Introduction to algebraic cobordism and oriented theories

Scribe notes from a talk by Adeel Khan

19 Mar 2014

Notation. -

- Write $\operatorname{Spc}(S)$ for the \mathbb{A}^{1}-local Nisnevich-local projective schemes,
- write $\operatorname{Spt}_{S^{1}}(S)$ for the symmetric S^{1}-spectra in pointed motivic spaces, with the stable projective model structure induced from the above,
- write T for the Tate sphere $S^{1} \wedge \mathbb{G}_{m}$,
- write $\operatorname{Spt}_{T}(S)$ for the symmetric T-spectra,
- $H(S)=\operatorname{Ho}(\operatorname{Spc}(S))$,
- $\mathcal{S H}_{S^{1}}(S)=\mathrm{Ho}\left(\operatorname{Spt}_{S^{1}}(S)\right)$,
- $\mathcal{S H}(S)=\operatorname{Ho}\left(\operatorname{Spt}_{T}(S)\right)$.

Definition. In $\mathcal{S H}(S)$, define simplicial spheres

$$
\begin{gathered}
\mathbb{S}^{n}=\Sigma_{T}^{\infty}\left(S^{n}\right), \\
\mathbb{S}^{-n}=(\underbrace{*, \ldots, *}_{n \text { copies }}, \mathbb{G}_{m}^{\wedge n}, \mathbb{G}_{m}^{\wedge n} \wedge T, \mathbb{G}_{m}^{n} \wedge T^{\wedge 2}, \ldots),
\end{gathered}
$$

and define algebraic spheres

$$
\begin{gathered}
\mathbb{G}_{m}^{n}=\Sigma_{T}^{\infty}\left(\mathbb{G}_{m}^{\wedge n}\right), \\
\mathbb{G}_{m}^{-n}=\left(*, \ldots, *, S^{n}, S^{n} \wedge T, \ldots\right) .
\end{gathered}
$$

Remark. $\mathbb{S}^{n} \wedge \mathbb{S}^{-n} \simeq \mathbf{1}$ in $\mathcal{S H}(S)$, and $\mathbb{G}_{m}^{n} \wedge \mathbb{G}_{m}^{-n} \simeq \mathbf{1}=\Sigma_{T}^{\infty}\left(S_{+}\right)$.
Definition. We let $\mathbb{S}^{p, q}=\mathbb{S}^{p-q} \wedge \mathbb{G}_{m}^{q}$ in $\mathcal{S H}(S)$, and define the functor

$$
\Sigma^{p, q}=\mathbb{S}^{p, q} \wedge-\quad: \quad \mathcal{S H}(S) \rightarrow \mathcal{S H}(S) .
$$

Definition. For $E \in \operatorname{Spt}_{T}(S)$, we define the associated cohomology theory, a presheaf:

$$
\begin{gathered}
E^{p, q}=H_{E}^{p, q}: \operatorname{Spc}(S) \rightarrow \operatorname{Spc}_{\bullet}(S) \rightarrow \mathrm{Ab} \\
X \mapsto X_{+} \mapsto \operatorname{Hom}_{\mathcal{S H}(S)}\left(\Sigma_{T}^{\infty}\left(X_{+}\right), \Sigma^{p, q}(E)\right),
\end{gathered}
$$

the homology theory

$$
E_{p, q}=H_{p, q}^{E}: X \mapsto \operatorname{Hom}_{\mathcal{S H}(S)}\left(\mathbb{S}^{p, q}, \Sigma^{\infty}\left(X_{+}\right) \wedge E\right)
$$

and the homotopy sheaf $\pi_{p, q}(E)$ as the Nisnevich sheafification of

$$
X \mapsto E^{-p,-q}(X)
$$

Proposition (Voevodsky). The triangulated category $\mathcal{S H}(S)$ is compactly generated by the objects $\Sigma^{\infty-n}\left(X_{+}\right)$, for $X \in \mathrm{Sm}_{/ S}$ and $n \geq 0$.
Definition. We define the category of effective motivic spectra

$$
\mathcal{S H} \mathcal{H f}^{\mathrm{eff}}(S)=\left\langle\Sigma_{T}^{\infty-n}\left(\Sigma_{T}^{p, q}\left(X_{+}\right)\right)\right\rangle^{\oplus},
$$

taken over $X \in \mathrm{Sm}_{/ S}, n \geq 0$, and $p \geq q \geq n$. These angle brackets denote the full triangulated subcategory generated by these objects under coproducts.

Definition. For $k \geq 0$, define

$$
\Sigma^{k} \mathcal{S} \mathcal{H}^{\mathrm{eff}}(S)=\left\langle\Sigma^{\infty-n}\left(\Sigma_{T}^{p, q}\left(X_{+}\right)\right)\right\rangle^{\oplus}
$$

taken over $X \in \mathrm{Sm}_{/ S}, n \geq 0, p \geq q \geq n+k$. Then the filtration

$$
\ldots \subseteq \Sigma^{k+1} \mathcal{S} \mathcal{H}^{\mathrm{eff}}(S) \subseteq \Sigma^{k} \mathcal{S} \mathcal{H}^{\mathrm{eff}}(S) \subseteq \ldots \subseteq \mathcal{S} \mathcal{H}^{\mathrm{eff}}(S) \subseteq \mathcal{S H}(S)
$$

is the slice filtration on S.
Proposition (Voevodsky). Each of these inclusions $i_{k}: \Sigma^{k} \mathcal{S H}{ }^{\mathrm{eff}}(S) \hookrightarrow \mathcal{S H}(S)$ is a coreflective subcategory, and admits a right adjoint $r_{k}: \mathcal{S H}(S) \rightarrow \Sigma^{k} \mathcal{S} \mathcal{H}^{\text {eff }}(S)$.

