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The idea here is to apply motivic homotopy to ordinary homotopy theory,
as opposed to more common applications to algebraic geometry.

We first recall what we know about the ordinary homotopy groups πn+k(Sn).

Theorem (Serre). These abelian groups are finitely generated, and we can com-
pute them each prime at a time.

Theorem (Freudenthal). πn+k(Sn) depends only on k so long as n ≥ k + 2;
we call this πk(S0), the k-stem.

For this talk we’ll mainly compute at p = 2 and work stably.

• The 0-stem is π0(S0) = Z/2.

• The 1-stem is Z/2, generated by the Hopf map η : S3 → S2.

• The 2-stem is Z/2, generated by η2.

• Serre computed inductively with the Leray–Serre spectral sequence to de-
termine through the 8-stem.

• Toda computed through the 14-stem with the EHP spectral sequence.

Theorem (Adams). There is a spectral sequence

Es,t
2 = Exts,tA (Z/2,Z/2)⇒ πt−s(S

ˆ
2)

where A is the Steenrod algebra.

h_1 h_2 h_3h_0
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For any spectral sequence, there are three problems:

• How do we compute E2? (E1?)

• How do we compute differentials?

• How do we compute extensions?

There are some strategies for problem 1:

• Cobar resolution,

• Minimal resolutions,

• Λ-algebra,

• May spectral sequence.

The May spectral sequence is a trigraded spectral sequence based on a fil-
tration E•A of the Steenrod algebra:

Eu,v,t
2 = Extu,v,tE•A(Z/2,Z/2)⇒ Extn+v,t

A (Z/2,Z/2).

The input is very computable.
Further progress:

• May used his spectral sequence to compute π∗S through degree 29.

• Tangora used the May spectral sequence to compute the Adams E2 through
degree 45.

• Barratt–Mahowald–Tangora computed π∗(S
0) through the Adams spec-

tral sequence through degree 45. (Correction by Bruner: one missing
differential originating in Ext4,4+38.

• Kochman computed through degree 64 using the Atiyah–Hirzebruch spec-
tral sequence on BP . (Corrections by Kochman–Mahowald and Isenksen.)

A little bit of chromatic theory: there is a spectrum BP with

BP∗ = Z(2)[v1, v2, . . .], |v1| = 2, |v2| = 6, |v3| = 14, . . . .

These elements relate to periodicity behavior and vanishing lines in the Adams
spectral sequence. For instance, the v1 case gives Bott periodicity.

Theorem (Adams–Novikov). There is a spectral sequence

Es,t
2 = Exts,tBP∗BP (BP∗, BP∗)⇒ πt−s(S

ˆ
2).

This spectral sequence is sparser, and we know d2n = 0. For p = 2 the best
computations with this are to degree around 30 or 40 (due to Ravenel). Results
at odd primes are much better.
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Theorem (Miller). There is a diagram of spectral sequences

�

ASS ANSS

π∗(S
0)

Mahowald SS May SS

For odd primes, the Mahowald SS degenerates; so the ASS remains compli-
cated, whereas the May SS still makes the ANSS simpler at odd primes. At
p = 2 this is not true, and the ASS still has some advantage.

Motivic spheres

Recall the various spheres in play:

• S1,0 = S1,

• S1,1 = Gm = A1 r {0},

• P1 = S2,1,

• Pn/Pn−1 = S2n,n,

• An r {0} = S2n−1,n.

Theorem (Morel). πp,q = 0 if p < q, and πp,p is Milnor–Witt K-theory.

We take the stable setting, p = 2, and SpecC for base scheme. Let M2 =
H∗,∗(SpecC,Z/2). We have the motivic Steenrod algebra Amot, which acts on
H∗,∗(X,Z/2).

Theorem (Voevodsky). M2 = F2[τ ], with |τ | = (0, 1), and the motivic Steenrod
algebra is described by

Amot = M2[Sqi | i ≥ 1]/motivic Adem relations.

Here Sq2k has bidegree (2k, k), and Sq2k−1 has bidegree (2k − 1, k − 1).

Theorem (Dugger–Isaksen, Hu–Kriz–Ormsby). There is a motivic Adams spec-
tral sequence

Es,t,w
2 = Exts,t,wAmot

(M2,M2)⇒ πt−s,w(Sˆ2),

with differentials bigraded as dr : Es,t,w
r → Es+r,t+r−1,w

r .

Theorem (Isaksen). There is a (quadruply-graded) motivic May spectral se-
quence, which is computed through degree 70.
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Realization X 7→ X(C) takes these motivic spectral sequences to their clas-
sical analogues. These are closely related; in fact,

E2-MMSS ∼= E2-MSS⊗F2 F2[τ ],

E0Amot = E0A⊗F2
F2[τ ],

E2-MASS⊗F2
F2[τ−1] ∼= E2-ASS⊗F2

F2[τ, τ−1].

Theorem (Isaksen). Computation of the MASS through degree 59. The differ-
ential d3(Q2) = τ2gt in the MASS implies a new differential d3(Q2) = gt in the
ASS.

One application is as follows. A differential dr(x) = y in the ASS corresponds
to a differential dr(x) = τny in the MASS. We must have

weight(X) = weight(τny) = weight(y)− n,

and in particular weight(x) ≤ weight(y). This is probably less powerful in
practice than it sounds.

Reverse engineering of the ANSS

Theorem (Hur–Kriz–Ormsby). There is a motivic Adams–Novikov spectral se-
quence

Exts,t,wBPGL∗BPGL(BPGL∗, BPGL∗)⇒ πt−s,w(Sˆ2).

E2-MANSS = E2-ANSS⊗Z2
Z2[τ ],

Exts,t,
t
2−n → Exts,t, τnx 7→ x.

Theorem. There is a diagram of spectral sequences

MANSS MASS

π∗,∗(S)

π∗(S)

ANSS ASS

The MASS is computed through degree 59.

Let’s look at a basic computation:

4



h_1 h_2h_0

F_2[tau]

F_2

Here η4τ = 0 and η3τ = 4ν.
We can tabulate some filtrations:

π∗,∗ t− s w MANSS: t w s
η 1 1 2 1 1
η2 2 2 4 2 2
ν 3 2 4 2 1
2ν 3 2 4 2 1
η3 3 3 6 3 3
η4 4 4 8 4 4

And we can draw the motivic Adams–Novikov spectral sequence:

2

2 : Z/4
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