
PROGRAM FOR THE TALBOT WORKSHOP ON MOTIVIC

HOMOTOPY THEORY

Mentors: Brad Drew and Marc Levine

Part I: Foundations

Lecture 1: Model categories. Recall the basic definitions: model structures, homo-
topy categories, Quillen adjunctions and derived functors. Discuss the equivalence
between the homotopy category of a model category and the full subcategory of
bifibrant objects modulo homotopy equivalence ([Hov99, 1.2.10]). As an example,
introduce the standard model structure on the category of simplicial sets ([Hov99,
§3.2]), emphasizing the role of the small object argument ([Hov99, 2.1.14]) in the
construction of functorial factorizations rather than the characterization of the fi-
brations as Kan fibrations.

Further sources: [DS95, Hir03, Hov99, Qui67].

Lecture 2: Quasi-categories. Define quasi-categories (henceforth referred to as
(∞, 1)-categories) and the fundamental data associated thereto: objects, mor-
phisms, mapping spaces, homotopy categories, equivalences and functors ([Lur09,
§§1.1, 1.2], [Gro10, §1]. Discuss the Quillen equivalence between J. Bergner’s model
structure on the category of categories enriched in simplicial sets and A. Joyal’s
model structure on the category of simplicial sets ([Lur09, 2.2.5.1], [Gro10, 1.27]).
In particular, define the homotopy coherent nerve functor and its left adjoint C,
which encodes associativity of composition “up to coherent homotopy” ([Lur09,
1.1.5.2]). As examples, explain how ordinary categories and simplicial model cate-
gories give rise to (∞, 1)-categories ([Gro10, 1.2, 1.30]).

Further sources: [BV73, Joy08, 3]

Lecture 3: Basic constructions. Define joins, slices and limits in (∞, 1)-categories
([Lur09, §1.2], [Gro10, §2]). Define stable (∞, 1)-categories ([Lur12, §1.1], [Gro10,
§5.1]) and remark that the homotopy category of a stable (∞, 1)-category admits
a natural triangulated category structure. Define Cartesian fibrations ([Lur09,
§2.4], [Gro10, §3.2]) and the (∞, 1)-categorical Grothendieck construction ([Lur09,
3.2.0.1]). As an illustration, introduce adjunctions of (∞, 1)-categories as Cartesian
bifibrations ([Lur09, 5.2.2.1]) and also via unit transformations ([Lur09, 5.2.2.8]).
Time permitting, explain how Quillen adjunctions induce adjunctions of (∞, 1)-
categories ([Lur12, 1.3.4.21]).

Lecture 4: Localization and the unstable motivic (∞, 1)-category. Define pre-
sentable (∞, 1)-categories ([Lur09, §5.5], [Gro10, §2.6]) and discuss the associated
theory of localizations ([Lur09, 5.5.4.15, 5.5.4.20]). Construct the unstable motivic
(∞, 1)-category H(S) of a noetherian scheme S of finite dimension and explain its
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universal property ([Rob13, Thm. 5.2]). Time permitting, talk about the con-
nections between presentable (∞, 1)-categories and combinatorial model categories
([Lur09, A.3.7.6]) and Jeff Smith’s theorem ([Bar10, 2.2]).

Further sources: [Bek00, MV99, DLØ07].

Lecture 5: Symmetric monoidal (∞, 1)-categories and the stable motivic (∞, 1)-
category. Define symmetric monoidal (∞, 1)-categories ([Lur12, 2.0.0.7], [Gro10,
§4.1], [Rob13, §3.1.3]). By only considering the symmetric case, one might avoid
a long digression on general ∞-operads. Interpret symmetric monoidal (∞, 1)-
categories as commutative algebra objects in the symmetric monoidal (∞, 1)-category
of (∞, 1)-categories ([Lur12, 2.4.2.6], [Rob13, §§3.2.2, 3.6.1]). As examples, consider
the (∞, 1)-category H(S) of the previous talk as well as its pointed version H•(S)
([Rob13, §5.2]).

Explain formal inversion of objects in presentable symmetric monoidal (∞, 1)-
categories ([Rob13, Def. 4.7]). Use this to construct the (P1,∞)-stable and S1-
stable motivic (∞, 1)-categories SH(S) and SHS1(S) of a noetherian scheme S of
finite dimension ([Rob13, Def. 5.10]) by formally inverting the objects (P1,∞) and
S1 := ∆1/∂∆1 of H•(S). State the universal property of these objects ([Rob13,
Cor. 5.11]).

Further sources: [Ayo07, CD09, DLØ07].

Lecture 6: Symmetric spectra. Define the stable model structures on the categories
of spectra and symmetric spectra associated to a cofibrant object of a symmet-
ric monoidal model category ([Hov01]). Compare the associated (∞, 1)-categories
with the (∞, 1)-category obtained by the process of formal inversion introduced in
the previous talk ([Rob13, §4.3]). Time permitting, discuss higher algebra in the
context of symmetric monoidal model categories, including but not limited to such
topic as ring spectra, E∞-ring spectra and modules over such ([SS00, Spi01]).

