQ, 1) (here PaBQ is the rationalization, as in rational
homotopy theory).

Definition 5.3.5. GT (Q) is the group of operad automorphisms of PaBQ that fix objects.

Fact 5.3.6. It’s enough to consider ϕ : PaB → PaBQ, by adjunction nonsense. Such ϕ is
determined by

and ϕ(τ) = τa for a ∈ Q×.

ϕ(τ) and ϕ(α) satisfy similar relations for braided monoidal categories.

ϕ(α) = α ◦MorPaBQ(((1 2) 3), ((1 2) 3))

generated by
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(c is central.) (Here Mor represents a specific morphism, not the set of them.)

ϕ(α) = α ◦ cλF (a12, a23) where F (. . . ) ∈ F(a12, a23)Q miscopied something?. If you play with
the relations, you get λ = 0.

The hexagon relation gives F (x, y)F (z, x)F (y, z) = 1, xyz = 1.

Rational homotopy for operads. In the usual case for simplicial sets, you have ad-
junctions

cosimplicial commutative rings
//

locally constant functors
**

graded cDGA’soo

ww
sSets

Sullivan model

77
jj

cosimplicial operads
//

))

cdga-operadsoo

vv
sSet-operads

66
ii

(D2)Q = GC∗CE(p̂) = B(PaBQ).

Question: how do all the GT ’s relate?

Gal(Q/Q) �
�

// ĜT

��

GT`

��

GT (Q) // GT (Q`) pro-`

Talk 5.4: Recent developments and future directions (Kathryn
Hess)

A final word on GT .

Conjecture 5.4.1. There exists some operad E in schemes/Q such that the étale homotopy

type recovers the profinite completion of an E2-operad. So you get an action of GQ on Ê2.

A “geometric” proof of iterated delooping. This is about work by Boavida de Brito
and Michael Weiss posted on the arxiv on February 5, 2015.

Here’s their main result.
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Theorem 5.4.2. If n−m ≥ 3, there is a homotopy fiber sequence

Emb∂(Dm, Dn) ↪→ Imm∂(Dm, Dn)→ Ωm MaphOp(Dm, Dn).

So the homotopy fiber Emb(Dm, Dn) is ' Ωm+1 MaphOp(Dm, Dn).

For a smooth manifold M , they construct an ∞-category Con(M) whose objects are con-
figurations of points in M , and the morphisms are paths of configurations, where paths can
merge. This comes with a functor to finite sets (actually, it’s a functor to the nerve).

They actually prove a stronger result.

Theorem 5.4.3. For all k ≥ 1, there exists a homotopy fiber sequence

TkEmb∂(Dm, Dn)→ Imm∂(Dm, Dn)→ Ωm MaphFin(Con(Rm; k),Con(Rn))

(recall that Imm is the first level in the Taylor tower).

So not only is the embedding space an m-fold loop space; every approximation is, too.

Theorem 5.4.2 is a consequence of a “jazzed-up Hirsch-Smale”:

Theorem 5.4.4. If n−m ≥ 3, there is a homotopy pullback

Emb(M,N) //

��

MaphFin(Con(M),Con(N))

��

Imm(M,N) // Γ

Here Γ is a space of sections of E
π→M , where

π−1(x) = {(y ∈ N,Con(TxM)
F→ Con(TyN)) over Fin}.

The vertical maps are basically forgetful maps.

We also need the following:

Theorem 5.4.5.
MaphOp(Dm, Dn) ' MaphFin(Con(Rm),Con)(Rn)

Theorem 5.4.6 (“Alexander trick”).

MaphFin∗,∂(Con(Dm),Con(Dn)) ' ∗

I want to talk about a few models for Con(M). A complete Segal space is a simplicial space
where the nth space is a bunch of iterated homotopy pullbacks involving X0 (objects) and
X1 (morphisms). This encodes the fact that the composition map is only associative up to
homotopy.
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Particle model (Andrade). Map(k,M) is stratified by equivalence relations on k =
{1, . . . , k}. A stratum consists of the maps that factor through the nth equivalence relation.
Let Cm be the topological category with (CM )0 =

⊔
k≥0 Confk(M). If f ∈ Confk(M) (a

map from k points into M that happens to be an embedding) and g ∈ Conf`(M), then the
morphisms

(Cm)1(f, g) =
⊔

v:k→`
= {reverse exit paths from f to gv}

where reverse exit paths are paths that respect the strata (i.e. points can collide but not
un-collide).

