From Algebraic Cobordism to Motivic Cohomology, Part II

Scribe notes from a talk by David White

21 Mar 2014

Recall. We have a category Cor_{S} whose objects are smooth schemes over S, with

$$
\operatorname{Cor}_{S}(X, Y)=\mathbb{Z}[Z \nrightarrow X \times Y \mid \text { finite over } X, Z \text { is integral }]
$$

Example. For any $f: A \rightarrow B$ in $\operatorname{Sm}_{/ S}$, its graph is in $\operatorname{Cor}_{S}(X, Y)$.
A presheaf with transfers is $F: \mathrm{Cor}_{S} \rightarrow \mathrm{Ab}$. Spc $\mathrm{tr}_{\mathrm{tr}}$ is the category of simplicial objects F as above. We have $\mathbb{Z}_{\mathrm{tr}}: \operatorname{Cor} \rightarrow \mathrm{Spc}_{\mathrm{tr}}$ and $\mathbb{Z}_{\mathrm{tr}}: \mathrm{Spt} \rightarrow \mathrm{Spt}_{\mathrm{tr}}$. We use this to define $H \mathbb{Z}$. We could apply $-\otimes R$ to get $H R$.

We will tackle the following. Let $f: M G L /\left(a_{1}, a_{2}, \ldots\right) \rightarrow H \mathbb{Z}$, the map from last talk. We want to show that $H \mathbb{Q} \wedge f$ and $H \mathbb{Z} / \ell \wedge f$ are weak equivalences, and deduce that $H \mathbb{Z} \wedge f$ is a weak equivalence.
Goal. $H \mathbb{Z} / \ell \wedge H \mathbb{Z}$ is a cellular $H \mathbb{Z} / \ell$-module, whose homotopy grousp are the kernel of the Bockstein.

Theorem. $H R^{p, q} \sim H^{p, q}(-, R)$.
Theorem (Röndigs- \emptyset stvaer 2008). The derived adjunction between $\mathcal{D}(H R)$ and $\mathcal{S H}_{\operatorname{tr}}(S, R)$ restricts to an equivalence on full subcategories of cellular objects. For $\operatorname{char}(k)=0$ this equivalence is even stronger.

We have cofiber sequences:

$$
H \mathbb{Z} \xrightarrow{\ell} H \mathbb{Z} \rightarrow H \mathbb{Z} / \ell, \quad H \mathbb{Z} / \ell \xrightarrow{\ell} H \mathbb{Z} / \ell^{2} \rightarrow H \mathbb{Z} / \ell .
$$

Classical Steenrod algebra

We consider cohomology operations such as

$$
H^{n}(X ; R) \rightarrow H^{2 n}(X ; R), x \mapsto x \cup x .
$$

(Here e.g. $R=\mathbb{F}_{2}$). But these are unstable (they don't commute with suspension); "stabilizing", we obtain

$$
\mathrm{Sq}^{i}: H^{n}(X ; \mathbb{Z} / 2) \rightarrow H^{n+i}(X ; \mathbb{Z} / 2)
$$

the Steenrod squares. These turn out to generate all stable cohomology operations over $\mathbb{Z} / 2$. These Sq^{n} are characterized by:

1. They are additive homomorphisms and natural;
2. $\mathrm{Sq}^{0}=\mathrm{id}$;
3. $\mathrm{Sq}^{n}(x)=x \cup x$ when $|x|=n$;
4. If $|x|<n$ then $\mathrm{Sq}^{n} x=0$;
5. $\mathrm{Sq}^{n}(x \cup y)=\sum_{i+j=n}\left(\mathrm{Sq}^{i}(x) \cup \mathrm{Sq}^{j}(y)\right)$ (the Cartan formula).

From this we can formally deduce the Adem relations between these elements. We obtain the Steenrod algebra \mathcal{A}^{*}.

Given $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, we apply $H^{*}(X ;-)$ to get a long exact sequence; then we define the Bockstein to be the connecting homomorphism (given by the Snake Lemma). We denote this

$$
\beta: H^{i}(X ; C) \rightarrow H^{i+1}(X ; A)
$$

This is a cohomology operation.
For $p>2$ we have to factor this in: instead of Sq^{i}, we have operations $P^{i}: H^{n}(X ; \mathbb{Z} / p) \rightarrow H^{n+2 i(p-1)}(X ; \mathbb{Z} / p)$ as well as the Bockstein β arising from $0 \rightarrow \mathbb{Z} / p \rightarrow \mathbb{Z} / p^{2} \rightarrow \mathbb{Z} / p \rightarrow 0$, which together generate the $\bmod p$ Steenrod algebra. This is a graded \mathbb{F}_{p}-algebra, and in fact a Hopf algebra with

$$
\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*} \otimes \mathcal{A}^{*}
$$

given by the Cartan formula.
We can dualize to \mathcal{A}_{*}, which is a commutative, associative algebra. We can write

$$
\mathcal{A}^{*} \cong H \mathbb{F}_{p}^{*}\left(H \mathbb{F}_{p}\right), \quad \mathcal{A}_{*} \cong H \mathbb{F}_{p *}\left(H \mathbb{F}_{p}\right)
$$

