From Algebraic Cobordism to Motivic Cohomology, Part III

Scribe notes from a talk by Dylan Wilson

21 Mar 2014

Plan. Let $f: M G L /\left(a_{0}, a_{1}, \ldots\right) \rightarrow H \mathbb{Z}$ be the map of the previous lectures.

1. $M G L_{\leq 0} \simeq H Z_{\leq 0} \simeq(1 / \eta)_{\leq 0}$.
2. $H \mathbb{Q} \wedge f$ is an equivalence.
3. $H \mathbb{Z} / \ell \wedge f$ is an equivalence.

Assuming these steps, we can run the following argument.
Proof of thm.

We want to show that $\alpha \sim 0$ and that any section s of δ satisfies $s \sim 0$.
We know (from steps 2 and 3) that $H \mathbb{Z} \wedge F \simeq *$. Note that $M G L /\left(a_{0}, a_{1}, \ldots\right)$ and $\Omega^{1,0} H \mathbb{Z}$ are homotopy MGL-modules.

Lemma. Suppose that $H \mathbb{Z} \wedge F \simeq *$, and that X is a homotopy MGL-module. If X is r-connective for $r \in \mathbb{Z}$, then $[F, X]=0$.

Proof. By the homotopy t-structure, reduce to $\left[\Sigma^{p, 0} F, \kappa_{n} X\right]=0$ for all p and n.

Now

$$
F \wedge \kappa_{0} M G L \simeq F \wedge \kappa_{0} H \mathbb{Z} \simeq F \wedge H \mathbb{Z}_{\leq 0} \simeq 0
$$

as desired.

Theorem. $H \mathbb{Z}_{\leq 0} \simeq(1 / \eta)_{\leq 0}$.
Proof. We want to show that this sequence is exact:

$$
\underline{\pi}_{n-1, n-1} 1 \xrightarrow{\eta} \underline{\pi}_{n, n} 1 \rightarrow \underline{\pi}_{n, n} H \mathbb{Z} \rightarrow 0
$$

This follows from the diagram0

Computation. We want to compute $H \mathbb{Z} / \ell^{* *} M G L /\left(a_{0}, a_{1}, \ldots\right)$.
1.

2. $L \simeq \mathbb{Z}\left[a_{0}, a_{1}, \ldots\right]$, and

$$
h_{\mathbb{Z}}\left(a_{n}\right)= \begin{cases}\ell \cdot b_{n} & n=\ell^{i}-1 \\ b_{n} & \text { otherwise }\end{cases}
$$

modulo decomposables.
Plan. -
I. $H \mathbb{Z} / \ell_{* *}$ as an $\mathcal{A}_{* *}$ comodule algebra.
II. See what happens inductively as we kill x_{i}, the a_{n} s with $n \neq \ell^{i}-1$.
III. Kill ℓ-typical elements.
$H \mathbb{Z} / \ell^{* *} B G L \simeq H \mathbb{Z} / \ell^{* *} \llbracket c_{1}, c_{2}, \ldots \rrbracket$, a Hopf algebra with

$$
\Delta\left(c_{n}\right)=\sum_{i+j=n} c_{i} \otimes c_{j}
$$

Check that $H \mathbb{Z} / \ell_{* *} B G L=H \mathbb{Z} / \ell\left[\beta_{1}, \beta_{2}, \ldots\right]$ as Hopf algebras, with β_{i} dual to c_{1}^{2}.

By the Thom isomorphism,

$$
H \mathbb{Z} / \ell_{* *} M G L=H \mathbb{Z} / \ell_{* *}\left[b_{1}, b_{2}, \ldots\right], \quad\left|b_{n}\right|=(2 n-2, n-1)
$$

In the action of $\mathcal{A}^{* *}$ on $H^{* *} \mathbb{P}^{* *}$, the Q_{i} act trivially, and the P^{i} are defined by the Cartan formula.

Theorem. We describe the coaction:

$H \mathbb{Z} / \ell_{* *} M G L \simeq P_{* *}\left[x_{i}\right]$ as comodule algebras and L-modules.
Corollary. $H \mathbb{Z} / \ell_{* *}\left(M G L /\left(x_{1}, x_{2}, \ldots\right)\right) \simeq P_{* *}$ as $\mathcal{A}_{* *}$-comodule algebras.
Theorem. Let I be a set of integers ≥ 0, and $v_{i}=a_{\ell^{i}-1}$. There is an isomorphism of $\mathcal{A}^{* *}$-modules

$$
\begin{gathered}
\mathcal{A}^{* *} /\left(Q_{i} \mid i \notin I\right) \simeq H \mathbb{Z} / \ell^{* *}\left(M G L /\left(x, v_{i} \mid i \in I\right)\right), \\
{[\phi] \mapsto \phi(\theta),}
\end{gathered}
$$

with θ the Thom class.
Remark. For $I=\{1,2, \ldots\}$, we get $H^{* *} M G L /\left(a_{0}, \ldots\right) \simeq \mathcal{A}^{* *} / Q_{0}$.
Proof. Suppose inductively that this is true for I; pick $r \notin I$. Let $E=$ $M G L /\left(x, v_{i} \mid i \in I\right)$. Then

$$
H^{* *}\left(E / v_{r}\right) \simeq H^{* *} E \square_{H^{* *} M G L} H^{* *}\left(M G L / v_{r}\right)
$$

We now come to the last step.

$$
\Sigma^{?} M G L \xrightarrow{v_{r}} M G L \rightarrow M G L / v_{r} .
$$

We want to understand the relationship between $Q_{r}, v_{r}, \delta=c \circ b$, and θ. In fact

$$
\theta \circ \delta=Q_{r} \circ \theta
$$

up to a unit in \mathbb{Z} / ℓ.

