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1. Introduction

This talk concerns the last section of [MV99], and one of the first applications of motivic homo-
topy theory. We’re aware that algebraic K-theory is A1-homotopy invariant and satisfies Nisnevich
descent, so that it is well-defined on the motivic homotopy category. What’s astounding is that it’s
actually represented on this category, by a sort of infinite Grassmannian.

This is the sort of talk that has a proof in it, and this proof is also a sort of definition. It’s easy
to write down an abstract classifying object for algebraic K-theory, essentially using Quillen’s plus-
construction – the cool part is replacing this object by the more geometric Grassmannian. We’ll
start with a little intuition about sites, and then quick tour of classifying spaces in the motivic
setting. Then, we’ll define algebraic K-theory and exhibit its classifying object. Next comes the
proof, which splits into three parts. First, a little magic with monoids will make this prettier – up
to A1-homotopy equivalence, it’s BGL∞ × Z. Second, Hilbert’s Theorem 90 will let us replace our
Nisnevich classifying space with an étale classifying space. Third, in the technical heart of the proof,
we’ll show this is A1-homotopy equivalent to the infinite Grassmannian we crave. Most of these
methods are pretty general, and in particular, you can replicate a lot of the pieces for any linear
algebraic group. Afterwards, we’ll be able to play around with some examples, inside and outside
of algebraic K-theory.

Most of the below is phrased in terms of the Nisnevich topology, but ultimately this only matters
when algebraic K-theory and GLn pop up. The general methods, particularly those involving
classifying spaces, work in any site. In fact, most of [MV99], which defines A1-homotopy theory
and proves this theorem, actually takes place in the very general setting of a ‘site with interval’. At
most, this talk will do some switching between the Nisnevich and étale topologies, but this should
be fairly explicit.

(Sm/S)Nis and (Sm/S)ét are the categories of smooth schemes over S with the Nisnevich and étale
topologies respectively. S will always be Noetherian and finite-dimensional. H(S) is the unstable
motivic homotopy category.

2. Prelude: sites and toposes

Some of the topologists I talked to expressed some confusion about sites, so I’ll begin with a
few minutes of clarification. At some point later on you might want to head over to SGA 4. The
following three definitions are basic:

• A Grothendieck topology on a category is a notion of when a map U → X is a covering.
For instance, if {Ui} is an open covering of a topological space X, then

∐
Ui → X is a

covering map in the category of (disjoint unions of) open subsets of X. There are a few
axioms that coverings should satisfy – for instance, they should be closed under composition
and base change.

• A site is a category with a choice of Grothendieck topology.
• A topos is the category of sheaves on a site.
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Usually, when you describe a Grothendieck topology, a morphism
∐
Ui → X is a covering if it’s

an epimorphism and satisfies some conditions on the Ui, and we think of the Ui that satisfy these
conditions as the ‘open subsets’ of X. For instance, in the étale topology, the opens are schemes
étale over X – note these are not generally subsets of X! In the Nisnevich topology, the opens are
the schemes étale over X that split over each fiber, meaning that one of the residue fields in the fiber
is the same as the residue field of the point of X. I will shamelessly call these objects ‘open sets.’ If
you’re confused, you should always pretend that I’m talking about the category of open subsets of
a topological space X and their inclusions.

Okay, so if we’re willing to believe these things are open sets, there’s a notion of ‘local.’ For
instance, I define a G-torsor as being a locally free G-bundle, which means that it becomes free after
pulling back to some open cover. I might even say ‘sufficiently small open cover’, but by ‘small’ I
really mean ‘initial’. For instance, your bundle might not split over Q, but just over Q[

√
2], which

is an étale cover of Q – then this bundle is étale-locally trivial.
Now I’ll talk about toposes (not ‘topoi’ !) briefly. If you’re, say, Grothendieck, everything you want

to do with a site is cohomological, which means it only depends on the topos. This is worth saying
because different sites can have equivalent toposes. We think of the topos as being constructed from
the site, but we also think of it as containing the site, as follows. There’s a Yoneda embedding

h : C → Psh(C), U 7→ hU = HomC(·, U).

In most of the sites we end up working with, these representable presheaves are actually sheaves,
so the site embeds into the topos. In this talk, I’ll mostly stay within the sites I want – I find it
hard to think of everything as a sheaf.

