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Goal. Construct the homotopy theory of schemes.

§1. ∞-category of presheaves on S.

§2. Localizations of presentable ∞-categories.

§3. Construction of the ∞-category of motivic spaces.

1. The ∞-category of presheaves on S

Let Sp be the ∞-category of spaces, i.e. the simplicial nerve of the full subcat-
egory of simplicial sets spanned by the Kan complexes.

Definition. Let S be a simplicial set. Then Pre(S) = Fun(Sop,Sp) is the
∞-category of presheaves.

Facts. —

• Pre(S) has all limits and colimits, and they are computed pointwise:

K Pre(S)evals Sp

K.

p

p̄

• We have the Yoneda embedding S → Pre(S), defined by

C[Sop × S] C[S]op × C[S]

Set∆

Kan

The adjoint to the composite Sop → S → N(Kan) = Sp is the Yoneda
embedding Y : S → Fun(Sop,Sp) = Pre(S).
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• The Yoneda embedding is fully faithful.

• The Yoneda embedding preserves limits.

• In the following diagram

C◦ D

C

F◦

F

F is a left Kan extension of F ◦ if the following diagram is a colimit dia-
gram:

C◦/c D

(C◦/c)
. pt

F (c)

Theorem. We can think of Pre(C) as the free cocompletion of C, in the sense
that

C Pre(C)

Pre(C)

Y

Y
id=left Kan extension.

This says: any X ⊆ Pre(C) is canonically a colimit of representables.

Corollary. We have a universal property for Pre(S): for D a cocomplete cate-
gory,

FunL(Pre(S),D)
'−→ Fun(S,D).

2. Localization

Let C and D be ∞-categories, and f : C → D.

Definition. f is a localization functor if f has a fully faithful right adjoint
g : D ⊆ C.

Moreover say that f is accessible if f preserves filtered colimits.

Definition. An ∞-category C is presentable if C arises as an accessible local-
ization of an ∞-category of presheaves.

We think of C as being obtained by means of generators and relations.
Let C be an ∞-category and S a set of morphisms.

Idea. We want to find S−1C as the full subcategory in C of “S-local objects”,
and produce a localization functor C → S−1C.

Definition. —
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• An S-local object Z is an object such that for all morphisms f : X → Y
in S,

MapC(Y,Z)
∼→ MapC(X,Z).

• An S-equivalence is a morphism f : X → Y in C such that for all S-local
objects Z,

MapC(Y,Z)
∼→ MapC(X,Z).

Theorem. Let C be a presentable ∞-category and S a small set of morphisms.
Let C′ ⊂ C be the full subcategory of S-local objects.

(1) The inclusion C′ ⊆ C has a left adjoint L : C → C′, which is an accessible
localization.

(2) f is an S-equivalence in C iff L(f) is an equivalence.

(3) C′ is presentable.

Idea. We find X → LX as a “terminal S-equivalence”, i.e. a final object in
some slice category.

Theorem. Let L : C → S−1C as before, and let D be any ∞-category. Let

η : FunL(S−1C,D)
L∗

−−→ FunL(C,D).

Then η is fully faithful, and its essential image consists of F : C → D such that
F (s) is an equivalence for all s ∈ S.

Idea. The hard part is to prove that η is fully faithful. We know that

Fun(S−1C,D)
L∗

−−→ Fun(C,D)

is fully faithful by dualizing our previous observation on left Kan extensions; this
functor is the inclusion of those functors C → D that are right Kan extensions
of their restriction to S−1C.

The remaining key idea is that (S−1C)X/ has an initial object X → LX.

3. Construction of the ∞-category of motivic spaces

Let S be a noetherian scheme of finite dimension. Let Sm /S denote the category
of smooth schemes of finite type over S. We equip this category with the
Nisnevich topology.

There are squares that we call elementary or distinguished squares:

p−1U V

U X

p

i
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where p is étale, i is an open immersion, and with Z = X rU , p : p−1Z → Z is
an isomorphism. These squares form a “basis” for the Nisnevich topology: to
check that F : Smop

/S → Set is a sheaf for the Nisnevich topology, it suffices to

check that on the elementary distinguish squares,

F (X) (F (U)× F (V ) F (p−1(U))

is an equalizer diagram.
We want to localize Pre(Sm /S) so that distinguished squares pass to co-

cartesian schemes. So we take the collection of morphisms

S = {p−1U ∪U V → X, A1 ×X → X, ∅initial → ∅scheme}

Then we define the ∞-category of motivic spaces

H(S) = S−1Pre(Sm /S).

This has the following universal property:

Theorem. The functor

FunL(H(S),D)→ Fun(Sm /S,D)

is fully faithful, and its essential image consists of functors F : Sm /S → D
which satisfy “Nisnevich descent” and invert A1.

We now turn to applications of this theory.

Change of site functors. A map f : S → T of base schemes induces

Sm /T
f∗

−→ Sm /S, and we want this to pass to a map H(T ) → H(S) of the
homotopy categories. We obtain this from the universal property:

Sm /T H(T )

Sm /S H(S)

f∗ ∃!

Complex realization. Let S = Spec k, with k ↪→ C. We apply the universal
property to produce a realization:

Sm /S H(S)

Sp

where the left arrow takes a k-scheme X to the complex points X(C).
Going further, let p : E → X be an étale cover, so that E(C) → X(C) is a

surjective local homeomorphism. Define the diagram

E(C)• =
(
. . . E(C)×X(C) E(C) E(C)

)
Then hocolim(E(C)•)

∼→ X(C), a generalization of the nerve theorem.
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