Lecture 7: Étale classifying spaces and representability of algebraic K-theory. This
is essentially Chap. 4 of [19]. Give a brief outline of the results of §4.1 (classify-
ing spaces, G-torsors, etc.). Discuss the geometric construction of étale classifying
spaces §4.2 and go through the arguments in §4.3.2 showing that algebraic K-theory
is represented in H•(S) by the infinite Grassmannian.

Part II: Purity, connectivity, t-structures and the endomorphisms of the
sphere spectrum

Lecture 1. The purity theorem and consequenses. Prove the purity theorem

Theorem 1. Let i : Z → X be a closed immersion in Sm/S. There is a canonical
isomorphism Th(NZ/X) ∼= X/(X \ Z) in H•(S).

Use this to show

Theorem 2 (lemma 3.3.6 of [18]). Let k be a perfect field, X ∈ Spc(k) be an
A1-local space. Then X is n-connected if and only if X is weakly n-connected, i.e.,

πA1

m (X ) = 0 for all m ≤ n iff for all fields F finitely generated over k, πm(X (F )) = 0
for all m ≤ n.
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Sources: [19, §3.2], [15], [18, §3].

Lecture 2. Morel’s A1-connectivity theorem and homotopy t-structures Topics to
be covered: First prove the A1-connectedness theorem:

Theorem 3. Let k be a perfect field. Let X be a presheaf of spectra on Sm/k such

that each Nisnevich stalk of X is n-connected. Then πA1

m (X ) = 0 for m ≤ n.

Then discuss the homotopy t-structures for S1-spectra and T -spectra and the
heart of the homotopy t-structure (homotopy modules). Construct examples: Mil-
nor K-theory, Witt sheaves. Source: [16], for the Witt sheaves, cite results from
[6], [25] and [4] without proof.

Lecture 3. Endomorphisms of the sphere spectrum. Give a construction of Milnor-
Witt K-theory, the homotopy module J∗ and show

Theorem 4. For a field F (of char. not 2), there is a canonical isomorphism
Jn(F ) ∼= KMW

n (F ). In particular, KMW
0 (F ) ∼= GW (F ), the Grothendieck-Witt

group of quadratic forms over F .

Then sketch Morel’s arguments that show

Theorem 5. Let k be a perfect field of charactersitc 6= 2. There is a natural

isomorphism of sheaves Jn ∼= πA1

0 (Σn
Gm

Sk), where Sk is the motivic sphere spectrum
in SH(k).

Sources: The main source is [16], supplemented by [17].

Part III: Algebraic cobordism and oriented theories

Lecture 1. Introduction: Constructions of HZ, K-theory, MGL as objects in SH(S)
(for HZ, take S = Spec k, k a characteristic zero field) plus the conjectures in Vo-
evodskys papers “Open problems. and “A possible new approach...”. Include in
this a construction of the slice tower and the functors fn, sn. Sources: [32] [33], [34]

Lecture 2. The universality of MGL. This is the main thereom in [27]. Dis-
cuss oriented commutative ring spectra in SH(S), and also Panin’s results from
[26] that relate Chern classes, Thom classes and projective pushforward.

Lecture 3. Landweber Exactness. Show how to construct a (co)homology the-
ory from MGL and a Landweber exact formal group law. This is the main result
in [22], relying on results from [23] (which go back to Landweber [9, 10]) and [20]
(going back to [24]).

Lecture 4. The computation of the slices of a Landweber exact theory. These
are the main results from [29, 30], computing first the sllices of MGL, then extend-
ing to a compuation of the slices of a Landweber exact theory.. In addition, use
[21] to show that K-theory is a Landweber exact theory, giving as an application a
computation of the slices of K-theory. The lecturer should explain the computation
of the slices of MGL assuming the main result of Hoyois (discussed in lectures 5-
7 below) as well as Voevodsky’s theorem on the 0th slice of the sphere spectrum [31].
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Lectures 5,6,7. Prove the main result of Hopkins-Morel (in the case of a field k
of char. 0): Take polynomial generators x1, x2, . . . for MU∗. Then the classifying
map MGL → HZ descends to a isomorphism MGL/(x1, x2, . . .) → HZ. This is
used in llecture 4 to compute the slices of MGL. Consequence is the Hopkins-Morel
spectral sequence

Ep,q
2 = Hp−q(X,Z(n− q)⊗MU−2q =⇒ MGLp+q,n(X).

Main source: [7]. The lecturers should assume the construction and facts on Vo-
evodsky’s motivic Steenrod operations [35], the construction of Voevodsky’s trian-
gulated category of motives DM(k) [36], and the main result of Röndigs-Østvær
giving an equivalence of DM(k) with the homotopy category of HZ-modules in
SH(k).

A suggested division of labor, sections refer to [7]:

Lecture 5. Introduction, sections 1-3
Lecture 6. Section 4
Lecture 7. Section 5 and the main result section 6.

Lecture 8. Geometric aspects: describing E2∗,∗ in terms of Ω∗. The lecturer should
give an overview of Levine-Morel-Pandharipande algebraic cobordism Ω∗ and prove
the main result of [12], that the classifying map Ω∗(−) → MGL2∗,∗(−) is an iso-
morphism. If time permits, give the extension to Landweber exact theories and
their (slice) connected covers [11]. If even more time permits, discuss the example
of K-theory and connective K-theory [1].
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