Definition. The map $f_{k}=i_{k} \circ r_{k}: \mathcal{S H}(S) \rightarrow \mathcal{S H}(S)$ is the k th truncation functor.

Remark. -

- The unit id $\xrightarrow{\sim} r_{k} \circ i_{k}$ is invertible.
- The counits $f_{k} \rightarrow$ id induce $f_{k}=f_{k} \circ f_{k-1} \rightarrow f_{k-1}$.

Definition. For $k \geq 0$, and $E \in \operatorname{Spt}_{T}(S)$, we define

$$
s_{k}(E)=\operatorname{cofib}\left(f_{k+1}(E) \rightarrow f_{k}(E)\right)
$$

called the slices of the filtration. This induces a triangulated functor s_{k} : $\mathcal{S H}(S) \rightarrow \mathcal{S H}(S)$.

Definition. The cofiber sequences

$$
f_{k+1}(E) \rightarrow f_{k}(E) \rightarrow s_{k}(E) \rightarrow
$$

form the layers of the slice tower of E

$$
\ldots \rightarrow f_{k+1}(E) \rightarrow f_{k}(E) \rightarrow f_{k-1}(E) \rightarrow \ldots
$$

Definition. We define $\mathrm{Sm}^{\text {corr }}(S)$ as the category with

- Objects as the objects of $\mathrm{Sm}_{/ S}$,
- $\operatorname{Hom}(X, Y)$ as the free abelian group on closed integral immersions $Z \nVdash$ $X \times_{S} X$ such that $Z \rightarrow X$ is finite and equidimensional.
- We define a composition $\operatorname{Hom}(X, Y) \times \operatorname{Hom}(Y, Z) \rightarrow \operatorname{Hom}(X, Z)$ by taking the pullback to $X \times_{S} Y \times_{S} Z$ and pushing down to $X \times_{S} Z$.

By taking graphs, we obtain a functor $\gamma: \mathrm{Sm}_{/ S} \rightarrow \operatorname{Sm}^{\text {corr }}(S)$.
Definition. Define the spaces with transfer $\operatorname{Spc}_{\mathrm{tr}}(S)=\mathrm{PSh}_{\Delta}\left(\operatorname{Sm}^{\text {corr }}(S)\right)$.
Lemma. We have an adjunction

$$
\mathbb{Z}_{\mathrm{tr}}: \operatorname{Spc}_{*}(S) \rightleftarrows \operatorname{Spc}_{\mathrm{tr}}(S): u_{\mathrm{tr}},
$$

where u_{tr} is restriction along 0 , and \mathbb{Z}_{tr} maps X_{+}to the presheaf represented by X and preserves colimits.

Motivic cohomology

Definition. Note that we have an induced adjunction

$$
\mathbb{Z}_{\mathrm{tr}}: \operatorname{Spt}_{T}(S) \rightleftarrows \operatorname{Spt}_{T}^{\operatorname{tr}^{2}}(S): u_{\mathrm{tr}} .
$$

We define the Eilenberg-Mac Lane spectrum

$$
H_{\mathbb{Z}}=\mathbb{R} u_{\mathrm{tr}}\left(\mathbb{L} \mathbb{Z}_{\mathrm{tr}}(\mathbf{1})\right) \quad \in \operatorname{Spt}_{T}(S)
$$

Theorem (Voevodsky). This spectrum represents motivic cohomology:

$$
H_{\mathbb{Z}}^{p, q} \simeq H^{p, q}(-, \mathbb{Z})
$$

Theorem (Levine). The slices are $s_{0}\left(H_{\mathbb{Z}}\right)=H_{\mathbb{Z}}$ and $s_{k}\left(H_{\mathbb{Z}}\right)=0$ for $k>0$.

Cobordism

Definition. Let X be a scheme, E a vector bundle on X, and $s: X \rightarrow E$ the zero section. We define the Thom space

$$
\operatorname{Th}(E)=\operatorname{cofib}(E s(X) \hookrightarrow E)
$$

This is functorial on a category of pairs (X, E), where a morphism $(X, E) \rightarrow$ (Y, F) consists of morphisms $f: X \rightarrow Y$ and $f^{*} F \rightarrow E$. In particular, given (E, X) and a morphism $f: Y \rightarrow X$, we obtain a map $\operatorname{Th}\left(f^{*}(E)\right) \rightarrow \operatorname{Th}(E)$. So from the diagram

one gets an induced morphism

$$
\operatorname{Th}(E(m, n)) \rightarrow \operatorname{Th}(E(m, n+1))
$$

Definition. We define

$$
M G L_{n}=\underset{n \geq m}{\operatorname{colim}} \operatorname{Th}(E(m, n))
$$

The morphism

$$
i: \operatorname{Gr}(m, n) \hookrightarrow \operatorname{Gr}(m+1, n+1), \quad A \mapsto A \times \mathbb{A}^{1}
$$

induces

$$
\begin{gathered}
i^{*}(E(m+1, n+1)) \simeq \mathbf{1} \oplus E(m, n) \\
T \wedge \operatorname{Th}(E(m, n)) \rightarrow \operatorname{Th}(E(m+1, n+1)) \\
T \wedge M G L_{m} \rightarrow M G L_{m+1}
\end{gathered}
$$

These form the structure maps for a T-spectrum $M G L$, the algebraic cobordism spectrum.

Theorem (Levine). $M G L^{2 n, n}(X) \simeq \Omega^{n}(X)$.
Theorem (Voevodsky). $s_{0}(M G L)=H_{\mathbb{Z}}$ in the regular equi-characteristic case.

