Landweber exactness

Scribe notes from a talk by Marc Levine

20 Mar 2014

Last lecture we saw that the theory of oriented spectra carries over to motivic homotopy. In ordinary topology, we have a formal group law $F_{MU}(u, v) \in MU_*[\![u, v]\!]$, with

$$\begin{array}{ccc} MU^*(\mathbb{CP}^\infty) & \longrightarrow & MU_*[\![t]\!] & \xrightarrow{\rightarrow} t \\ & \downarrow & & \downarrow \\ MU^*(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) & \longrightarrow & MU_*[\![u,v]\!] & \xrightarrow{\rightarrow} F_{MU} \end{array}$$

Goal. We want to use formal group laws to construct new objects in $\mathcal{SH}(S)$.

Motivic (co)homology theories

Definition. A (co)homology theory on some $J \subseteq S\mathcal{H}(S)$, localizing and triangulated, is a (co)homological functor (taking distinguished triangles to exact sequences), and into bigraded groups, which (for homology) is notated $F \mapsto E_{*,*}(F)$, and satisfies:

- compatibility with \oplus ,
- $E_{*,*}(S^{a,b} \wedge F) = E_{*-a,*-b}(F).$

For cohomolgy we have instead $E^{*,*}(S^{a,b} \wedge F) = E^{*-a,*-b}(F)$.

Theorem (Quillen). (F_{MU}, MU_{2*}) is the universal formal group law.

Definition. We say (F, R_*) is a graded formal group law if $F(u, v) \in R_*[\![u, v]\!]$ has total degree -1, where deg $u = \deg v = -1$.

Theorem. Let (F, R_*) be a graded formal group law classified by $\phi : MU_{2*} \rightarrow R_*$. Assume that (F, R_*) is Landweber exact (to be defined). Then

- 1. The presheaf $F \mapsto (MGL \wedge F)_{*,*} \otimes_{MU_*} R_*$ (for $F \in S\mathcal{H}(S)$) defines a bi-graded homology theory on $S\mathcal{H}(S)$.
- 2. This theory is represented by an object in the Tate subcategory (to be defined), $SH(S)_{\mathcal{T}}$.

Definition. A formal group law represented by ϕ is **Landweber exact** if R_* is flat over the quotient stack $[MU_*/MU_*MU]$.

The quotient stacks $[MU_{2*}/MU_{2*}MU]$ and $[MGL_*/MGL_*MGL]$

We won't define quotient stacks, but it won't be so necessary.

Proposition. MU_* is "flat": for all $\mathcal{F} \in \mathcal{SH}(S)$,

$$MU_*MU \otimes_{MU_*} MU_*\mathcal{F} \to (MU \wedge MU \wedge \mathcal{F})_*$$

is an isomorphism.

 $MGL_*(=MGL_{2*,*})$ is "flat" also: the maps

$$MGL_{*,*}MGL \otimes_{MGL_{*,*}} MGL_{*,*}(\mathcal{F}) \to (MGL \wedge MGL \wedge \mathcal{F})_{*,*},$$

$$MGL_*MGL \otimes_{MGL_*} MGL_*(\mathcal{F}) \to (MGL \wedge MGL \wedge \mathcal{F})_*$$

are isomorphisms.

Out of this we get a Hopf algebroid

$$MU \xrightarrow[\operatorname{id} \wedge 1]{1 \wedge \operatorname{id}} MU \wedge MU,$$

and out of the "1 in the middle" map $MU \wedge MU \rightarrow MU \wedge MU \wedge MU,$ we get a map

 $MU_*MU \to MU_*MU \otimes_{MU_*} MU_*MU.$

The same holds for MGL.

We have a notion of MU_*MU -comodules, which are MU_* -modules with an action of $\text{Spec}(MU_*MU)$. So we have an action functor

$$\operatorname{Spec}(MU_*MU) \to \operatorname{\mathsf{Mod}}[MU_*/MU_*MU].$$

Now if N_* is an MU_* -module, we can say that N is flat over $[MU_*/MU_*MU]$ if $-\otimes_{MU_*} N_*$ is exact on MU_*MU -comodules.

