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1 Goals

The K(n)-local sphere has a resolution

π∗LK(n)S // π∗En // π∗LK(n)(En ∧ En) //
// · · ·

and by work of Morava, Lubin-Tate theory, and so on, π∗LK(n)(En ∧ En) ∼= Mapc(Gn, (En)∗). Thus, the
ANSS for LK(n)S can be rewritten as a spectral sequence H∗c (Gn, (En)∗) ⇒ π∗LK(n)S. Our first goal is to
show that Gn acts on the spectrum En, giving a homotopy fixed point spectral sequence H∗(Gn, (En)∗)⇒
π∗E

h′Gn
n , the discrete homotopy fixed points of the Gn-action on En. Our second goal is to define continuous

homotopy fixed points, replace this spectral sequence with the continuous version, and compare the two
spectral sequences giving π∗E

hGn
n
∼= π∗LK(n)S.

2 The Gn-action on En

We’ll in fact construct something more general than this – we’ll show that any algebraic map of coefficient
rings of Lubin-Tate-type spectra can be realized topologically as an A∞ map.

Fix p and let FGLT be the category of formal groups of finite height over a perfect field of characteristic
p. Taking the universal deformation by Lubin-Tate theory and applying the LEFT gives a contravariant
functor to the category of homology theories.

Theorem 1 (Hopkins-Miller). A lift exists in the following diagram:

A∞

��
FGop

LT
//

44

HomTh // Spec.

(In fact, we can even lift to the category of E∞ spectra, though we won’t investigate that now.)

Definition 2. ALT∞ is the full subcategory of A∞ on the spectra E such that:

1. E is an even periodic, homotopy commutative ring spectrum;

2. π0E is a complete local ring, with maximal ideal m, residue field k = π0E/m perfect and positive
characteristic, and E is complex oriented by the FGL corresponding to the universal deformation of k.

3. E is cofibrant.

If i : ALT∞ → A∞ is the inclusion, and π is the map ALT∞ → FGop
LT sending E to the FGL corresponding

to the universal deformation of π0E mod m, then the homotopy right Kan extension hRan(π) : FGop
LT → A∞

will be the desired lift, provided we can show that π is an equivalence. We do so in two lemmas.

Lemma 3. π is fully faithful.
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Proof. Let E, F ∈ ALT∞ with formal groups Γ1 and Γ2, and fix an A∞-operad C. Consider the simplicial
resolution

F CFoo CCF
oo
oo · · ·oo

oo

oo

and let Y • be the cosimplicial object Y n = C−Alg(Cn+1F,E). Then TotY • ' C−Alg(F,E). There’s a
Bousfield-Kan spectral sequence πsπtY

• ⇒ πt−s TotY •, where πs is cohomotopy groups. A map of ring
spectra F → E corresponds to an element of the equalizer of the two maps from π0Y

0 to π0Y
1, that is, an

element of E0,0
2 . The obstructions to realizing this as an A∞ map occur in the groups Es,s−12 , that is, along

the Adams (−1)-line. One does some computations to show that the spectral sequence becomes zero at the
E2-page. Thus we have

π0C−Alg(F,E) = E0,0
∞
∼= E0,0

2
∼= E∞−Alg(E∗F,E∗).

By algebra and our assumptions, this is just Hom(F∗, E∗) ∼= FGLT (Γ1,Γ2).

Lemma 4. π is essentially surjective.

Proof. . Let Γ ∈ FGLT corresponding to the spectrum E via Lubin-Tate; we want to show that E has a A∞
structure. It suffices to construct a map

C

��

// EE

~~
L

with C an A∞-operad, EE [n] = S(E(n), E) and L the linear isometries operad. (We’re using the LMS
construction of spectra, in which the spectrum structure of E is precisely a map from its endomorphism
operad to L.) Let A be an A∞-operad and C∗ → SingA a cofibrant resolution, giving a map |C∗| → A.
Define Y n = (Operad ↓ L)(Cn, EE). Again we examine the Bousfield-Kan spectral sequence for π∗TotY •

and observe that everything vanishes on the E2 page besides E0,0
2 . By the same argument as in the previous

lemma,
π0(Operad ↓ L)(C, EE) ∼= Hom(π0C, π0EE),

and so the desired map C → EE exists, giving E an A∞ structure. This proves the theorem.

3 The E∞ case

Definition 5. The moduli space of a commutative E∗E-comodule algebra A (that is, an E∗E-comodule
with a compatible commutative E∗-algebra structure) is TM(A), the classifying space of the category of
E∞-spectra X with E∗X ∼= A and E∗-isomorphisms.

Theorem 6 (Goerss-Hopkins). If Γ is a FGL giving the spectrum E by Lubin-Tate, then TM(E∗E) has
homotopy type

BAutE∗−Alg(E∗E) ' BAut(Γ).

This is proved in a similar way as before, though the obstruction theory is harder.
The above allows us to lift the Gn-action on (En)∗ to one on En.

4 Homotopy fixed points

Definition 7. Let U ⊆ Gn be an open subgroup. Then we define

EhU
n = Totπ∗LK(n)(πGn/UEn ∧ E

∧•
n ).

Here, for X : J → hE a diagram, we define

πnX =
∏

[jn
αn→jn−1→···

α1→j0]∈N(J )n

F (|Sing E(Xjn , Xjn−1
)αn | × · · · × | Sing E(Xj1 , Xj0)α0

|, Xj0).
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There’s a spectral sequence

πs[Z, π∗LK(n)CGn/U ]t ⇒ (EhU
n )t+sZ.

With some work, one can show that this E2 page is precisely Hs
c (U,EtnZ).


