Universality of MGL

Scribe notes from a talk by Ben Knudsen

20 Mar 2014

We will discuss work of Panin, Pimenov, Röndigs, and Smirnov.

Orientability

One major feature of orientability (for manifolds) is the notion of a tangent bundle. This gives us an Euler class and a Thom class, related by the formula $e(M)=i^{*}(\operatorname{Th}(M))$.

Orientability also gives us Poincaré duality, which gives us interesting wrongway maps, proper pushforwards:

$$
f_{*}: H^{*}(M) \cong \tilde{H}_{m-*}\left(M^{+}\right) \rightarrow \tilde{H}_{m-*}\left(N^{+}\right) \cong H^{*+n-m}(N) .
$$

Similarly, we have a notion of E-orientability.
Example. A manifold is KO -orientable iff it is spin.
Question. Which theories orient all manifolds?
Answer (Thom). Basically just $H \mathrm{~F}_{2}$. There is a universal such cohomology theory $M O$, and

$$
M O \simeq \vee_{\alpha} \Sigma^{i_{\alpha}} H \mathbb{F}_{2}
$$

So instead we just ask about certain classes of manifolds:
Example. The universal theory $M G$ orients all manifolds with G-structure. For instance we have $M U$, the start of chromatic homotopy theory.

So now let k be a field, and E a (homotopy) commutative \mathbb{P}^{1}-spectrum. Write $\mathbb{P}^{\infty}=\operatorname{colim} \mathbb{P}^{n}$.

Definition. An orientation for E is a class $c \in E^{2,1}\left(\mathbb{P}^{\infty}\right)$ such that

$$
\left.c\right|_{\mathbb{P}^{1}}=-\Sigma_{\mathbb{P}^{1}}(1) .
$$

Remark. This is the same as a natural choice of Chern class for line bundles. It's a theorem of Voevodsky, which we haven't proven, that \mathbb{P}^{∞} represents the Picard group.

Examples. -

- Betti cohomology (ordinary cohomolgy is complex orientable).
- Motivic cohomology. We have

$$
H_{\mathrm{mot}}^{2,1}(X, \mathbb{Z}) \cong \mathrm{CH}^{1}(X), \quad L \mapsto \operatorname{div} L
$$

- Algebraic K-theory,

$$
L \mapsto \Sigma_{\mathbb{P}^{1}}([1]-[L]) .
$$

- Algebraic cobordism $M G L_{n}=\operatorname{Th}\left(\gamma_{n}\right)$, where $\gamma_{n} \rightarrow G r_{n}$ is the tautological bundle. Then we have

$$
\Sigma_{\mathbb{P}^{1}}^{\infty-1} \mathbb{P}^{\infty} \rightarrow \Sigma_{\mathbb{P}^{1}}^{\infty-1} \operatorname{Th}\left(\gamma_{1}\right) \rightarrow M G L
$$

Theorem (Projective bundle theorem). Let X be a smooth variety, $V \rightarrow X a$ rank n vector bundle, and E oriented. Then

$$
E^{*, *}(\mathbb{P}(V)) \cong E^{*, *}(X)[t] /\left(t^{n}\right)
$$

as $E^{*, *}(X)$-modules, where $t=c_{1}\left(\mathcal{O}_{V}(-1)\right)$.
Proof. -

- Using Mayer-Vietoris, reduce to \mathbb{P}^{n}.
- The definition of orientation is the case \mathbb{P}^{1}.

Remark. -

- We get Chern classes for all bundles: there exist $c_{i}(V) \in E^{2 i, i}(X)$ such that

$$
t^{n}-c_{1}(V) t^{n-1}+\ldots+(-1)^{n} c_{n}(V)=0
$$

- We get Thom classes as follows.

Construction. Consider the square

By excision on this square, and applying the purity theorem,

$$
\begin{gathered}
E^{*, *}(\operatorname{Th}(V)) \cong E^{*, *}(\mathbb{P}(V \oplus 1), \mathbb{P}(V \oplus 1) \backslash \mathbb{P}(1)), \\
\operatorname{Th}(V) \leftrightarrow c_{n}\left(\mathcal{O}_{V \oplus 1}(1) \otimes \pi^{*}(V)\right) .
\end{gathered}
$$

Applying the projective bundle theorem, we get a diagram

By Mayer-Vietoris, it suffices to check the case where V is trivial. Then

$$
c_{n}\left(\mathcal{O}(1) \otimes \pi^{*}(V)\right)=c_{n}\left(\mathcal{O}(1)^{n}\right)=\bar{t}^{n}
$$

So we get a Thom isomorphism!
We get pushforwards for projective maps. Recall that $f: X \rightarrow Y$ is projective if it factors as:

with i a closed immersion. We will construct pushforwards for i and p, and then show that choices don't matter.