Other ideas from sheaf theory over topological spaces make sense in the topos-theoretic setting.
For instance, there’s the notion of a ‘point’ of a site or topos. For a topos, this is defined in terms
of its stalk functor, which is an adjunction

x∗ : T � Set : x∗

such that x∗ also preserves finite limits. If you’re willing to stay at the site level, you can always
recover x∗ as the limit of a cofiltered diagram of open sets of your topology. You can explicitly state
what these points are for the Zariski, étale, and Nisnevich topologies. For the Zariski topology,

Fx = colimU3x F(U) = F(SpecOx,X),

which is to say that points are local rings, almost by definition.
For the étale topology, there’s now a larger diagram of opens containing a Zariski point: even if

your scheme X is Spec of a field k, any finite separable extension of k gives an étale cover of X. So
in this case, the point is actually Spec ks. In general, your local ring corresponds to a ring containing
Ox,X , whose residue field is k(x)s, and with a root for every étale polynomial with coefficients in
Ox,X . This is called the strict Henselization of Ox.X , written Osh

x,X . The points in the étale
topology are the strictly Henselian local rings – those with separably closed residue field and such
that any factorization mod mx,X of a polynomial in Ox,X [t] lifts to a factorization in Ox,X [t].

In the Nisnevich topology, things are much the same, except that the residue field isn’t allowed
to change. The Nisnevich points are Henselian local rings Oh

x,X .
Last is the notion of morphism of sites. This is an adjunction

f∗ : Shv(S1) � Shv(S2) : f∗

such that f∗ also preserves finite limits (and is thus exact). This is usually written f : S2 → S1, but
note that the left adjoint is really the pullback. An example is the stalk functors mentioned earlier,
which are morphisms to sets – that is, sheaves on a point!

3. Classifying spaces and bundles

If G is just a group, there’s a simplicial group EG with EGn = Gn+1, faces given by projections,
degeneracies given by diagonals, and the group law defined componentwise. G acts on this by
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acting on each factor of everything. EG is contractible, a contracting homotopy given by inclusions
Gn+1 ∼= Gn+1 ×{e} ⊆ Gn+2, and the G-action is free, so the quotient EG/G is the sort of thing we
like to call BG. We can also describe BG as the simplicial set with BGn = Gn, degeneracies given
by diagonals, the face di forgetting the ith factor if i = 0 or n and multiplying the ith and (i+ 1)th
if 0 < i < n. The map EG→ BG is a G-bundle; it’s a principal G-bundle, or G-torsor, since the
fibers are isomorphic to G, as G-sets.

Now say G is a sheaf of groups on, let’s say, the Nisnevich site. Then defining EG as above
on each representable gives a presheaf of groups, which is easily seen to be a sheaf. Again this is
the total space of a principal G-bundle EG → BG. That is, G(U) acts freely on EG(U) for each
representable U , and the sheafification of the quotient U 7→ EG(U)/G(U) is BG(U).

Now say G is a sheaf of simplicial groups. We can apply E levelwise to G, creating a bisimplicial
group sheaf EG•,• = G•+1

• . The diagonal of this is what we’ll call EG. So EG is the sheaf of
simplicial groups

EGn = Gn+1
n .

To take a face map dk, we lose the kth factor and apply dk : Gn → Gn−1 on all the remaining ones;
degeneracies are similar. Everything above still works as long as we phrase it ‘categorically’ enough.
For example, the action of Gn on EGn defines an action of G on EG, by which I mean a map of
simplicial sheaves

α : G× EG→ EG;

to say this is free means that the associated map

G× EG→ EG× EG, (g, x) 7→ (α(g, x), x),

is a monomorphism of simplicial sheaves; the quotient BG = EG/G is the obvious coequalizer. We
could also get BG by a similar diagonal construction, with

BGn = Gn
n.

The importance of BG is that it’s the classifying space for homotopy types of G-torsors. Since
we’re working with simplicial sets, we have to be a little careful.

Proposition 3.1. Let G be a simplicial sheaf of groups and let E → X be a G-torsor. Then there
is a (stalkwise) acyclic fibration f : Y → X and a map p : Y → BG such that f∗E ∼= p∗EG.

Proof. Take Y = (E × EG)/G; this maps to X with fibers the contractible fibrant sheaf EG. �

In the case we’re interested in, G will be some GLn, and in particular, just a discrete sheaf of
groups. In this case, it’s true that the set of isomorphism classes of G-torsors over a simplical sheaf

is homotopy invariant, and in particular, in the above replacement Y
∼
� X , the G-torsors over Y are

the same as those over X . Choosing a good (i.e. fibrant) model for BG, one obtains the following.

