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We will discuss work of Panin, Pimenov, Röndigs, and Smirnov.

Orientability

One major feature of orientability (for manifolds) is the notion of a tangent
bundle. This gives us an Euler class and a Thom class, related by the formula
e(M) = i∗(Th(M)).

Orientability also gives us Poincaré duality, which gives us interesting wrong-
way maps, proper pushforwards:

f∗ : H∗(M) ∼= H̃m−∗(M
+)→ H̃m−∗(N

+) ∼= H∗+n−m(N).

Similarly, we have a notion of E-orientability.

Example. A manifold is KO-orientable iff it is spin.

Question. Which theories orient all manifolds?

Answer (Thom). Basically just HF2. There is a universal such cohomology
theory MO, and

MO ' ∨αΣiαHF2.

So instead we just ask about certain classes of manifolds:

Example. The universal theory MG orients all manifolds with G-structure.
For instance we have MU , the start of chromatic homotopy theory.

So now let k be a field, and E a (homotopy) commutative P1-spectrum.
Write P∞ = colimPn.

Definition. An orientation for E is a class c ∈ E2,1(P∞) such that

c
∣∣
P1 = −ΣP1(1).

Remark. This is the same as a natural choice of Chern class for line bundles.
It’s a theorem of Voevodsky, which we haven’t proven, that P∞ represents the
Picard group.

Examples. —
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• Betti cohomology (ordinary cohomolgy is complex orientable).

• Motivic cohomology. We have

H2,1
mot(X,Z) ∼= CH1(X), L 7→ divL.

• Algebraic K-theory,
L 7→ ΣP1([1]− [L]).

• Algebraic cobordism MGLn = Th(γn), where γn → Grn is the tautologi-
cal bundle. Then we have

Σ∞−1
P1 P∞ → Σ∞−1

P1 Th(γ1)→MGL.

Theorem (Projective bundle theorem). Let X be a smooth variety, V → X a
rank n vector bundle, and E oriented. Then

E∗,∗(P(V )) ∼= E∗,∗(X)[t]/(tn)

as E∗,∗(X)-modules, where t = c1(OV (−1)).

Proof. —

• Using Mayer–Vietoris, reduce to Pn.

• The definition of orientation is the case P1.

Remark. —

• We get Chern classes for all bundles: there exist ci(V ) ∈ E2i,i(X) such
that

tn − c1(V )tn−1 + . . .+ (−1)ncn(V ) = 0.

• We get Thom classes as follows.

Construction. Consider the square

V rX P(V ⊕ 1) r P(1)

V P(V ⊕ 1)

By excision on this square, and applying the purity theorem,

E∗,∗(Th(V )) ∼= E∗,∗(P(V ⊕ 1),P(V ⊕ 1) r P(1)),

Th(V )← [ cn(OV⊕1(1)⊗ π∗(V )).
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Applying the projective bundle theorem, we get a diagram

E∗,∗(Th(V ))

0 E∗,∗(P(V ⊕ 1),P(V ⊕ 1) r P(1)) E∗,∗(P(V ⊕ 1))E∗,∗(P(V )) 0

0 E∗,∗(X) E∗,∗(X)⊕ E∗,∗(X)n E∗,∗(X)n 0

−∪cn(O(1)⊗π∗(V )) ∼

By Mayer–Vietoris, it suffices to check the case where V is trivial. Then

cn(O(1)⊗ π∗(V )) = cn(O(1)n) = t̄n.

So we get a Thom isomorphism!

We get pushforwards for projective maps. Recall that f : X → Y is pro-
jective if it factors as:

X Y

Y × PN

f

p

with i a closed immersion. We will construct pushforwards for i and p, and then
show that choices don’t matter.

For i : X ↪→ Y , we define the pushforward by

E∗,∗(X) E∗+2k,∗+k(Th(NX/Y ))

E∗+2k,∗+k(Y, Y rX)

E∗+2k,∗+k(Y )

Thom

i∗

purity

Theorem (Panin–Pimenov–Röndigs).

{orientations of E} ∼= [MGL,E]ring.

Proof. To go one way, we assign

φ ◦ thMGL ← [ φ.

We have MGLn = Th(γn).
Note that hocolim Th(γn) = MGL. So we have a short exact sequence

0→ lim 1E∗+,n−1,∗+n(Th(γn))→ E∗,∗(MGL)→ limE∗+2n,∗+n(Th(γn))→ 0
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Claim. This lim 1 term vanishes.

Assuming this:

[MGL,E] = E0,0(MGL) = limE2n,n(Th(γn)).

So {th(γn)} defines a map φ : MGL→ E.

Σ∞−nP1 Th(γn) ∧ Σ∞−nP1 Th(γn) Σ∞−2n
P1 Th(γ2n)

MGL ∧MGL E ∧ E

MGL E

So these classes are multiplicative.

Theorem.
E∗,∗(Grn) ∼= E∗,∗(k)Jc1, . . . , cnK,

where ci = ci(γn).

Proof of claim. It suffices to show that

E∗+2n,∗+n(Th(γn))→ E∗+2n−2,∗+n−1

is surjective. By the Thom isomorphism, it suffices that Grn−1 ↪→ Grn induces
a surjection.

Proof of theorem. Let Fln(m) be the flag variety of flags

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn, dimVi = i,

and let Fln = colim Fln(m). We have a map π : Fln → Grn. There is a filtration

0 = γ0
n ⊂ γ1

n ⊂ . . . ⊂ γnn = π∗(γn),

with associated graded Lin = γin/γ
i−1
n .

Now,
E∗,∗(Fln) ∼= E∗,∗(k)Jt1, . . . , tnK, ti = c1(Lin).

We proceed by induction. For n = 1, we have Fl1 = P∞. Apply the projective
bundle theorem. For the inductive step, there’s a map Fln → Fln−1 which is a
projective bundle with tautological bundle Lnn. Now:

• π∗ is injective, as Fln → Grn decomposes as a sequence of projective
bundles;

• π∗(ci) = σi(t1, . . . , tn), by the Whitney sum formula;
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• imπ∗ = E∗,∗(Fln)Σn , by replacing Fln by Mn, which parameterizes flags
together with a splitting. Then Mn → Grn is Σn-equivariant and factors
through Fln, and this map Mn → Fln is an A1-homotopy equivalence
because it is a sequence of projections of vector bundles.

Note that we have
E∗,∗(P∞) ∼= E∗,∗(k)JtK,

E∗,∗(P∞) ∼= E∗,∗(k)Jx, yK.

Now the classifying map P∞×P∞ → P∞ for the tensor product of line bundles
induces

FE(x, y)←[ t,

with FE(x, y) a formal group law.
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