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Recall. We have a category CorS whose objects are smooth schemes over S,
with

CorS(X,Y ) = Z[Z 6↪→ X × Y | finite over X,Z is integral]

Example. For any f : A→ B in Sm/S , its graph is in CorS(X,Y ).

A presheaf with transfers is F : CorS → Ab. Spctr is the category of
simplicial objects F as above. We have Ztr : Cor→ Spctr and Ztr : Spt→ Spttr.
We use this to define HZ. We could apply −⊗R to get HR.

We will tackle the following. Let f : MGL/(a1, a2, . . .)→ HZ, the map from
last talk. We want to show that HQ ∧ f and HZ/` ∧ f are weak equivalences,
and deduce that HZ ∧ f is a weak equivalence.

Goal. HZ/` ∧HZ is a cellular HZ/`-module, whose homotopy grousp are the
kernel of the Bockstein.

Theorem. HRp,q ∼ Hp,q(−, R).

Theorem (Röndigs–Østvaer 2008). The derived adjunction between D(HR)
and SHtr(S,R) restricts to an equivalence on full subcategories of cellular ob-
jects. For char(k) = 0 this equivalence is even stronger.

We have cofiber sequences:

HZ `−→ HZ→ HZ/`, HZ/` `−→ HZ/`2 → HZ/`.

Classical Steenrod algebra

We consider cohomology operations such as

Hn(X;R)→ H2n(X;R), x 7→ x ∪ x.

(Here e.g. R = F2). But these are unstable (they don’t commute with suspen-
sion); “stabilizing”, we obtain

Sqi : Hn(X;Z/2)→ Hn+i(X;Z/2),

the Steenrod squares. These turn out to generate all stable cohomology
operations over Z/2. These Sqn are characterized by:
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1. They are additive homomorphisms and natural;

2. Sq0 = id;

3. Sqn(x) = x ∪ x when |x| = n;

4. If |x| < n then Sqn x = 0;

5. Sqn(x ∪ y) =
∑
i+j=n(Sqi(x) ∪ Sqj(y)) (the Cartan formula).

From this we can formally deduce the Adem relations between these elements.
We obtain the Steenrod algebra A∗.

Given 0 → A → B → C → 0, we apply H∗(X;−) to get a long exact
sequence; then we define the Bockstein to be the connecting homomorphism
(given by the Snake Lemma). We denote this

β : Hi(X;C)→ Hi+1(X;A).

This is a cohomology operation.
For p > 2 we have to factor this in: instead of Sqi, we have operations

P i : Hn(X;Z/p)→ Hn+2i(p−1)(X;Z/p) as well as the Bockstein β arising from
0 → Z/p → Z/p2 → Z/p → 0, which together generate the mod p Steenrod
algebra. This is a graded Fp-algebra, and in fact a Hopf algebra with

ψ : A∗ → A∗ ⊗A∗

given by the Cartan formula.
We can dualize to A∗, which is a commutative, associative algebra. We can

write
A∗ ∼= HF∗p(HFp), A∗ ∼= HFp∗(HFp).

By applying the Serre spectral sequence inductively to fiber sequencesK(Z/2, n)→
∗ → K(Z/2, n+ 1), we get that

HF2∗(HZ) = ker(β) = F2[ξ21 , ξ2, ξ3, . . .].

Define Qi inductively by Q0 = β, and

Qi = qiβ − βqi, qi = P `
i−1

. . . P `P 1.

Theorem (Milnor 1958).

A∗ ∼= (E(τ0, 1)⊗ E(τ1, 2p− 1)⊗ . . .)⊗ (P (ξ1, 2p− 2)⊗ P (ξ2, 2p
2 − 2)⊗ . . .),

a tensor product of an exterior product on generators τi of degree 2pi − 1 and a
polynomial algebra on generators ξi of degree 2pi − 2. (If ` = 2 then there is no
exterior part.)
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Motivic Steenrod algebra

Let S be some base scheme, ` 6= char(S). (We may as well take S to be a field.)
We define the motivic Steenrod algebra A∗∗ as the algebra of all bistable
natural transformations

H̃∗∗(−,Z/`)→ H∗∗(−,Z/`).

Theorem (Voevodsky 2003). There are reduced power operations

P i ∈ A2i(`−1),i(`−1), β : HZ/`→ Σ1,0HZ/`.

The F` basis for the classical A∗ comes from P i and β:

H∗∗Z/` ⊗F`
A∗ ∼= A∗∗.

So A∗∗ is generated by P i, β, and u 7→ au where a ∈ H∗∗(S,Z/`).

Fact. (HZ/`∗∗,A∗∗) is a Hopf algebroid.

Milnor basis

Recall τ from the previous talk, in bidegree (0, 1). We will have a new element
ρ in bidegree (1, 1).

Consider the Hopf algebroid (A,Γ), with

A = Z/`[τ, ρ],

Γ = A[τ0, τ1, . . . , ξ1, ξ2, . . .]/(τ
2
1 − τξi+1 − ρτi+1 − ρτ0ξi+1),

∆(ρ) = ρ⊗ 1, ∆(τ) = τ ⊗ 1,

and ∆(τi) and ∆(ξi) are as in the classical case. The units are

ηR(τ) = τ + ρτ0, ηL(τ) = τ.

If k = C or F` for ` 6= 2, ρ 6= 0, and this is a Hopf algebra (left and right units
agree).

Now A→ HZ/` makes HZ/` into an A-module, and

A∗∗ ∼= Γ⊗A HZ/`∗∗.

Punchline. Let M denote the Milnor basis on A∗∗. Then∨
ζ∈M

Σ|ζ|HZ/`
∼=−→ HZ/` ∧HZ/`.

We have HZ/`∗∗ ∼= ker(β), and

0→ HZ/`∗∗HZ→ HZ/`∗∗HZ/` β∗−→ H∗∗Σ
1,0HZ→ 0.

Let MZ be the sub-basis of M generated by τ(E)ξ(R)withε0 = 0, E =
(ε0, ε1, ldots).
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Corollary. ∨
ζ∈MZ

Σ|ζ|HZ/`→ HZ ∧HZ/`

is an equivalence of HZ/`-modules.
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