Proposition 3.2. For any discrete sheaf of groups G on (Sm/S)Nis, there is a simplicial sheaf BG
such that HomH(S)(X , BG) is the set of isomorphism classes of G-torsors over X .

There’s a natural map G→ ΩBG, given levelwise by

(s0, . . . , sn) : Gn → Gn+1
n+1.

When G is an ordinary simplicial group and we’ve chosen a fibrant model for BG, this map is a
weak equivalence, which is to say that G ' RΩBG in the homotopy category. This is also true for
simplicial sheaves of groups because we can check it at each point.

Last, note that the definition BGn = Gn
n only depended on the multiplication in G. In particular,

we could do the same for a simplicial sheaf of monoids M .
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4. Algebraic K-theory

Now let’s switch gears and talk about algebraic K-theory of schemes. If you don’t know what
K-theory is, I don’t know that there’s much I can do for you here. I can only guarantee that you’ll
see at least one talk in your life on the subject of ”what is K-theory”. Also, someone writes a totally
new paper about ”what is K-theory” every seven to ten years, so you could just wait to catch up
until the next one comes out.

The basics are as follows. First, K-theory says something about vector bundles over a scheme –
specifically, K0(X) is the Grothendieck group of vector bundles on X (equivalently, if X is regular,
Noetherian, and separated, the Grothendieck group of coherent sheaves on X). Second, the graded
group we call K-theory is naturally the homotopy groups of a certain connective spectrum, also
called K-theory. Third, the assignment U 7→ K(U) is a presheaf of spectra on the Zariski topology
of X, which satisfies descent in the sense of Jardine [Jar87] for the Zariski and Nisnevich topologies
(though not the étale topology).

Definition 4.1. Let Vect(X) be the category of vector bundles on X – that is, locally free sheaves,
equivalently in the Zariski or Nisnevich topologies. Then the K-theory of X is

K(X) = K(Vect(X)) = ΩBQ(Vect(X)),

where Q(Vect(X)) is the monoidal category of vector bundles where the morphisms are inclusions
of summands, and the monoid structure is given by direct sum.

The following is the beginning of our investigation:

Proposition 4.2. In the motivic stable homotopy category H(S), algebraic K-theory is represented

by RΩB
(∐

n≥0BGLn

)
.

Here
∐
BGLn is viewed as a monoid, with the multiplication

BGLn ×BGLm ' B(GLn ×GLm)→ BGLn+m

induced by the group homomorphism GLn × GLm → GLn+m corresponding to the direct sum of
vector spaces.

Proof. The category Vect(X) is one where all exact sequences split, so by a theorem of Grayson
and/or Quillen [Gra76], we can make the replacement

ΩBQ(Vect(X)) ' ΩBN(isoVect(X)).

Locally onX, all vector bundles are trivial, so the right-hand side gets replaced by ΩB (
∐
BGLn(X)),

and the rest follows. �

5. Monoids

The following shows that classifying spaces of monoids aren’t really much different than classifying
spaces of groups.

Proposition 5.1. If M is a simplicial sheaf of monoids such that each level Mn is a free monoid on
a sheaf of sets, then the natural map BM → BMgp is a weak equivalence, and thus Mgp ' RΩBM .

By the standard model category arguments, thinking of levelwise free monoids as the cofibrant

ones, we can find for any monoid M an acyclic fibration M̃
∼
� M with M̃ levelwise free. In this

case, RΩBM ' M̃gp.
In our case of interest, we can simplify this even further.

Definition 5.2. An augmentation on a simplicial sheaf of monoids M is a map f : M → N with
a section α : N →M .
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Note that an augmentation induces a grading on M – take degree n to be Mn = f−1(n). Multi-
plying by α(1) induces Mn → Mn+1, and we define M∞ to be the colimit. Now, if M is levelwise
free, there’s a map M∞×Z→Mgp, namely (x,m) 7→ α(1)m−nxn if x is represented by x ∈Mn. For

general M , we can take a levelwise free replacement M̃ →M , inducing weak equivalences M̃n →Mn

and thus M̃∞ →M∞. We can thus fill in the bottom map in

M̃∞ × Z //

∼
��

M̃gp ∼ // RΩBM̃

∼
��

M∞ × Z // RΩBM.

