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Symmetric monoidal ∞-categories

In the 1-categorical world, we have both strict and lax symmetric monoidal
categories. We clearly want to generalize the latter, but the classical definition
involves some weird axioms (e.g. an associativity pentagon); this would be pro-
hibitively messy for higher categories. So we should find a new definition of
symmetric monoidal 1-categories.

Construction. w Let (C,⊗) be a symmetric monoidal category. Define a cat-
egory C⊗ as follows:

• Objects are collections (Ai)i∈I of objects in C, indexed by a finite set;

• Morphisms from (Ai)i∈I to (Bj)j∈J consist of a map σ : I+ → J+ in Fin∗,
the category of finite pointed sets, together with a map⊗

σ(i)=j

Ai → Bj

for each j ∈ J .

Remark. —

• The category of finite pointed sets is equivalent to the category of finite
sets and partially defined maps, via the “add a disjoint basepoint” functor.

• There is a functor C⊗ → Fin∗ taking each object to its indexing set and
each morphism to the first part of its defining data.

• This functor is co-cartesian: given a morphism σ : 〈n〉 → 〈m〉 in Fin∗
and a lift A = (Ak)k∈〈n〉 of the domain, we define a co-cartesian lift by
letting Bj = ⊗σ(i)=jAi, and defining the morphism A → B by identity
morphisms in C.

• We have that the fiber C⊗〈n〉 is equivalent to n copies of C. More precisely,

define ik : 〈n〉 → 〈1〉 to be the morphism mapping only k to 1. Then the
product of co-cartesian lifts

i1 × . . .× in : C⊗〈n〉 → C
⊗
〈1〉 × . . .× C

⊗
〈1〉
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is an equivalence.

• In particular, we can identify C with C⊗〈1〉.

We can recover the symmetric monoidal structure purely from this functor
C⊗ → Fin∗. For instance, we can form a tensor product of objects by choosing
an inverse C⊗〈1〉 × C

⊗
〈1〉 → C

⊗
〈2〉 to the equivalence above, and then forming

C⊗〈1〉 × C
⊗
〈1〉 → C

⊗
〈2〉

d1−→ C⊗〈1〉.

Note that this depends on a choice of inverse, so there are various possible tensor
products (all equivalent). We recover the monoidal unit by lifting 〈0〉 → 〈1〉.

This is an adequate characterization of lax symmetric monoidal categories,
and prompts the following definition:

Definition. A symmetric monoidal ∞-category is a co-cartesian fibration
C⊗ → NFin∗ such that

i1 × . . .× in : C⊗〈n〉 → C
⊗
〈1〉 × . . .× C

⊗
〈1〉

is an equivalence.

Example. If an∞-category has all finite products, then they yield a symmetric
monoidal structure. See Lurie, Higher Algebra, section 2.4; the proof is doable
but not trivial, using constructions to do with the nerve of the posets of subsets
of some set, much like the simplicial nerve.

We should define symmetric monoidal functors, and here we still have notions
of strict and lax functors.

Definition. A morphism 〈n〉 → 〈m〉 of Fin∗ is inert if each element of the
codomain has preimage of size 1. So these are the bijections from a subset of
〈n〉 to all of 〈m〉.

Definition. —

• A strict symmetric monoidal functor C → D is a commutative trian-
gle

C⊗ D⊗

NFin∗

which preserves cocartesian morphisms.

• A lax symmetric monoidal functor is only required to preserve co-
cartesian morphisms over inert morphisms of Fin∗.

• We let SymMon denote the presentable∞-category of symmetric monoidal
categories with strict symmetric monoidal functors. We won’t construct
this.
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Definition. A commutative algebra object in a symmetric monoidal ∞-
category C⊗ is a lax symmetric monoidal functor NFin∗ → C⊗.

So the image of 〈1〉 ∈ NFin∗ gives an object A of C. From d1 : 〈2〉 → 〈1〉 in
NFin∗, we obtain, up to equivalences, a map A⊗A→ A. This definition should
now seem plausible.

