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Definition. —

• A Grothendieck topology is a notion of which objects cover which other
objects.

• A site is a category with a Grothendieck topology.

• A topos is the category of sheaves on some site.

If {Ui} is an open cover of some open set U , then the map
∐
Ui → U is a

cover.

Example. A topological space has an associated site of open subsets.

The above definitions are loose; there are certainly axioms involved.

Definition. Given a cover U → V , we can form

U V V ×U V

The sheaf condition on a presheaf F is that

U V F (V ×U V ).

Examples. —
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• We could take the site Sm/S with the Nisnevich topology. The covers are
the surjective étale maps that induce isomorphisms on residue fields.

• We could take the site Sm/S with the Zariski topology. The covers are
the surjective maps consisting of a disjoint union of open immersions.

• We could take the site Sm/S with the étale topology. The covers are the
surjective étale maps.

So every Zariski cover is a Nisnevich cover, and every Nisnevich cover is an étale
cover. Relating these sites will be important.

Definition. For a site S, a point of S is an adjunction

X∗ : Sh(S) Set : X∗.

We consider X∗ to be a “stalk functor”, and consider X∗ to be a “skyscraper
sheaf functor”.

Remark. We could also describe this as a morphism of topoi

Set Sh(S)

Sh(∗)

if we knew what a morphism of topoi was.

We obtain morphisms of topoi

(Sm/S)Zar (Sm/S)Nis (Sm/S)et
π∗

π∗

π∗

π∗

We would like to identify the points of these topoi.

• A Zariski point is SpecOX,x.

• An étale point is the strict henselian local ring SpecOshX,x, formed from
OX,x by adding all roots of polynomials p such that p′(0) 6= mX,x.

• A Nisnevich point is the henselian local ring SpecOhX,x.

Definition. Let G be a simplicial sheaf of groups. We define the classify-
ing space BG, a simplicial sheaf of sets, as the sheafification of the following
presheaf:

(U, n) 7→ G(U)nn,

where U is an object of the site, and n is the simplicial degree.

Definition. A G-torsor on X is a simplicial sheaf E → X with locally free
G-action such that E/G ' X.
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Theorem. Let G be a sheaf of groups. Then

{G − torsors over X}/iso ∼= [X,R(BG)]

Definition. We define algebraic K-theory

K(X) = ΩBQ(VectX).

Here Q(VectX) is the category of vector bundles over X, where maps are inclu-
sions of subquotients.

Theorem. Algebraic K-theory is represented in the motivic homotopy category
H∗(S) by the object

RΩB(
∐
n≥0

BGLn).

Remark. The monoid structure on this object is induced from

GLn ×GLm → GLn+m,

the block sum of matrices. Note that the classifying space construction goes
forward for monoids, not just groups.

Proposition. If M is a simplicial sheaf of monoids that is levelwise free (on
a simplicial sheaf of sets), then B(Mgp) ' BM , so that Mgp ' RΩBM . Here
the superscript gp denotes the group completion.

Note that
∐
n≥0BGLn is an augmented monoid, i.e. it is equipped with a

map down to N which has a section.∐
n≥0BGLn

N

β α

So
∐
BGLn is graded, and we have a map α(1) : BGLn → BGLn+1. We define

BGL∞ as the colimit.

Corollary.

RΩB(
∐

BGLn) ' BGL∞ × Z.

1. By Hilbert’s Theorem 90, étale GLn-torsors are Nisnevich GLn-torsors.

The fact
H1

et(X,GLn) ∼= H1
Nis(X,GLn) ∼= H1

Zar(X,GLn)

can be seen to imply the usual statement of Theorem 90. Any G-torsor
in H1

et(X,GLn) maps to zero in H1
et(U,GLn), i.e. in H1

et(OX,x, GLn) =
H1

et(k(x), GLn) = 0. Therefore

BGL∞ × Z ' Rπ∗π∗BGL∞ × Z,

where the maps π∗, π
∗ are the maps relating the Nisnevich and étale sites,

mentioned earlier.
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2.
Rπ∗π∗BGL∞ ' Gr(∞,∞).

Note that GLn acts on Amn = Hom(An,Am). It acts freely on some open
subset Inj(An,Am) = Um. We write EGLn = colimm→∞ Um.

Define
∂∆n

A1 = V (x1 . . . xn(
∑

xi − 1)) ⊆ An.

[Some argument about contractibility. See Paul’s notes.]

Theorem. K-theory is represented in H∗(S) by

R(G(∞,∞)× Z).

Example. We now compute the bigraded homotopy groups (sheaves) of this
representing space. Write Sp,q = (S1)∧p−q ∧G∧qm for the bigraded spheres. We
want to compute the bigraded homotopy group

[Sp,q ∧X+, R(G(∞,∞)× Z)].

If q = 0, this is Kp(X). Note that

Gm ∧X+ = (Gm ×X)/X,

Kn(Gm ×X) = Kn(X)⊕Kn−1(X),

Kn(Gm ∧X+) = Kn−1(X).

So we conclude that the bigraded homotopy group above equals Kp−2q(X).
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