Proposition 5.3. Let M be an augmented simplicial sheaf of monoids, and suppose that M is
homotopy commutative and the map π0(M)a → N induced by the augmentation is an isomorphism
of sheaves. Then M∞ × Z→ RΩBM is a weak equivalence.

Proof. Since these properties are inherited by M̃ , it suffices to prove this for the top map in the
above square. Weak equivalences are local, so we can check this at each point, thus reducing to
the case where M is a levelwise free simplicial monoid. Since M is commutative, its homology is
a commutative ring, and H∗(M∞ × Z) is easily seen to be H∗(M∞)[π0(M)−1]. By a theorem of
Friedlander and Mazur [FM94], M∞ × Z → Mgp is a homology isomorphism. Since π0(M) = N
given by the grading, each Mn and thus M∞ is connected. Since M is commutative, we obtain a
multiplication Mm ×Mn → Mn+m and thus M∞ ×M∞ → M∞. Thus, by the Eckmann-Hilton
argument, π1M∞ is abelian. Thus, by the Whitehead theorem, the map is a weak equivalence. �

Corollary 5.4. Algebraic K-theory is represented in the motivic homotopy category by BGL∞×Z.

Proof. The monoid
∐

n≥0BGLn is easily seen to be augmented in the above sense: the grading is
already there and the section is given by sending n to the point of BGLn classifying a trivial n-
dimensional vector bundle. One should check that BGL∞ in this augmented monoid sense is what
we’d ordinarily mean by BGL∞, namely, the classifying space of GL∞ = colimGLn. Now let’s check
the two conditions of the proposition. The condition on π0 comes from the fact that each BGLn

is connected: π0BGLn classifies n-dimensional bundles over points, of which there’s only one. The
commutativity condition is where we need to pass to the motivic homotopy category, and [MV99]
only proves this after introducing the Grassmannian. But in fact, the maps GLn×GLm → GLn+m

are A1-homotopy commutative: they correspond to block sum of matrices, and we can use A1-
homotopies to slide the blocks around like Sokoban. �

6. The étale classifying space

Just as we can talk about Nisnevich G-torsors, we can talk about étale G-torsors, and it’s conve-
nient/‘fun’ to compare the two. There’s a morphism of sites

π : (Sm/S)ét → (Sm/S)Nis,

whichi is to say a pair of adjoint functors

π∗ : Shv((Sm/S)Nis) � Shv((Sm/S)ét) : π∗

such that π∗ preserves finite limits (note that it’s a left adjoint, so it automatically preserves all
colimits). The pushforward π∗ is a forgetful functor: an étale sheaf is a fortiori a Nisnevich sheaf.
The pullback π∗, meanwhile, is étale sheafification. The differences between the étale and Nisnevich
topologies are measured by the cohomological properties of these functors.

This adjunction extends to simplicial sheaves, and on homotopy categories, we get an adjunction
of derived functors:

π∗ : Ho(sShv(Sm/S)Nis) � Ho(sShv(Sm/S)ét) : Rπ∗.
Note that π∗ is exact, so equal to Lπ∗.
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Definition 6.1. The étale classifying space of G is

BétG = Rπ∗π∗BG.

By adjointness, if G is a discrete sheaf of groups, this classifies étale π∗G-torsors over X. This is a
little awkward, and the awkwardness propagates to parts of the geometric construction below. The
counit of the derived adjunction is a map BG → Rπ∗π∗BG. Still assuming that G is discrete, we
can calculate the homotopy groups of the two classifying spaces. We know that maps in the motivic
homotopy category from a scheme U to BG correspond to G-torsors over U , which correspond to
H1

Nis(U,G). Likewise,

[U,BétG] = H1
ét(U,G).

Moreover,
[ΣU,BG] = [U,RΩBG] = [U,G] = G(U)

and likewise
[ΣU,BétG] = Gét(U).

The higher homotopy groups are zero, since G is discrete. We can conclude as follows.

Proposition 6.2. For a discrete sheaf of groups G on the Nisnevich site, BG ' BétG if and only if

(1) G satisfies étale descent, and
(2) H1

ét(U,G) ∼= H1
Nis(U,G) for all smooth schemes U over S.

For G = GLn, these conditions are satisfied by Hilbert’s theorem 90:

Theorem 6.3 (Hilbert’s Theorem 90).

H1
Zar(U,GLn) ∼= H1

Nis(U,GLn) ∼= H1
ét(U,GLn).

