Quasicategories

Scribe notes from a talk by Meng Guo

$17 { m Mar} 2014$

Definition. A **Kan complex** is a simplicial set K such that the following lift always exists:

Here Λ_i^n is the *i*th horn in Δ^n , the simplicial set formed by deleting the *i*th face.

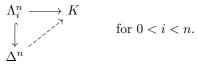
Definition. For C a category, we define N(C), the simplicial set given by strings of morphisms

$$\mathbf{N}(\mathcal{C})_n = \{C_0 \to C_1 \to \ldots \to C_n\},\$$

with face maps given by composition, and degeneracy maps given by insertion of identity morphisms.

We will define ∞ -categories by generalizing the properties of the nerve. Given 1-simplices $C_0 \to C_1 \to C_2$ in $N(\mathcal{C})$, forming a map $\Lambda_1^2 \to N(\mathcal{C})$, we can find a lift of this to a map $\Delta^2 \to N(\mathcal{C})$; for instance the 1-face of this Δ^2 will map to the composite $C_0 \to C_2$. In fact this lift is unique.

Definition. An ∞ -category is a simplicial set \mathcal{C} such that the following lift always exists:



Proposition. Let X be a simplicial set. The following are equivalent:

- 1. X is the nerve of a category C;
- 2. X has the horn-filling condition that defines an ∞ -category, with the further condition that the lift is unique.

Definition. A simplicial category is a category enriched over the category Set_{Δ} of simplicial sets. We write Cat_{Δ} for the category of simplicial categories.

Definition. A functor $\mathcal{C} \to \mathcal{C}'$ between simplicial categories is an equivalence if the induced map $hF : h\mathcal{C} \to h\mathcal{C}'$ on homotopy categories is an equivalence. By $h\mathcal{C}$ we mean \mathcal{C} with the Hom-sets replaced by their homotopy types; so $h\mathcal{C}$ is a category enriched over Ho(Set_{Δ}).

Definition. We define a functor $\mathfrak{C} : \mathsf{Set}_{\Delta} \to \mathsf{Cat}_{\Delta}$ as follows. For a finite non-empty linearly ordered set J,

- The objects of $\mathfrak{C}[J]$ are the elements of J;
- The morphisms of $\mathfrak{C}[J]$ are given by:

$$\operatorname{Map}_{\mathfrak{C}[\Delta^J]}(i,j) = \begin{cases} \emptyset & \text{if } i > j \\ \operatorname{N}(P_{i,j}) & \text{if } i \le j, \end{cases}$$

where $P_{i,j}$ is the poset defined by

$$P_{i,j} = \{ I \subseteq J \mid i, j \in I, i \le k \le j, k \in I \}.$$

For example, $P_{0,2}$ is the poset $\{\{0,2\},\{0,1,2\}\}$.

• For $i_0 < \ldots < i_n$, we have a composition map

$$\operatorname{Map}(i_0, i_1) \times \operatorname{Map}(i_1, i_2) \times \ldots \times \operatorname{Map}(i_{n-1}, i_n),$$

given as the nerve of

$$P_{i_0,i_1} \times P_{i_1,i_2} \times \ldots \times P_{i_{n-1},i_n}, \qquad (I_1,\ldots,I_n) \mapsto I_1 \cup \ldots \cup I_n.$$

This construction is functorial: given $f: J \to J'$, we obtain a map $\mathfrak{C}[\Delta^J] \to \mathfrak{C}[\Delta^{J'}]$ taking *i* to f(i), and taking $P_{i,j}$ to $P_{f(i),f(j)}$. We extend this definition of \mathfrak{C} from just the sets Δ^J to all simplicial sets by taking colimits in Set_Δ to colimits in Cat_Δ .

Definition. We now define the **simplicial nerve** $\mathcal{N}(\mathcal{C})$ of a simplicial category \mathcal{C} by

$$\operatorname{Hom}_{\mathsf{Set}_{\Delta}}(\Delta^{n}, \mathcal{N}(\mathcal{C})) = \operatorname{Hom}_{\mathsf{Cat}_{\Delta}}(\mathfrak{C}[\Delta^{n}], \mathcal{C})$$

Remark. By construction, \mathfrak{C} preserves colimits. In fact it is a left adjoint, with right adjoint given by the simplicial nerve.

Remark. Giving an ordinary category C a discrete simplicial enrichment, the ordinary nerve agrees with the simplicial nerve. But in general, the simplicial nerve of a simplicial category does not agree with the ordinary nerve of the underlying category.

Proposition. Let C be a simplicial category. If for any pair $x, Y \in ob C$, Map_C(x, y) is a Kan complex, then the simplicial nerve $\mathcal{N}(C)$ is an ∞ -category. In fact, we can equip Set_{Δ} and Cat_{Δ} with appropriate model structures so as to obtain this result as a Quillen adjunction. **Definition.** The **Bergner model structure** on Cat_{Δ} is given as follows:

- (W) The weak equivalences are the maps $f : \mathcal{C} \to \mathcal{D}$ satisfying:
 - (W1) For $a, b \in ob(\mathcal{C})$, $Hom_{\mathcal{C}}(a, b) \to Hom_{\mathcal{D}}(fa, fb)$ is a weak equivalence of simplicial sets (equivalently, the geometric realization is a weak equivalence of spaces).
 - (W2) The induced functor $hf: h\mathcal{C} \to h\mathcal{D}$ is an equivalence of categories.
- (F) The fibrations are the maps $f : \mathcal{C} \to \mathcal{D}$ satisfying:
 - (F1) For $a_1, a_2 \in \text{ob} \mathcal{C}$, $\text{Hom}_{\mathcal{C}}(a_1, a_2) \to \text{Hom}_{\mathcal{C}}(fa_1, fa_2)$ is a fibration of simplicial sets (i.e. a Kan fibration).
 - (F2) For $a_1 \in ob \mathcal{C}$, $b \in ob \mathcal{D}$, and a homotopy equivalence $e : fa_1 \to b$, there exists an object $a_2 \in ob \mathcal{D}$ and a homotopy equivalence $a_1 \to a_2$ in \mathcal{C} such that fd = e.
- (C) The cofibrations are defined by the left lifting property with respect to trivial fibrations.

Proposition. Let C be a Bergner fibrant simplicial category C (so each Homspace is a Kan complex). The counit map

$$\operatorname{Map}_{\mathfrak{C}[N(\mathcal{C})]}(x, y) \to \operatorname{Map}_{\mathcal{C}}(x, y)$$

is a weak equivalence of simplicial sets.

Proposition. There exists a model category structure on Set_{Δ} with properties

- (1) A map $p: S \to S'$ is a cofibration iff it is a monomorphism.
- (2) A map $p: S \to S'$ is a weak equivalence, and called a **categorical equiva**lence, iff the induced simplicial category $\mathfrak{C}[S] \to \mathfrak{C}[S']$ is an equivalence of simplicial categories.

With this model structure on Set_{Δ} , and the Bergner model structure on Cat_{Δ} , the functors \mathfrak{C} and \mathcal{N} form a Quillen adjunction.

Proposition. In fact this adjunction is a Quillen equivalence.

Corollary. If C is a locally fibrant simplicial category (i.e. each Hom-set is Kan fibrant), then the simplicial nerve $\mathcal{N}(C)$ is an ∞ -category.

Example. Let \mathcal{M} be a simplicial model category. Then \mathcal{M}_{cf} is locally fibrant, and its simplicial nerve is an ∞ -category.