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We will work over a perfect field k of characteristic 6= 2.

Goal. Compute πs
0(S•), which will be the Grothendieck–Witt ring. To rephrase

this, we will compute [S•,G∧im ].

Transfer maps

Let C be a curve over k, and S a set of points in C. Let U be the complement
of S; then we have a distinguished triangle

U → C →
∐
s∈S

P1 ∧ k(s).

If F is a strictly A1-invariant sheaf, we get a long exact sequence

. . .→ Hom(
∐

P1 ∧ k(s), HF)→ Hom(C,HF)→ . . .

This left term is Hom(
∐
S1 ∧Gm ∧ k(s), HF). Taking a colimit over all U , this

becomes

0→ H0(C,F)→ H0(k(C),F)→
∐
s∈C

H0(k(s),F−1)→ H1(C,F)→ 0,

the last term being zero as fields have no nontrivial Nisnevich covers. The
second nontrivial map in this sequence is the sum of all of the transfer maps

H0(k(C),F)→ H0(k(s),F−1).

This goes forward for an arbitrary smooth scheme X:

0→ H0(X,F)→ H0(k(X),F)
⊕∂−−→

∐
x∈X(1)

H0(k(x),F)

where X(1) denotes the codimension-1 subschemes of X.

Definition. Define the Milnor K-theory of a field F byKM
∗ (F ) = TensZ(F×)/I,

where I is generated by the elements a⊗ (1− a).
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We define transfer maps in Milnor K-theory as follows. For x ∈ X(1), write
(π) = mx ∈ OX,x; then we have

∂x({π, a2, . . . , an}) = {ā2, . . . , ān} ∈ KM
n−1(k(x)),

with ai ∈ Ox
X,x yielding āi ∈ k(x). For n = 1 we have K1(k(X)) = k(X)×.

Z 3 ∂x(f) = divx(f) = ordx(f).

Quadratic forms

Write 〈a1, a2, . . . , an〉 for a diagonal quadratic form.

Definition. • The Grothendieck–Witt groupGW (k) is the Grothendieck
group of isomorphism classes of quadratic forms over k; this is a ring under
tensor product.

• The Witt group W (k) is the quotient of the Grothendieck group by the
“hyperbolic plane” 〈1,−1〉.

The Witt ring has an ideal I of quadratic forms of even rank. We now
motivate the Steinberg relation. Define 〈〈a〉〉 = 〈1,−a〉. Then

〈〈a〉〉〈〈1− a〉〉 = 〈〈1,−a〉〉〈〈1, a− 1〉〉
= 〈〈1,−a, a− 1,−a(a− 1)〉〉
= h⊕ h = 0.

Theorem (Milnor conjecture).

In

In+1
= KM

n (F )/2.

KM
n and W are known to be strictly A1-invariant sheaves. The ideal In

is also strictly A1-invariant, as we have this exact sequence from the Milnor
conjecture

0→ In+1 → In → KM
n → 0,

and by induction we deduce this from the A1-invariance of KM
n and W .

Recall that we’re trying to compute [S0,G∧im ]. Of course, S0 = (Spec k)+.
For every element a ∈ k×, we get a map [a] : Spec k → Gm. We have the Hopf
map

η : A2 r {0} → P1, (x, y) 7→ (x : y),

and A2 r {0} ' S1 ∧Gm ∧Gm, as we see from the elementary Nisnevich square

Gm ×Gm A1 ×Gm

A1 ×Gm A2 r {0}

Let < a >= 1 + η[a]. Then
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(1) [a][1− a] = 0,

(2) < a >< b >=< ab >,

(3) η < a >=< a > η,

(4) ηh = 0.

An ingredient here is the map A1 r {0, 1} → Gm ∧ Gm given as follows. We
view Gm ∧ Gm as the affine plane with the coordinate axes removed and the
lines x = 1, y = 1 collapsed to the basepoint. We now include A1 r {0, 1} as
the line x+ y = 1.

Definition. Define Milnor–Witt K-theory KMW
• as the ring generated by

[a] and η, quotiented by relations (1) to (4).

Theorem.
KMW
∗

∼= ⊕i∈Z[S0,G∧im ].

Note that KMW
0

∼= GW (k), and KMW
−n

∼= W (k).
Define the homotopy module Jn = In ×In/In+1 KM

n .
Note that when we quotient Milnor–Witt K-theory by the relation η = 0,

we recover Milnor K-theory.

Definition. Define Witt K-theory KW
n as the quotient of Milnor–Witt K-

theory by the relation h = 0.

Theorem.

KW
n =

{
W n < 0

In n ≥ 1

We now have a commutative diagram

KW
n KM

n W KM
n 0

0 In+1 Jn KM
n

Theorem. We have

KW
n
∼= I ⊗W . . .⊗W I/ ideal generated by a⊗ (1− a).
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We effectively have to show the relation 〈〈a2〉〉 = 0 using only the Steinberg
relation; equivalently, we show 〈a〉 = 1. We do this by rewriting this as

0 = 1− 〈a〉2 = (1− 〈a〉)(1− 〈−a〉)

and noting that

−a =
1− a

1− a−1
.

We have also
I ⊗W . . .⊗W I/ideal ∼= In.

This is harder, requiring the Milnor conjecture. We can show

(0) If 〈〈a1, . . . , an〉〉 = 0 in W , then 〈〈a1, . . . , an〉〉 = 0.

(1) 〈〈a1, . . . , an〉〉+ 〈〈b1, . . . , bn〉〉 = 〈〈ab, . . .〉〉+ 〈〈ab(a+ b), . . .〉〉.

(2) 〈〈ab, c, . . .〉〉+ 〈〈a, b, . . .〉〉 = 〈〈ac, b, . . .〉〉+ 〈〈a, b, . . .〉〉.

Definition (Pfister Chain Equivalence). We take two elements 〈〈a1, . . . , an〉〉
and 〈〈a′1, . . . , a′n〉〉 to be simply equivalent if they’re the same in all but two
terms, and ???.

[The note-taker was unable to follow the last few minutes of the lecture.]
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