This is just saying that vector bundles in the Zariski topology already satisfy étale descent.

Remark 6.4. There’s a nice pointwise characterization of the property H1
ét(U,G) ∼= H1

Nis(U,G). This
says that all Nisnevich G-torsors satisfy étale descent. Equivalently, a free Nisnevich G-torsor on
a sufficiently small Nisnevich open becomes free when restricted to a sufficiently small étale open.
Taking the colimit over Nisnevich opens, it’s sufficient to check that there are no étale G-torsors on
Nisnevich points, i. e. that for all points x of smooth schemes X over S,

H1
ét(Oh

x,X , G) = 0.

Conversely, if H1
ét(U,G) ∼= H1

Nis(U,G) for all smooth schemes U over S, then this is in particular
true for Henselian local rings, so that

H1
ét(Oh

x,X , G) = H1
Nis(Oh

x,X , G) = 0.

Corollary 6.5. BGLn ' BétGLn, and BGL∞ ' BétGL∞, giving another representing object for
algebraic K-theory.

Though the objects are the same, the argument below extends to étale classifying spaces of linear
algebraic groups, which are not necessarily equivalent to the Nisnevich classifying spaces.

7. The Grassmannian

Now we come to the real meat of the proof, using geometric properties of GLn to create a
geometric model for BétGLn. In fact, this will work for any closed subgroup of GLn, though I’ll
restrict attention to GLn.

Consider the affine space over S, Anm
S
∼= HomS(An,Am). GLn acts on this by acting on the source,

and on the open subscheme Um of monomorphisms An ↪→ Am, this action is free. Let Zm denote
the complement of this open subscheme. There are GLn-equivariant monomorphisms Um ↪→ Um+1

induced by Am → Am+1, x 7→ (x, 0). The sequence of objects (Anm, Um, im,m+1 : Um → Um+1)
satisfies the following key properties:



ÉTALE CLASSIFYING SPACES AND THE REPRESENTABILITY OF ALGEBRAIC K-THEORY 7

(1) At every (scheme-theoretic) point s ∈ S with residue field k(s), the fiber Um ×S s has a
k(s)-rational point for some m.

(2) For each m, there is an m′ > m such that im,m′ : Um → Um′ factors through Anm − Zm →
(Anm)2 − Z2

m.
(3) For every smooth scheme X over S and étale GLn-torsor E → X, there is an m such that

((Um ×S X)× E)/GLn → X is an epimorphism of sheaves in the Nisnevich topology.

In the terrible lingo of [MV99], this sequence is called an admissible gadget.
Let’s check the conditions. Condition 1 is saying that there exists a monomorphism An → Am

over a field, for which we can just take m ≥ n. For condition 2, take m′ = 2m. Then Um → A2nm,
x 7→ (x, 0), lands outside Zm × Anm, so certainly outside Z2

m. For condition 3, take m = n – the
map you get will be the vector bundle associated to E.

We define U∞ = colimm Um. Let Vm = Um/GLn and V∞ = colimm Vm = U∞/GLn. V∞ is going
to be our geometric model for BétGLn. To make this work, we need to show that U∞ is contractible,
and that this is all we need. This is the roughest part of this talk – get ready!

Proposition 7.1. The canonical morphism U∞ → S is an A1-homotopy equivalence.

Proof. The point is to model the standard simplices and their boundaries as affine schemes. Specif-
ically, we’ll model ∆n with An

S , and ∂∆n with

∂∆n
A1 := V

(
x1x2 · · ·xn

(
1−

∑
xi

))
⊆ An.

I claim that it suffices to show that the diagonal map exists in every diagram

∂∆n
A1

//

��

U∞

An

;;

over S. Basically, there’s an A1-local replacement, written SingA1

∗ (U∞) and q. v. [MV99], such that
this diagram is equivalent to

∂∆n //

��

SingA1

∗ (U∞)

An.

99

Moreover, weak equivalences can be checked pointwise, so it suffices to take S to be a Henselian
local affine scheme, a ‘Nisnevich point.’

For n = 0, all this is saying is that U∞ has a point. By condition 1, it has a point over the residue
field, and using smoothness of the Un, we can extend this to any local ring.

For n > 0, suppose given a map ∂f : ∂∆n
A1 → Uk → Akm. On coordinate rings, this is equivalent

to

OS [x1, . . . , xkm]→ OS [y1, . . . , yn]/
(
y1 · · · yn

(
1−

∑
yi

))
.

