Morel's \mathbb{A}^1 -connectivity theorem and homotopy t-structures

Scribe notes from a talk by Florian Strunk

19 Mar 2014

Starting with a triangulated category \mathcal{D} , we can form an abelian category, so long as we have equipped \mathcal{D} also with a t-structure. This process is called taking the "heart". A good source of triangulated categories are the pointed simplicial stable model categories, by taking the homotopy category.

Definition. —

- A (homological) **t-structure** is a pair of strictly full subcategories $\mathcal{D}_{>0}$, $\mathcal{D}_{\leq -1}$, such that
 - (T1) For all $X \in \mathcal{D}_{\geq 0}$ and $Y \in \mathcal{D}_{\leq -1}$, [X, Y] = 0;
- (T2) $\mathcal{D}_{\geq 0}$ is closed under the shift [1], and $\mathcal{D}_{\leq -1}$ is closed under the shift [-1]; $\mathcal{D}_{n-1}[n]$ and $\mathcal{D}_{n-1} = \mathcal{D}_{n-1}[n]$;

(now set
$$\mathcal{D}_{\geq n} = \mathcal{D}_{\geq 0}[n]$$
 and $\mathcal{D}_{\leq n-1} = \mathcal{D}_{\leq -1}[n]$)

(T3)

- The subcategory $\mathcal{D}_{\geq 0} \cap \mathcal{D}_{\leq 0}$ is called the **heart**, and is an abelian category.
- The t-structure is **non-degenerate** if $\cap_{n\geq 0}\mathcal{D}_{\geq m} = \{0\}$ and $\cap_{m\geq 0}\mathcal{D}_{\leq -m} =$ {0}.

Example. We can take $\mathcal{D} = Ho(Sp)$. Take

$$\mathcal{D}_{\geq n} = \{ X \mid \pi_i^s(X) = 0, i < m \}, \qquad \mathcal{D}_{\leq n} = \{ X \mid \pi_i^s X = 0, i > m \}.$$

There exists an adjunction

$$\mathcal{D}_{\geq m} \longleftrightarrow \mathcal{D} : \tau_{\geq m}, \quad X_{\geq m} \mapsto X,$$
$$\tau_{\leq m} : \mathcal{D} \longleftrightarrow \mathcal{D}_{\leq m}, \quad X \leftrightarrow X_{\leq m}.$$

For $m \ge n$, $X_{geqn \ge m} \cong X_{\ge m}$, and $X_{\le n \le m} \cong X_{\le n}$.

Let $\mathcal{D} = \operatorname{Ho} \mathcal{C}$. Then

The equivalence in the lower left expresses that Postnikov towers converge, the following lemma:

Lemma. If the t-structure is non-degenerate and the sequential homotopy limit of objects in $\mathcal{D}_{\geq 0}$ is in $\mathcal{D}_{\geq -1}$ (e.g. $\mathcal{D}_{\geq 0}$ is stable under \prod), then

$$\tau_{\leq m} X \xrightarrow{\sim} \tau_{\leq n} \operatorname{holim} X_{\leq m}.$$

How to get a t-structure

Let C be an (I, J)-cofibrantly generated, pointed, simplicial, stable, and finitely generated model category. According to Hovey,

 $\cup_{n>0} \operatorname{cofib}(I)[n]$

detects weak equivalences, and each object of it is small $([-, \coprod A_i] \cong \coprod [-, A_i])$.

Lemma. Let J consist of small objects. Then taking

$$\mathcal{D}_{\leq -1} = \{ Y \in \mathcal{D} \mid [S[n], Y] = 0 \text{ for all } n \geq 0, S \in J \},$$
$$J = \mathcal{D}_{\geq 0} = \{ X \in \mathcal{D} \mid [X, Y] = 0 \text{ for all } Y \in \mathcal{D}_{\leq -1} \}$$

is a t-structure.

Proof. (T3) Consider

$$X \to Y \to Z$$
,

with $X \in \mathcal{D}_{\geq 0}$ and $Z \in \mathcal{D}_{\leq -1}$.

$$\coprod_{\substack{n\geq 0\\S\in J\\[S[n],Y]}}S[n]\to Y\xrightarrow{d_1}\Phi^1Y$$

Inducting, we produce

We now apply this to motivic homotopy. Let $S\mathcal{H}_{S^1}^s$ be the stable category with only the Nisnevich topology localized, not \mathbb{A}^1 , and with only S^1 inverted.