Compactification approach. There’s also an approach due to Fulton-MacPherson,
Axelrod-Singer, and Sinha.

Start with a topological category FM . The objects are given by (FM)0 =
⊔
k≥0 Confk[M ].

Rational formality of Dn. This is work of Fresse-Willwacher, posted on the arxiv on
April 6, 2015.

From now on, we’re working over Q. Warning: I’m going to be un-careful about basepoints.

“Recall”: H∗Dn = Poisn−1 for n ≥ 2. This is generated by two operations of arity 2: the
commutative multiplication µ ∈ Poisn−1(2)0 (degree 0) and λ = {−,−} ∈ Poisn−1(2)n−1.

Poisn−1 is also equipped with an involution J∗ induced by the given involution J on Dn.

Remark 5.4.7. Poisn−1 is an operad in graded cocommutative coalgebras, i.e. it’s a cocom-
mutative Hopf operad. The dual will be called Poiscn−1; it is a commutative Hopf cooperad,
i.e. a cooperad in commutative graded algebras.

Strategy: build a rational model for Dn from Poiscn−1. However, that’s näıve. The real
problem is a homotopy invariance problem. This is very far from cofibrant. (We’ve moved
out of the world of ∞-categories, so we have to care about this.)

Solution: there exists an operad Pn in graded Lie algebras such that, Poiscn−1
∼→ C∗CE(Pn)

(Chevalley-Eilenberg complex). The RHS is (quasi)-free, so we can do homotopy theory.

Recall: there is an adjunction A∗ : sSetop � cDGA : G•. This gives an equivalence on the
rational homotopy categories. We want to end up with a model for little disks. Apply G•
levelwise to C∗CE(Pn) to get a simplicial operad.

You can understand the elements of this as Maurer-Cartan elements associated to Pn ⊗
Ω∗(∆•).

The point is that G•(C
∗
CE(Pn)) is a really good model for Dn operads.
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Theorem 5.4.8. Let P be a simplicial operad with P (1) = ∗ and all P (r) “behave well”
w.r.t. Q-localization. If H∗P ∼= Poisn−1 (as operads) for some n ≥ 3, and

if 4 | n, there exists an involution J : P → P such that H∗J corresponds to the action of
J∗ on the little disks operad

then there exists a cofibrant replacement P
∼← R, such that RQ

∼→ G•(C
∗
CE(Pn)).

Slogan: this is a rational recognition principle for En-operads, for n ≥ 3. These are intrinsi-
cally formal: as soon as the homology is the right thing, they’re all rationally equivalent (to
G•(C

∗
CE(Pn))).

In the topological version, this works for n = 2 as well because this case is taken care of by
other means by Drinfeld.

Theorem 5.4.9. Let n ≥ 2. Then there exists R
∼← Dn such that Rq

∼→ |G•(C∗CE(Pn))|.
You can replace Dn by any En-operad.

Moreover, if n−m ≥ 2, the equatorial inclusion ϕm,n : Dm → Dn fits into a diagram

Dm

ϕm,n

��

Rm
∼oo

��

−Q
// |G•(CCE(Pm))|

��

Dn Rnoo
−Q
// |G•(CCE(Pn))|

commuting up to operad homotopy.

Slogan: formality of ϕm,n.

Remark 5.4.10 (Turchin-Wallwacher). ϕn−1,n is not formal.

Proof strategy. The idea is to reduce the problem to pure algebra. They prove
analogous theorems for differential graded commutative Hopf cooperads satisfying analo-
gous hypotheses. Then they recover the simplicial/ topological case by applying an operadic
extension of A∗ : sSetop → cDGA.

Now I’ll talk about the algebraic solution. Choose a cofibrant replacement R
∼→ P of the dg

commutative Hopf cooperad. Now we study obstructions to the existence of RQ → C∗CE(Pn).
This naturally lies in come bi-cosimplicial bi-derivation complex. Its cohomology can be
computed by a certain bicomplex built from the Harrison complex and the cooperadic cobar
construction.

You can reduce this to the computation of the homology of a graph complex – a complex
where in each degree it’s spanned by graphs. This is Kontsevich’s graph complex; the graphs
are (at least) trivalent. We have a differential that takes a vertex and splits it, putting an
edge in between. They show that the cohomology is zero, so there are no obstructions, and
you win. �
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