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There are two things we like:

1) spectra;

2) multiplication.

Spectra

Let C be a category and G a left Quillen endofunctor.

Definition. We define the category SpN(C, G) of spectra as follows:

• Objects are sequencesX1, . . . , Xn, . . ., withXi ∈ ob C, together with struc-
ture maps σ : GXn → Xn+1;

• Morphisms are collections of maps fn : Xn → Yn commuting with σ.

Definition. We have the evaluation map

Evn : SpN(C, G)→ C, X 7→ Xn,

which has a left adjoint

(FnX)m =

{
Gm−nX m ≥ n,
0 otherwise.

Let U denote the right adjoint of G.

Lemma. Suppose we have F : C → C and a natural transformation τ : GF →
FG. Then there is an induced map F : SpN(C, G)→ SpN(C, G).

Remark. U and G prolong to adjoint functors on spectra.

Model structures on spectra

Suppose that C is cofibrantly generated, by generating cofibrations I and gen-
erating trivial cofibrations J .
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Theorem. The projective cofibrations (LLP with respect to level trivial fibra-
tions), level fibrations, and level weak equivalences give a model structure, called
the projective model structure, on SpN(C, G). This is cofibrantly generated,
with generating cofibrations IG = ∪nFnI, and generating trivial cofibrations
JG = ∪nFnJ .

Plan. We would like G to be a Quillen equivalence. We will then Bousfield
localize to some appropriate objects.

We define the analogue of Ω-spectra:

Definition. A spectrum X is called a U-spectrum if X is levelwise fibrant

and the adjoint map Xn
σ̃−→ UXn+1 is a weak equivalence.

We would like a localizing set S such that the S-local spectra are the U -
spectra.

Proposition. Let C be a cofibrantly generated model category with generating
cofibrations I, and f : X → Y . Then f is a weak equivalence iff Map(C,X)→
Map(C, Y ) is a weak equivalence, for C running over all domains and codomains
of maps in I.

So we need to choose some set S of maps to make the map

Map(C,Xn) Map(C,UXn+1)

Map(FnQC,X) Map(Fn+1GQC,X)

a weak equivalence.

Definition. Define S = {Fn+1GQC
sQC
n−−−→ FnQC}, where C runs over the

domains and codomains of maps in I.

Theorem. Now S−1G : S−1SpN(C, G) → S−1SpN(C, G) is a Quillen equiva-
lence.

Theorem. This general construction of localization coincides with the Bousfield–
Friedlander model structure on spectra.

Properties of this construction are as follows.

• If G : C → C is a Quillen equivalence, then C → SpN(C, G) is a Quillen
equivalence.

• SpN(C, G) is functorial in (C, G).

• If C is symmetric monoidal, SpN(C, G) is almost never symmetric monoidal.
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Compatible model structure and symmetric monoidal struc-
ture

Definition. Let C be a symmetric monoidal model category, and let f : A→ B,
g : C → D. Define the pushout product

f � g : (A⊗D)
∐
A⊗C

(B ⊗ C)→ B ⊗D

induced by

A⊗ C B ⊗ C

A⊗D B ⊗D
Definition. We say that the model structure and symmetric monoidal structure
on C are compatible if the following hold:

• if f and g are cofibrations, then f � g is a cofibration;

• if f or g is a trivial cofibration, then f � g is a trivial cofibration.

Let D be a bicomplete, closed symmetric monoidal category with unit S.
Let K ∈ obD. Let C be bicomplete, enriched, tensored, and cotensored over C.
We will consider functors of the form G(X) = X ⊗K, where K = GS.

Definition. Let Σ =
∐
n≥0 Σn, the category with

• objects as sets n̄ = {1, . . . , n},

• morphisms as automorphisms of the set n̄.

Definition. A symmetric sequence is a sequence X0, . . . , Xn of objects of
C with an action of Σn on Xn. Denote the category of symmetric sequences as
CΣ.

Fact. If C is a symmetric monoidal category, then CΣ is a symmetric monoidal
category as follows. If x, y ∈ CΣ,

(A)

(X ⊗ Y )(C) =
∐

A∪B=C
A∩B=0

X(A)⊗ Y (B),

or equivalently,

(B)

(X ⊗ Y )n =
∐

p+q=n

Σn ×Σp×Σq
(Xp ⊗ Yq).

The unit in CΣ is (S, 0, 0, . . .). We have the commutative monoid

Sym(K) = (S,K,K ⊗K, . . .).

Definition. Let D be a symmetric monoidal model category, C a D-model
category, and K ∈ obD. Define SpΣ(C,K) to be the category of modules over
Sym(K) in CΣ.
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Model structure on SpΣ(C, K)

There exists a model structure on SpΣ, defined analogously to the model struc-
ture on SpN.

Theorem. —

• With this projective model structure, SpΣ(D,K) is a symmetric monoidal
model category.

• SpΣ(C,K), with its projective model structure, is a SpΣ(D,K)-model cat-
egory.

Definition. A symmetric spectrum X ∈ SpΣ(C,K) is an Ω-spectrum if X is
levelwise fibrant and the adjoint of the structure map Xn → XK

n+1 is a weak
equivalence for all n.

We want to localize SpΣ(C,K) the same way as in the non-symmetric case,
plus symmetric conditions. The localization is called the stable model struc-
ture on SpΣ(C,K).

Theorem. If GX = X ⊗K, then SpN(C, G) and SpΣ(C,K), with stable model
structures, are related by a sequence of Quillen equivalences, so long as the cyclic
permutation

K ⊗K ⊗K → K ⊗K ⊗K
is the identity in Ho(D).

Example. We can take K = S1 in the topological context to obtain the ordi-
nary notion of symmetric spectra in stable homotopy theory.

Example. In the motivic context, taking K = P1, we obtain a category of
motivic symmetric spectra

SpΣ(spc∗(S),P1).

Here spc∗(S) is the model category of simplicial presheaves on Sm/S , with
elementary Nisnevich squares and A1 localized.

Remark. Last time we constructed the∞-category SH(S). Let us notationally
identify the model category SpΣ(spc∗(S),P1) with its underlying ∞-category,
the simplicial nerve of its fibrant-cofibrant subcategory. By the universal prop-
erty of SH(S), we have a map

SH(S)→ SpΣ(spc∗(S),P1).

One can show that this is an equivalence, essentially by the universal property
of the latter model category. We build objects on both sides out of smooth
schemes; showing that this map takes smooth schemes to smooth schemes will
show essential surjectivity. Keeping track of how the localizations involved
match up will yield full faithfulness.

The upshot is that we have a symmetric monoidal model category that
presents the stable motivic ∞-category.
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