- On $\mathcal{SH}^s_{S^1}$, we obtain the **simplicial t-structure**, giving the heart $\mathsf{Shv}(\mathrm{Sm}_{/k})$.
- On \mathcal{SH}_{S^1} , we obtain the S^1 homotopy t-structure, giving the heart $\operatorname{Shv}_{st}(\operatorname{Sm}_k)$.
- On \mathcal{SH} , we obtain the \mathbb{P}^1 homotopy t-structure, giving as heart the π_* homotopy modules.

For the first, the weak equivalences are maps that induce isomorphisms on all homotopy sheaves

$$\pi_n(E) = \operatorname{colim}_{k \to \infty} a_{\operatorname{Nis}} \pi_{n+k}(E_k(-)),$$

where a_{Nis} is the sheafification. Our suspension is $\Sigma(-) = S^1 \wedge -$. We take $J = \{\sum_{s=1}^{\infty} U_+ \mid U \in \text{Sm}_{/k}\}.$

Lemma.

 $\mathcal{D}_{\leq -1} = \{abelian \text{ no-positive-homotopy sheaves}\}, \qquad \mathcal{D}_{\geq 0} = \{abelian \text{ no-negative-homotopy sheaves}\}.$

Theorem (Kato, Saito). Let $\mathcal{G} \in Shv$, X a noetherian scheme of Krull dimension d. Then

$$0 = H^n_{\text{Nis}}(X;\mathcal{G}) = [\Sigma^{\infty}_{S^1}X_+, H\mathcal{G}[n]], \qquad n > d$$

Here $H\mathcal{G}$ is the Eilenberg–Mac Lane spectrum. We then have an equivalence

$$\operatorname{Pic}(X) = H_{\operatorname{Zar}}^{1}(X; \mathbb{G}_{m})$$
$$= H_{\operatorname{Nis}}^{1}(X; \mathbb{G}_{m})$$
$$= [X_{+}, H\mathbb{G}_{m}[+1]]$$
$$= [S^{-1} \wedge X_{+}, H\mathbb{G}_{m}]$$

Let $J = \{ \Sigma_{S^1}^{\infty} U_+ \mid U \in \mathrm{Sm}_{/k} \}.$

Theorem (Morel's stable connectivity theorem). If $E \in \mathcal{D}_{\geq 0}$, then E is \mathbb{A}^1 -connective:

$$a_{\rm Nis}[S^n \wedge (-)_+, L^\infty E]_{\mathcal{SH}^s_{S^1}} = 0$$

for n < 0.

Fact. Let $E \in \mathsf{Sp}_{S^1}^s$ and $X \in \mathrm{Sm}_{/k}$ of Krull dimension d. Then $[X_+, E_{\geq n}] = 0$ for n > d.

The construction is roughly as follows. We have the evaluation map

$$\begin{array}{ccc} \hom_{\bullet}(\mathbb{A}^{1}, E) & \stackrel{ev_{1}}{\longrightarrow} & E \\ & \downarrow & & \downarrow \\ & \bullet & \longrightarrow & \operatorname{cof} & \stackrel{R(-)}{\longrightarrow} & L^{1}E \end{array}$$

and the upper-left is $\mathbb{A}^1\text{-}\mathrm{contractible}.$

So

$$\mathcal{D}_{\geq 0} = \{ E \mid \phi_{n,m} E = 0, n < 0, \forall m \},\$$
$$\mathcal{D}_{\leq -1} = \{ \ldots \},\$$

where we follow the convention

$$\pi_{n,m} = \operatorname{colim}_{k} a_{\operatorname{Nis}}[\underbrace{S^{n+k} \wedge \mathbb{G}_{m}^{k+m}}_{S^{n+2k+m,k+m}}, E_{k}]_{\mathbb{A}^{1}}.$$

Definition. A homotopy module $(M_{\bullet}, \mu_{\bullet})$ is a \mathbb{Z} -graded strictly \mathbb{A}^1 -invariant sheaf, together with

$$\mu_m : M_m \to (M_{m+1})_{-1}$$

= ker($M_{m+1}(\mathbb{G}_m \times -) \to M_{m+1}(-)$)
= hom_•(\mathbb{G}_m, M_{m+1})

By saying that \mathcal{G} is strictly \mathbb{A}^1 -invariant, we mean that

$$H^n_{\mathrm{Nis}}(X \times \mathbb{A}^1, \mathcal{G}) \cong H^n_{\mathrm{Nis}}(X; \mathcal{G})$$

for all n.