For $i: X \hookrightarrow Y$, we define the pushforward by

Theorem (Panin-Pimenov-Röndigs).

$$
\{\text { orientations of } E\} \cong[M G L, E]_{\text {ring }}
$$

Proof. To go one way, we assign

$$
\phi \circ \operatorname{th}^{M G L} \leftrightarrow \phi .
$$

We have $M G L_{n}=\operatorname{Th}\left(\gamma_{n}\right)$.
Note that hocolim $\operatorname{Th}\left(\gamma_{n}\right)=M G L$. So we have a short exact sequence
$0 \rightarrow \lim { }^{1} E^{*+, n-1, *+n}\left(\operatorname{Th}\left(\gamma_{n}\right)\right) \rightarrow E^{*, *}(M G L) \rightarrow \lim E^{*+2 n, *+n}\left(\operatorname{Th}\left(\gamma_{n}\right)\right) \rightarrow 0$

Claim. This lim ${ }^{1}$ term vanishes.
Assuming this:

$$
[M G L, E]=E^{0,0}(M G L)=\lim E^{2 n, n}\left(\operatorname{Th}\left(\gamma_{n}\right)\right)
$$

So $\left\{\operatorname{th}\left(\gamma_{n}\right)\right\}$ defines a map $\phi: M G L \rightarrow E$.

So these classes are multiplicative.
Theorem.

$$
E^{*, *}\left(\operatorname{Gr}_{n}\right) \cong E^{*, *}(k) \llbracket c_{1}, \ldots, c_{n} \rrbracket,
$$

where $c_{i}=c_{i}\left(\gamma_{n}\right)$.
Proof of claim. It suffices to show that

$$
E^{*+2 n, *+n}\left(\operatorname{Th}\left(\gamma_{n}\right)\right) \rightarrow E^{*+2 n-2, *+n-1}
$$

is surjective. By the Thom isomorphism, it suffices that $\operatorname{Gr}_{n-1} \hookrightarrow \operatorname{Gr}_{n}$ induces a surjection.

Proof of theorem. Let $\mathrm{Fl}_{n}(m)$ be the flag variety of flags

$$
0=V_{0} \subset V_{1} \subset \ldots \subset V_{n}, \quad \operatorname{dim} V_{i}=i
$$

and let $\mathrm{Fl}_{n}=\operatorname{colim} \mathrm{Fl}_{n}(m)$. We have a map $\pi: \mathrm{Fl}_{n} \rightarrow \mathrm{Gr}_{n}$. There is a filtration

$$
0=\gamma_{n}^{0} \subset \gamma_{n}^{1} \subset \ldots \subset \gamma_{n}^{n}=\pi^{*}\left(\gamma_{n}\right)
$$

with associated graded $L_{n}^{i}=\gamma_{n}^{i} / \gamma_{n}^{i-1}$.
Now,

$$
E^{*, *}\left(\mathrm{Fl}_{n}\right) \cong E^{*, *}(k) \llbracket t_{1}, \ldots, t_{n} \rrbracket, \quad t_{i}=c_{1}\left(L_{n}^{i}\right)
$$

We proceed by induction. For $n=1$, we have $\mathrm{Fl}_{1}=\mathbb{P}^{\infty}$. Apply the projective bundle theorem. For the inductive step, there's a map $\mathrm{Fl}_{n} \rightarrow \mathrm{Fl}_{n-1}$ which is a projective bundle with tautological bundle L_{n}^{n}. Now:

- π^{*} is injective, as $\mathrm{Fl}_{n} \rightarrow \mathrm{Gr}_{n}$ decomposes as a sequence of projective bundles;
- $\pi^{*}\left(c_{i}\right)=\sigma_{i}\left(t_{1}, \ldots, t_{n}\right)$, by the Whitney sum formula;
- $\operatorname{im} \pi^{*}=E^{*, *}\left(\mathrm{Fl}_{n}\right)^{\Sigma_{n}}$, by replacing Fl_{n} by M_{n}, which parameterizes flags together with a splitting. Then $M_{n} \rightarrow \operatorname{Gr}_{n}$ is Σ_{n}-equivariant and factors through Fl_{n}, and this map $M_{n} \rightarrow \mathrm{Fl}_{n}$ is an \mathbb{A}^{1}-homotopy equivalence because it is a sequence of projections of vector bundles.

Note that we have

$$
\begin{gathered}
E^{*, *}\left(\mathbb{P}^{\infty}\right) \cong E^{*, *}(k) \llbracket t \rrbracket \\
E^{*, *}\left(\mathbb{P}^{\infty}\right) \cong E^{*, *}(k) \llbracket x, y \rrbracket .
\end{gathered}
$$

Now the classifying map $\mathbb{P}^{\infty} \times \mathbb{P}^{\infty} \rightarrow \mathbb{P}^{\infty}$ for the tensor product of line bundles induces

$$
F_{E}(x, y) \hookleftarrow t
$$

with $F_{E}(x, y)$ a formal group law.