Fact. Symmetric monoidal categories are equivalent to the commutative algebra
objects in Cat∞ (with the monoidal structure on Cat∞ given by products).

Given the theory of ∞-operads, we could also define symmetric monoidal
categories as the algebras in Cat∞ of an ∞-operad defining a commutative
operation. We also have a good theory of modules over algebras over an operad,
which we will refer to briefly later.

Inversion

Inversion of objects in a symmetric monoidal category is not so unfamiliar: the
passage from stable to unstable homotopy is the inversion of S1 under the smash
product. This suits our need to pass to a stable motivic ∞-category. Let us
more precisely state what we want.

Definition. Let C be a symmetric monoidal ∞-category. An object A ∈ C is
invertible if there exists B ∈ C with A ⊗ B ' 1(' B ⊗ A). Equivalently, we

could ask for the map C −⊗A−−−→ C to be an equivalence.

So given C and any object A, we want some (strict) symmetric monoidal
functor C → D taking A to an invertible object, and we want one which is
initial with this property. Let SymMonAC/ denote the category of such functors

inverting A; so we want to see that SymMonAC/ has an initial object.

Proposition. The inclusion SymMonAC/ ↪→ SymMonC/ is a reflective subcat-
egory, i.e. the right adjoint to an accessible localization.

Proof. We want to identify the left hand side as the subcategory on S-local
objects, for some collection of morphisms S. So take the singleton

S = {FreeC(C)
−⊗A−−−→ FreeC(C)},

where we form FreeC(C) by taking the free C-algebra on the C-module C. (We
haven’t defined this thoroughly, but we’ll use its straightforward universal prop-
erty.)

Now an object Z is S-local iff

hom(FreeC(C), Z)
(−⊗A)∗−−−−−→ hom(FreeC(C), Z)

is an equivalence. By the universal property of the free object, this is precisely

the condition that Z
−⊗A−−−→ Z is an equivalence, or that A is invertible in Z, as

desired.
Now the general theory of accessible localizations applies: the inclusion of

the S-local objects into a presentable category is always reflective.
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So now we take the left adjoint L : SymMonC/ → SymMonAC/. This must pre-

serve colimits, so it takes the initial object idC to an initial object of SymMonAC/,
as desired.

The stable motivic ∞-category

Last talk, Jay constructed H(S), the unstable motivic ∞-category. This has
products, and thereby becomes symmetric monoidal. We can modify this into
a symmetric monoidal structure, the smash product, on the pointed unstable
category H∗(S) = H(S)∗/. So we want to stabilize this by inverting a sphere.

Question. What sphere?

There are many candidate spheres in this category:

• S1, obtained as a pushout of points

∗
∐
∗ ∗

∗ S1

• Gm = A1 r 0,

• P1,

• A1/Gm.

Notice that any S-scheme yields a functor of points, which is a presheaf on
Sm/S , and thereby becomes an object of the motivic category.

We can define the general motivic sphere Sp,q = (S1)∧p ∧ (Gm)∧q. (This is
not the only choice of how to index the bigrading.) Then for example we have
(P1,∞) ' S1 ∧ Gm, as the following elementary Nisnevich square becomes a
pushout in the motivic category:

Gm A1

A1 P1

and A1 ' ∗, so that this pushout is a suspension diagram.
In order to obtain a stable ∞-category, and thereby a triangulated homo-

topy category, we must invert at least S1. By doing so, we obtain the category
SHS1(S). But this will be inadequate for most purposes, such as representing
various cohomology theories. We ought to invert all of the spheres, or equiva-
lently just P1 ' S1,1.

Definition. The stable motivic ∞-category SH(S) is the formal inversion
of P1 in H∗(S).
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This now has the universal property:

Proposition. For any pointed presentable symmetric monoidal ∞-category D,
the map

Fun⊗,L(SH(S),D)→ Fun⊗(N(Sm/S),D)

is fully faithful, with image consisting of those functors satisfying Nisnevich
descent, A1-invariance, and taking P1 to an invertible object.

For basepoint reasons, we should strictly say the cofiber of the point at
infinity, ∗ ∞−→ P1, rather than P1.
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