From Algebraic Cobordism to Motivic Cohomology, Part III

Scribe notes from a talk by Dylan Wilson

$21~\mathrm{Mar}~2014$

Plan. Let $f: MGL/(a_0, a_1, \ldots) \to H\mathbb{Z}$ be the map of the previous lectures.

- 1. $MGL_{\leq 0} \simeq HZ_{\leq 0} \simeq (1/\eta)_{\leq 0}$.
- 2. $H\mathbb{Q} \wedge f$ is an equivalence.
- 3. $H\mathbb{Z}/\ell \wedge f$ is an equivalence.

Assuming these steps, we can run the following argument.

Proof of thm.

We want to show that $\alpha \sim 0$ and that any section s of δ satisfies $s \sim 0$.

We know (from steps 2 and 3) that $H\mathbb{Z}\wedge F \simeq *$. Note that $MGL/(a_0, a_1, \ldots)$ and $\Omega^{1,0}H\mathbb{Z}$ are homotopy MGL-modules.

Lemma. Suppose that $H\mathbb{Z} \wedge F \simeq *$, and that X is a homotopy MGL-module. If X is r-connective for $r \in \mathbb{Z}$, then [F, X] = 0.

Proof. By the homotopy t-structure, reduce to $[\Sigma^{p,0}F, \kappa_n X] = 0$ for all p and n.

Now

$$F \wedge \kappa_0 MGL \simeq F \wedge \kappa_0 H\mathbb{Z} \simeq F \wedge H\mathbb{Z}_{<0} \simeq 0,$$

as desired.

Theorem. $H\mathbb{Z}_{\leq 0} \simeq (1/\eta)_{\leq 0}$.

Proof. We want to show that this sequence is exact:

$$\underline{\pi}_{n-1,n-1} \stackrel{\eta}{\to} \underline{\pi}_{n,n} 1 \to \underline{\pi}_{n,n} H\mathbb{Z} \to 0.$$

This follows from the diagram0

Computation. We want to compute $H\mathbb{Z}/\ell^{**}MGL/(a_0, a_1, \ldots)$.

1.

$$\begin{array}{ccc} L & \xrightarrow{h_R} & R[b_0, b_1, \ldots] \\ & & & \downarrow \\ & & & \downarrow \\ MGL_{**} & \longrightarrow & HR_{**}MGL \end{array}$$

2. $L \simeq \mathbb{Z}[a_0, a_1, \ldots]$, and

$$h_{\mathbb{Z}}(a_n) = \begin{cases} \ell \cdot b_n & n = \ell^i - 1\\ b_n & \text{otherwise} \end{cases}$$

modulo decomposables.

Plan. —

- I. $H\mathbb{Z}/\ell_{**}$ as an \mathcal{A}_{**} comodule algebra.
- II. See what happens inductively as we kill x_i , the a_n s with $n \neq \ell^i 1$.
- III. Kill ℓ -typical elements.

 $H\mathbb{Z}/\ell^{**}BGL \simeq H\mathbb{Z}/\ell^{**}\llbracket c_1, c_2, \ldots \rrbracket$, a Hopf algebra with

$$\Delta(c_n) = \sum_{i+j=n} c_i \otimes c_j.$$

Check that $H\mathbb{Z}/\ell_{**}BGL = H\mathbb{Z}/\ell[\beta_1, \beta_2, \ldots]$ as Hopf algebras, with β_i dual to c_1^2 .

By the Thom isomorphism,

$$H\mathbb{Z}/\ell_{**}MGL = H\mathbb{Z}/\ell_{**}[b_1, b_2, \ldots], \qquad |b_n| = (2n - 2, n - 1).$$

In the action of \mathcal{A}^{**} on $H^{**}\mathbb{P}^{**}$, the Q_i act trivially, and the P^i are defined by the Cartan formula.

Theorem. We describe the coaction:

$$H\mathbb{Z}/\ell_{**}MGL \xrightarrow{\qquad \qquad \qquad } \mathcal{A}_{**} \otimes_{H\mathbb{Z}/\ell_{**}} H\mathbb{Z}/\ell_{**}MGL$$

 $H\mathbb{Z}/\ell_{**}MGL \simeq P_{**}[x_i]$ as comodule algebras and L-modules.

Corollary. $H\mathbb{Z}/\ell_{**}(MGL/(x_1, x_2, \ldots)) \simeq P_{**}$ as \mathcal{A}_{**} -comodule algebras.

Theorem. Let I be a set of integers ≥ 0 , and $v_i = a_{\ell^i - 1}$. There is an isomorphism of \mathcal{A}^{**} -modules

$$\mathcal{A}^{**}/(Q_i \mid i \notin I) \simeq H\mathbb{Z}/\ell^{**}(MGL/(x, v_i \mid i \in I)),$$
$$[\phi] \mapsto \phi(\theta),$$

with θ the Thom class.

Remark. For $I = \{1, 2, ...\}$, we get $H^{**}MGL/(a_0, ...) \simeq \mathcal{A}^{**}/Q_0$.

Proof. Suppose inductively that this is true for I; pick $r \notin I$. Let $E = MGL/(x, v_i \mid i \in I)$. Then

$$H^{**}(E/v_r) \simeq H^{**}E \square_{H^{**}MGL} H^{**}(MGL/v_r).$$

We now come to the last step.

$$\Sigma^? MGL \xrightarrow{v_r} MGL \to MGL/v_r.$$

We want to understand the relationship between Q_r , v_r , $\delta = c \circ b$, and θ . In fact

$$\theta \circ \delta = Q_r \circ \theta$$

up to a unit in \mathbb{Z}/ℓ .