We can just choose a lift of each xi to OS [y1, . . . , yn], and this gives an extension of the map to
f : An → Akm. The problem is now that An might hit the bad set Vk. Let B, for ‘bad,’ be
the preimage of Vk in An. This is disjoint from ∂∆n

A1 . Thus, we can define another morphism

g : An → Akm which is 0 on ∂∆n
A1 and sends all of B to another point x ∈ Ui. The product

f × g : An → A2km lands outside V 2
k , so it restricts to a map An → U2km by condition 2. Moreover,

on ∂∆n
A1 , it’s clear that this agrees with im,2m ◦ ∂f . �

We’ve shown that U∞ has contractible, and it has free GLn-action by definition. The same could
be said for E(U∞). This gives a monomorphism

B(U∞, GLn) := E(U∞)/(GLn)ét → BétGLn.
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Using condition 3 above, one can show that this is a weak equivalence in the Nisnevich topology,
and that this is also weakly equivalent to U∞/GLn. The proof isn’t terribly complicated – there
are some subtleties in changing between the two topologies at play – but it’s tedious enough that I
don’t feel like giving it here. Of course, U∞/GLn is just the Grassmannian of n-planes. Thus, we
get the following.

Theorem 7.2. In the motivic homotopy category, there are canonical equivalences

BGLn ' BétGLn ' G(n,∞).

Theorem 7.3. In the motivic homotopy category H∗(S), where S is a finite-dimensional, regular,
Noetherian scheme, algebraic K-theory is represented by G(∞,∞)×Z, where G(∞,∞) is an A1-local
model of colimG(n,∞).

If S is not regular, we instead get Weibel’s homotopy-invariant K-theory [Wei89].

8. Computations and examples

In this final section, I list homotopy groups of some things. What do I mean by homotopy groups?
Well, they’re a sheaf on the Nisnevich site, so I should give their values on any smooth S-scheme U ;
they’re also bigraded, with

Sp,q = Sp−q
s ∧ Sq

t = Sp−q ∧G∧qm

for p ≥ q ≥ 0. If p ≥ 2q, this is also equal to Sp−2q ∧ (P1)∧q.
Let’s start with the homotopy groups of K-theory. I’ve told you these for suspensions with respect

to the simplicial sphere – they’re just the K-groups of X. Consider

[Gm ∧X+, G(∞,∞)× Z].

The target is Gm ∧ X+ = (X × Gm)/X = X[t±1]/X. By the fundamental theorem of algebraic
K-theory, the K-groups of X ×Gm are

Ki(X ×Gm) = KiX ⊕Ki−1X.

The quotient by the sheaf X kills the first of these things, and we’re able to conclude that, for X a
scheme,

[Sp,q ∧X+, G(∞,∞)× Z] = Kp−2qX

where this is interpreted as 0 if the degree is negative. In particular, we get the calculation

Ki(P1) = Ki(S
2,1) = K0(S2+i,1 ∧ (Spec k)+) = Ki(k).

Another thing we could look at is BGL1 = BGm. The geometric model is G(1,∞) = P∞, and
one can show that it’s A1-local, so that it computes the right homotopy groups. Over a regular
scheme, are computed as follows.

[Sp,q ∧X+,P∞] =


Pic(X) p = q = 0

O(X)× p = 1, q = 0

H0(X,Z) p = 2, q = 1

0 otherwise.

For the first line, BGL1 classifies line bundles, which are the Picard group. For the second, we’ve
suspended X, so we get GL1(X), which is the units in X. For the third, we’ve smashed X+ with
Gm and a simplicial circle, so we get the units in X × Gm mod those in X, which is precisely the
free abelian group on the connected components of X. If we simplicially suspend any further, we
get zero since GL1 is discrete. Let’s see what happens if we smash with Gm further. We have

[G∧qm ∧X+,P∞] =

[
G×qm ×X

∗ ×G×(q−1)
m ×X ∪ · · · ∪G×(q−1)

m ×X
,P∞

]
,

but every unit in G×qm ×X is a product of those induced from X and the Gm factors.
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One can use the same theory to find homotopy groups of classifying spaces for other groups.
[MV99] does this for étale groups, which are the simplest. On the other hand, the situation is more
difficult for the groups GLn, n > 1 – in particular, BGLn is not known to be A1-local.
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