Endomorphisms of the sphere spectrum

Scribe notes from a talk by David Yang

19 Mar 2014

We will work over a perfect field k of characteristic $\neq 2$.
Goal. Compute $\pi_{0}^{s}\left(S_{\bullet}\right)$, which will be the Grothendieck-Witt ring. To rephrase this, we will compute $\left[S_{\bullet}, \mathbb{G}_{m}^{\wedge i}\right]$.

Transfer maps

Let C be a curve over k, and S a set of points in C. Let U be the complement of S; then we have a distinguished triangle

$$
U \rightarrow C \rightarrow \coprod_{s \in S} \mathbb{P}^{1} \wedge k(s)
$$

If \mathcal{F} is a strictly \mathbb{A}^{1}-invariant sheaf, we get a long exact sequence

$$
\ldots \rightarrow \operatorname{Hom}\left(\coprod \mathbb{P}^{1} \wedge k(s), H \mathcal{F}\right) \rightarrow \operatorname{Hom}(C, H \mathcal{F}) \rightarrow \ldots
$$

This left term is $\operatorname{Hom}\left(\coprod S^{1} \wedge \mathbb{G}_{m} \wedge k(s), H \mathcal{F}\right)$. Taking a colimit over all U, this becomes

$$
0 \rightarrow H^{0}(C, \mathcal{F}) \rightarrow H^{0}(k(C), \mathcal{F}) \rightarrow \coprod_{s \in C} H^{0}\left(k(s), \mathcal{F}_{-1}\right) \rightarrow H^{1}(C, \mathcal{F}) \rightarrow 0
$$

the last term being zero as fields have no nontrivial Nisnevich covers. The second nontrivial map in this sequence is the sum of all of the transfer maps

$$
H^{0}(k(C), \mathcal{F}) \rightarrow H^{0}\left(k(s), \mathcal{F}_{-1}\right)
$$

This goes forward for an arbitrary smooth scheme X :

$$
0 \rightarrow H^{0}(X, \mathcal{F}) \rightarrow H^{0}(k(X), \mathcal{F}) \xrightarrow{\oplus \partial} \coprod_{x \in X^{(1)}} H^{0}(k(x), \mathcal{F})
$$

where $X^{(1)}$ denotes the codimension-1 subschemes of X.
Definition. Define the Milnor K-theory of a field F by $K_{*}^{M}(F)=\operatorname{Tens}_{\mathbb{Z}}\left(F^{\times}\right) / I$, where I is generated by the elements $a \otimes(1-a)$.

We define transfer maps in Milnor K-theory as follows. For $x \in X^{(1)}$, write $(\pi)=\mathfrak{m}_{x} \in \mathcal{O}_{X, x}$; then we have

$$
\partial_{x}\left(\left\{\pi, a_{2}, \ldots, a_{n}\right\}\right)=\left\{\bar{a}_{2}, \ldots, \bar{a}_{n}\right\} \in K_{n-1}^{M}(k(x)),
$$

with $a_{i} \in \mathcal{O}_{X, x}^{x}$ yielding $\bar{a}_{i} \in k(x)$. For $n=1$ we have $K_{1}(k(X))=k(X)^{\times}$.

$$
\mathbb{Z} \ni \partial_{x}(f)=\operatorname{div}_{x}(f)=\operatorname{ord}_{x}(f)
$$

Quadratic forms

Write $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ for a diagonal quadratic form.
Definition. - The Grothendieck-Witt group $G W(k)$ is the Grothendieck group of isomorphism classes of quadratic forms over k; this is a ring under tensor product.

- The Witt group $W(k)$ is the quotient of the Grothendieck group by the "hyperbolic plane" $\langle 1,-1\rangle$.

The Witt ring has an ideal I of quadratic forms of even rank. We now motivate the Steinberg relation. Define $\langle\langle a\rangle\rangle=\langle 1,-a\rangle$. Then

$$
\begin{aligned}
\langle\langle a\rangle\rangle\langle\langle 1-a\rangle\rangle & =\langle\langle 1,-a\rangle\rangle\langle\langle 1, a-1\rangle\rangle \\
& =\langle\langle 1,-a, a-1,-a(a-1)\rangle\rangle \\
& =h \oplus h=0 .
\end{aligned}
$$

Theorem (Milnor conjecture).

