The slices of a Landweber exact theory

Scribe notes from a talk by Lorenzo Mantovani

$20~\mathrm{Mar}~2014$

Notation. —

- $\mathcal{SH}^{\text{eff}}(S)$ is the localizing triangulated subcategory of SH(S) generated by $\Sigma_T^{\infty} X_+$ for $X \in \text{Sm}_{/S}$.
- $S\mathcal{H}(S)_T$ is the Tate subcategory, the full localizing triangulated subcategory of SH(S) generated by $S^{p,q} = \mathbb{S}^{p-q} \wedge \mathbb{G}_m^q$.
- $\mathcal{SH}(S)_{T\geq 0}$ is like the above, but generated by $S^{p,q}$ for $q\geq 0$.

$1 \quad s_0 MGL$

The main theorem is

Theorem. The cofiber $\operatorname{cofib}(1 \to MGL)$ belongs to $\Sigma_T \mathcal{SH}(S)_{T>0}$.

Corollary. $s_0 \mathbf{1} \to s_0 M GL$ is an isomorphism in $S\mathcal{H}(S)$. (In particular, if $S = \operatorname{Spec} k$, then $s_0 M GL = H\mathbb{Z}$.)

2 Description of s_0MGL

Idea. We have seen a map $\mathbb{Z}[x_1, \ldots, x_n] = MU_* \to MGL_{2*,*}$. We want this to define a map "multiplication by x_i " on MGL. We will need to bifibrantly replace MGL and cofibrantly replace $S^{2n,n}$. We can form the object

$$MGL/(x_1, x_2, \ldots)MGL.$$

Definition. A multi-index is a function $f : \mathbb{N} \to \mathbb{N}$ almost everywhere zero; these will encode exponents for monomials. In particular, multi-indices are not of fixed length. We let I be the set of such multi-indices.

We define a map $D: I \to \mathsf{Spt}_{\mathbb{P}^1}^{\Sigma}(\mathrm{Sm}_{/S})$ by

$$D_{\underline{a}} = \Sigma^{2,1} M G L^{\wedge_{MGL} a_1} \wedge_{MGL} \dots \wedge_{MGL} \Sigma^{2m,m} M G L^{\wedge_{MGL} a_m}.$$

Taking two multi-indices \underline{a} and \underline{b} which differ only in that $a_i \geq b_i$ for some i, we have a map $D_{\underline{b}} \to D_{\underline{a}}$ given by $\underline{id} \land \ldots \land \underline{id} \land x_i \land \ldots \land x_i$.

$$b_i$$
 a_i-b_i

Proposition. If $F : I_{\deg \ge n} \to C$ is a diagram in a cofibrantly generated model category, and hocolim $F|_{\deg I \ge \underline{a}} = F(\underline{a})$ for all a of degree m, then hocolim F = hocolim $F|_{\deg I > n+1}$.

Proposition. $f_i : S\mathcal{H}(S) \to \Sigma_T^i S\mathcal{H}(S)^{\text{eff}} \subseteq S\mathcal{H}(S)$ preserves homotopy colimits.

Theorem. Suppose that $MGL \to Q := MGL/(x_1,...)MGL$ is the map to the zero slice. Then $s_iMGL \simeq \Sigma_T^i s_0MGL \otimes MU_{2i}$, and this isomorphism is compatible to $MU_* \to MGL_{*,*}$.

Sketch proof. —

- The map $D|_{\deg I \ge 1} \hookrightarrow D$ induces a map on hocolims, and this is the map $MGL \to Q$. So hocolim $D|_{\deg I \ge 1} \to f_1 MGL$ is an isomorphism in $\mathcal{SH}(S)$. Here f_1 is the slice truncation functor introduced in a previous talk.
- Next show that $f_2 \operatorname{hocolim} D \big|_{\deg I \ge 1} \simeq \operatorname{hocolim} F_2 D \big|_{\deg i \ge 2}$, where $F_n :$ $\operatorname{Spt}_{\mathbb{P}^1}^{\Sigma}(-) \to \operatorname{Spt}_{\mathbb{P}^1}^{\Sigma}(-)$ lifts f_n .
- By induction one shows that $f_n MGL \simeq \operatorname{hocolim} D \Big|_{\operatorname{deg} I \ge n}$.
- •

$$s_n MGL \simeq \operatorname{cofib}(f_{n+1}MGL \to f_n MGL)$$
$$\simeq \operatorname{hocolim} \operatorname{cofib}(F_{n+1}D\big|_{\deg I > n} \to F_n D\big|_{\deg I > n}).$$

• Now $\operatorname{cofib}(\underline{a}) = 0$ if $\operatorname{deg}(\underline{a}) \ge n + 1$, and

$$\operatorname{cofib}(\underline{a}) = \Sigma_T s_0 M G L \quad (\operatorname{deg}(\underline{a}) = n),$$

 $\operatorname{hocolim}(-) = \bigoplus_{\text{quotients of } \mathbb{N}_{2n}} \Sigma_T^n s_0 MGL = \Sigma_t^n s_0 MGL \otimes MU_{2n}.$

We use in this last step that $s_n \Sigma_T E = \Sigma_T s_{n-1} E$.

3 Computation of the slices of a Landweber exact spectrum

Theorem. If M_* is a Landweber exact MU_* -module, and $E \in S\mathcal{H}(S)$ is the element representing the (co)homology theory defined by M_* , namely

$$(MGL \wedge -)_{*,*} \otimes_{MU_*} M_* : \mathcal{SH}(S) \to \mathsf{GrAb},$$

then

$$s_i E \simeq \Sigma_T^i s_0 M G L \otimes M_{2i}.$$

Main idea. We take a projective resolution

$$0 \to A_* \to B_* \to M_* \to 0$$

of M_* by MU_* -modules. (Landweber exactness guarantees homological dimension 1.)