Definition. For $\phi : MU_* \to R_*$, corresponding to the formal group law (F, R_*) , we say this formal group law is **Landweber exact** if R_* is flat over $[MU_*/MU_*MU]$.

We have our formal group law for MGL, (F_{MGL}, MGL_*) , which gives a classifying map $\phi : MU_{2*} \to MGL_*$. This makes $(MGL \wedge \mathcal{F})_{*,*}$ into an MU_{2*} -module.

Note.

$$MU_*MU = MU_*[b_1, b_2, \ldots].$$

 MU_{2*} are the coefficients for the universal formal group law $F_{MU}(u, v) = u + v + \sum a_{ij}u^iv^j$. Write $\lambda(t) = t + \sum b_it^i$; we can form $\lambda(F(\lambda^{-1}(u), \lambda^{-1}(v)))$. We have

$$MU_*MU \to MGL_*MGL \to \text{isomorphisms of } F_{MGL}.$$

Consider the diagram

where e.g. $X_{MGL} = \text{Spec } MGL_*$.

Proposition. This diagram is cartesian:

$$MGL_*MGL = MU_*MU \otimes_{MU_*} MGL_*$$

$$G_{MGL} = \operatorname{Spec}(MGL_*MGL),$$

etc.

Proof of theorem part (1). The point is that for any $\mathcal{F} \in \mathcal{SH}(S)$, $MGL_{*,*}(\mathcal{F})$ is a comodule for $MGL_{*,*}MGL$. By flatness, we have

$$(MGL \land \mathcal{F})_{*,*} \longrightarrow (MGL \land MGL \land \mathcal{F})_{*,*}$$

$$\| \qquad \|$$

$$MGL_{*,*}(\mathcal{F}) \qquad MGL_*MGL \otimes_{MGL_*} MGL_{*,*}(\mathcal{F})$$

We want to see that

$$\mathcal{F} \mapsto MGL_{*,*}(\mathcal{F}) \otimes_{MU_*} R_*$$

is homological on $\mathcal{SH}(S)$. By Landweber exactness and the cartesian property above, R_* is flat over $[MGL_*/MGL_*MGL]$.

Proof of theorem part (2). The **Tate subcategory** $S\mathcal{H}(S)_{\mathcal{T}}$ is the localizing subcategory generated by $S^{a,b}$. Then $MGL \in S\mathcal{H}(S)_{\mathcal{T}}$; this comes from the Schubert cell decomposition of Grassmannians. Let $\operatorname{proj}_{\mathcal{T}}$ denote the right adjoint to inclusion $S\mathcal{H}(S)_{\mathcal{T}} \hookrightarrow S\mathcal{H}(S)$. Then $\operatorname{proj}_{\mathcal{T}}(E \wedge F) = E \wedge \operatorname{proj}_{\mathcal{T}}(F)$.

Proposition. If $E \in S\mathcal{H}(S)_{\mathcal{T}}$ represents a homology theory on $S\mathcal{H}(S)$ restricted to $S\mathcal{H}(S)_{\mathcal{T}}$, then E represents the theory on $S\mathcal{H}(S)$, and

$$E_{*,*}(\mathcal{F}) = E_{*,*}(\operatorname{proj}_{\mathcal{T}}(\mathcal{F})), \qquad \mathcal{F} \in \mathcal{SH}(S).$$

Proposition. $E \in S\mathcal{H}(S)_{\mathcal{T}}$ behaves well under pullback $S' \to S$.

Theorem. For $S = \text{Spec}(\mathbb{Z})$, $\mathcal{SH}(S)_{\mathcal{T}}$ is a Brown category.

So given (F, R_*) , we can represent the restriction of $(MGL/\mathbb{Z})_{*,*}(-) \otimes_{MU_*} R_*$ to $\mathcal{SH}(\mathbb{Z})_{\mathcal{T}}$ by some $E_{\mathbb{Z}}$.