$$
\frac{I^{n}}{I^{n+1}}=K_{n}^{M}(F) / 2
$$

K_{n}^{M} and W are known to be strictly \mathbb{A}^{1}-invariant sheaves. The ideal I^{n} is also strictly \mathbb{A}^{1}-invariant, as we have this exact sequence from the Milnor conjecture

$$
0 \rightarrow I^{n+1} \rightarrow I^{n} \rightarrow K_{n}^{M} \rightarrow 0
$$

and by induction we deduce this from the \mathbb{A}^{1}-invariance of K_{n}^{M} and W.
Recall that we're trying to compute $\left[S_{0}, \mathbb{G}_{m}^{\wedge i}\right]$. Of course, $S_{0}=(\operatorname{Spec} k)_{+}$. For every element $a \in k^{\times}$, we get a map $[a]: \operatorname{Spec} k \rightarrow \mathbb{G}_{m}$. We have the Hopf map

$$
\eta: \mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}, \quad(x, y) \mapsto(x: y)
$$

and $\mathbb{A}^{2} \backslash\{0\} \simeq S^{1} \wedge \mathbb{G}_{m} \wedge \mathbb{G}_{m}$, as we see from the elementary Nisnevich square

Let $\langle a\rangle=1+\eta[a]$. Then
(1) $[a][1-a]=0$,
(2) $\langle a\rangle=<a b\rangle$,
(3) $\eta<a>=<a>\eta$,
(4) $\eta h=0$.

An ingredient here is the map $\mathbb{A}^{1} \backslash\{0,1\} \rightarrow \mathbb{G}_{m} \wedge \mathbb{G}_{m}$ given as follows. We view $\mathbb{G}_{m} \wedge \mathbb{G}_{m}$ as the affine plane with the coordinate axes removed and the lines $x=1, y=1$ collapsed to the basepoint. We now include $\mathbb{A}^{1} \backslash\{0,1\}$ as the line $x+y=1$.

Definition. Define Milnor-Witt K-theory $K_{\bullet}^{M W}$ as the ring generated by $[a]$ and η, quotiented by relations (1) to (4).

Theorem.

$$
K_{*}^{M W} \cong \oplus_{i \in \mathbb{Z}}\left[S_{0}, \mathbb{G}_{m}^{\wedge i}\right] .
$$

Note that $K_{0}^{M W} \cong G W(k)$, and $K_{-n}^{M W} \cong W(k)$.
Define the homotopy module $J^{n}=I^{n} \times I^{n} / I^{n+1} K_{n}^{M}$.
Note that when we quotient Milnor-Witt K-theory by the relation $\eta=0$, we recover Milnor K-theory.

Definition. Define Witt K-theory K_{n}^{W} as the quotient of Milnor-Witt Ktheory by the relation $h=0$.

Theorem.

$$
K_{n}^{W}= \begin{cases}W & n<0 \\ I^{n} & n \geq 1\end{cases}
$$

We now have a commutative diagram

Theorem. We have

$$
K_{n}^{W} \cong I \otimes_{W} \ldots \otimes_{W} I / \text { ideal generated by } a \otimes(1-a) .
$$

We effectively have to show the relation $\left\langle\left\langle a^{2}\right\rangle\right\rangle=0$ using only the Steinberg relation; equivalently, we show $\langle a\rangle=1$. We do this by rewriting this as

$$
0=1-\langle a\rangle^{2}=(1-\langle a\rangle)(1-\langle-a\rangle)
$$

and noting that

$$
-a=\frac{1-a}{1-a^{-1}} .
$$

We have also

$$
I \otimes_{W} \ldots \otimes_{W} I / \text { ideal } \cong I^{n}
$$

This is harder, requiring the Milnor conjecture. We can show
(0) If $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle=0$ in W, then $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle=0$.
(1) $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle+\left\langle\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle=\langle\langle a b, \ldots\rangle\rangle+\langle\langle a b(a+b), \ldots\rangle\rangle$.
(2) $\langle\langle a b, c, \ldots\rangle\rangle+\langle\langle a, b, \ldots\rangle\rangle=\langle\langle a c, b, \ldots\rangle\rangle+\langle\langle a, b, \ldots\rangle\rangle$.

Definition (Pfister Chain Equivalence). We take two elements $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ and $\left\langle\left\langle a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle\right\rangle$ to be simply equivalent if they're the same in all but two terms, and ???.
[The note-taker was unable to follow the last few minutes of the lecture.]

