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The bulk of the talk will prove the following Purity Theorem, due to Morel–
Voevodsky, and at the end we will give an application.

Theorem. Let S be a base scheme, X ∈ Sm/S. Let Z ⊂ X be a closed sub-
scheme. Then there is an equivalence

X

X r Z
' NX,Z

NX,Z r Z

in H∗(Z), where NX,Z is the normal bundle of Z in X.

Let’s assume first that X and Z are not smooth schemes but rather smooth
manifolds. Then we have the tubular neighborhood theorem, saying that NX,Z

can be embedded as an open subset of X.

NX,Z r Z NX,Z
NX,Z

NX,ZrZ

Z X X
XrZ

∼

From this we get the Gysin long exact sequences.
So we can interpret the purity theorem as an analogue in the motivic homo-

topy category. It will use more or less everything in the definition of the motivic
category.

Deformation to the normal bundle

This geometric ingredient will be a substitute for the tubular neighborhood
theorem. Given a closed immersion Z ↪→ X, we will construct another smooth
closed pair Z×A1 ↪→ EX,Z over S×A1, such that the fiber over 0 is Z ↪→ NX,Z

and the fiber everywhere else is the inclusion Z ↪→ X.

Definition. We let

EX,Z = BlZ×{0}(X × A1) r BlZ×{0}(X × {0}),

where Bl denotes the blow-up.
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This is illustrated below:

Z x A^1

X x A^1

Bl

Bl_Z(X)

A^1 A^1 A^1

Z x A^1

Bl_{Z x 0}(X x A^1)

P(N_{X,Z})

E_{X,Z}

X

Z

0 1

P

Z X

S

i1
↪→

Z × A1 EX,Z

S × A1

i0←↩
Z NX,Z

S

So we have maps

X

X r Z

i1−→ EX,Z
EX,Z r (Z × A1)

i0←− NX,Z

NX,Z r Z

We will show that i0 and i1 are equivalences in H∗(S).

The vector bundle case

Z ↪→ X = V is the zero section of a vector bundle. We have V = NV,Z and
V × A1 = NV×A1,Z .

Then

• BlZ×{0} is the tautological bundle on P(V × A1),

• EV,Z is the restriction of that tautological bundle to P(V ×A1)rP(V ) ∼= V .

• i0 : NV,Z = V ↪→ EV,Z is the zero section,

• i1 : V ↪→ EV,Z is the 1-section.

• These latter two are A1 homotopy equivalences.

This proves the purity theorem in this case.
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Functoriality

Let

W Y

Z X

g f be a cartesian square in Sm/S . Then

W × A1 EY,W

Z × A1 EX,Z

g×A1
f̂

W NY,W

Z NX,Z

g f0

Fact. If f is étale, then f̂ and f0 are étale.

Lemma. If f is étale and g is an isomorphism, then purity holds for Z ↪→ X
iff it holds for W ↪→ Y .

Proof. By Nisnevich,
X

XrZ

Y
YrW

'

Lemma. If {Ui → X} is an open cover of X, and if purity holds for Z∩Ui ↪→ Ui
for all i, then purity holds for Z ↪→ X.

Lemma. Suppose we have two cartesian squares

Z X1

W Y

g f1

Z X2

W Y

g f2

Then purity holds for Z ↪→ X1 iff it holds for Z ↪→ X2.

Proof. We can see that the square in

Z

Z ×W Z X1 ×Y X2

Z Xi

∆

πi
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is a pullback diagram. We would like to complete this into a pair of pullback
squares. So we write:

Z X1 ×Y X2 r (Z ×W Z r ∆Z) = T

Z ×W Z X1 ×Y X2

Z Xi

∆

πi

The left-hand map is an isomorphism and the right-hand map is étale. Writing
this square twice with i = 1, 2, we have

Z X2

Z T

Z X1

étale

étale

Applying the previous lemma gives the result.

Proof of purity. Suppose given a diagram

Z X

S

.

Recall the structure theorem for smooth morphisms: there exists an open
cover {Ui → X} and étale maps fi : Ui → AnS such that

Z ∩ Ui = f−1
i (An−cS × {0}c).

We have a PB square:

Z ∩ Ui Ui

An−c AnS

fi

We also have a PB square:

Z ∩ Ui (Z ∩ Ui)× Ac

An−cS AnS

The result follows.
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Application

Theorem (Morel). Let k be a perfect field, and let F be an A1-invariant Nis-
nevich sheaf of spaces on Sm/k. Let n ≥ 0. The following are equivalent:

(1) F is n-connected (as a Nisnevich sheaf);

(2) For all field extensions L/k of finite transcendence degree, F(SpecL) is
n-connected.

(F(SpecL) := colimα F(Xα), where SpecL = limαXα with Xα = Sm/k.)
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