By applying the Serre spectral sequence inductively to fiber sequences $K(\mathbb{Z} / 2, n) \rightarrow$ $* \rightarrow K(\mathbb{Z} / 2, n+1)$, we get that

$$
H \mathbb{F}_{2 *}(H \mathbb{Z})=\operatorname{ker}(\beta)=\mathbb{F}_{2}\left[\xi_{1}^{2}, \xi_{2}, \xi_{3}, \ldots\right]
$$

Define Q_{i} inductively by $Q_{0}=\beta$, and

$$
Q_{i}=q_{i} \beta-\beta q_{i}, \quad q_{i}=P^{\ell^{i-1}} \ldots P^{\ell} P^{1}
$$

Theorem (Milnor 1958).

$$
\mathcal{A}_{*} \cong\left(E\left(\tau_{0}, 1\right) \otimes E\left(\tau_{1}, 2 p-1\right) \otimes \ldots\right) \otimes\left(P\left(\xi_{1}, 2 p-2\right) \otimes P\left(\xi_{2}, 2 p^{2}-2\right) \otimes \ldots\right)
$$

a tensor product of an exterior product on generators τ_{i} of degree $2 p^{i}-1$ and a polynomial algebra on generators ξ_{i} of degree $2 p^{i}-2$. (If $\ell=2$ then there is no exterior part.)

Motivic Steenrod algebra

Let S be some base scheme, $\ell \neq \operatorname{char}(S)$. (We may as well take S to be a field.) We define the motivic Steenrod algebra $\mathcal{A}^{* *}$ as the algebra of all bistable natural transformations

$$
\tilde{H}^{* *}(-, \mathbb{Z} / \ell) \rightarrow H^{* *}(-, \mathbb{Z} / \ell)
$$

Theorem (Voevodsky 2003). There are reduced power operations

$$
P^{i} \in \mathcal{A}^{2 i(\ell-1), i(\ell-1)}, \quad \beta: H \mathbb{Z} / \ell \rightarrow \Sigma^{1,0} H \mathbb{Z} / \ell
$$

The \mathbb{F}_{ℓ} basis for the classical \mathcal{A}^{*} comes from P^{i} and β :

$$
H_{\mathbb{Z} / \ell}^{* *} \otimes_{\mathbb{F}_{\ell}} \mathcal{A}^{*} \cong \mathcal{A}^{* *}
$$

So $\mathcal{A}^{* *}$ is generated by P^{i}, β, and $u \mapsto$ au where $a \in H^{* *}(S, \mathbb{Z} / \ell)$.
Fact. $\left(H \mathbb{Z} / \ell_{* *}, \mathcal{A}_{* *}\right)$ is a Hopf algebroid.

Milnor basis

Recall τ from the previous talk, in bidegree $(0,1)$. We will have a new element ρ in bidegree $(1,1)$.

Consider the Hopf algebroid (A, Γ), with

$$
\begin{gathered}
A=\mathbb{Z} / \ell[\tau, \rho] \\
\Gamma=A\left[\tau_{0}, \tau_{1}, \ldots, \xi_{1}, \xi_{2}, \ldots\right] /\left(\tau_{1}^{2}-\tau \xi_{i+1}-\rho \tau_{i+1}-\rho \tau_{0} \xi_{i+1}\right) \\
\Delta(\rho)=\rho \otimes 1, \quad \Delta(\tau)=\tau \otimes 1
\end{gathered}
$$

and $\Delta\left(\tau_{i}\right)$ and $\Delta\left(\xi_{i}\right)$ are as in the classical case. The units are

$$
\eta_{R}(\tau)=\tau+\rho \tau_{0}, \quad \eta_{L}(\tau)=\tau
$$

If $k=\mathbb{C}$ or \mathbb{F}_{ℓ} for $\ell \neq 2, \rho \neq 0$, and this is a Hopf algebra (left and right units agree).

Now $A \rightarrow H \mathbb{Z} / \ell$ makes $H \mathbb{Z} / \ell$ into an A-module, and

$$
\mathcal{A}_{* *} \cong \Gamma \otimes_{A} H \mathbb{Z} / \ell_{* *}
$$

Punchline. Let M denote the Milnor basis on $\mathcal{A}_{* *}$. Then

$$
\bigvee_{\zeta \in M} \Sigma^{|\zeta|} H \mathbb{Z} / \ell \xrightarrow{\cong} H \mathbb{Z} / \ell \wedge H \mathbb{Z} / \ell
$$

We have $H \mathbb{Z} / \ell_{* *} \cong \operatorname{ker}(\beta)$, and

$$
0 \rightarrow H \mathbb{Z} / \ell_{* *} H \mathbb{Z} \rightarrow H \mathbb{Z} / \ell_{* *} H \mathbb{Z} / \ell \xrightarrow{\beta_{*}} H_{* *} \Sigma^{1,0} H \mathbb{Z} \rightarrow 0
$$

Let M_{Z} be the sub-basis of M generated by $\tau(E) \xi(R)$ with $\varepsilon_{0}=0, E=$ $\left(\varepsilon_{0}, \varepsilon_{1}\right.$, ldots $)$.

Corollary.

$$
\bigvee_{\zeta \in M_{Z}} \Sigma^{|\zeta|} H \mathbb{Z} / \ell \rightarrow H \mathbb{Z} \wedge H \mathbb{Z} / \ell
$$

is an equivalence of $H \mathbb{Z} / \ell$-modules.

