The Adams-Novikov spectral sequence and the Landweber exact functor theorem

Gabriel Valenzuela

April 22, 2013

1 The Adams-Novikov spectral sequence

If E is a sufficiently nice ring spectrum, there's a spectral sequence

$$E_2 = \operatorname{Ext}_{E_*E}^{s,t}(\pi_*E, E_*X) \to \pi_{t-s}(\widehat{X}),$$

where \widehat{X} is the *E*-nilpotent completion of *X*, and Ext^s is the *sth* right derived functor of $\operatorname{Hom}_{E_*E}$ in the category of comodules over the Hopf algebroid (π_*E, E_*E) . \widehat{X} is defined in Bousfield's 1979 paper on localization of spectra: it's an E_* -local object receiving a map from *X*, which in nice cases is an E_* -isomorphism, forcing $L_E X \simeq \widehat{X}$.

We'll be most interested in the cases $E = H\mathbb{Z}/p$, MU, and BP, the third being the ANSS. All of these have nice properties, such as flatness of the associated Hopf algebroid, connectivity,

Theorem 1 (Novikov, 1967). For any spectrum X, there's a natural spectral sequence $E_r^{s,t}$, with $d_r: E_r^{s,t} \to E_r^{s+r,t+r-1}$ with

- (a) $E_2^{s,t} \cong \operatorname{Ext}_{BP_*BP}(BP_*, BP_*X);$
- (b) If X is connective, then $E_2^{s,t} \Rightarrow \pi_{t-s}(X_{(p)})$.

The advantage of the ANSS over the classical ASS is that BP_*BP is concentrated in degrees divisible by 2(p-1). Thus, for example, if BP_*X is also concentrated in such degrees, then $E_r^{s,t} = 0$ unless 2(p-1)|t, and so there are fewer differentials. This phenomenon is called **sparseness**.

In order to compute the ANSS E_2 page, we need to understand the Hopf algebroid (BP_*, BP_*BP) . Recall that a **Hopf algebroid** (A, Γ) over a commutative ring K is a cogroupoid object in the category of (commutative) K-algebras. Thus, for any ring B, Hom(A, B) and Hom (Γ, B) are naturally respectively the objects and morphisms of a groupoid.

If E_*E is flat over E_* (we say that 'E is flat' for short), then (E_*, E_*E) is a Hopf algebroid with structure maps

(source)	$\eta_L = \pi_*(E \wedge S \to E \wedge E)$
(target)	$\eta_R = \pi_*(S \wedge E \to E \wedge E)$
(identity)	$\epsilon = \pi_*(E \wedge E \to E)$
(inverse)	$c = \pi_*(E \wedge E \xrightarrow{\text{flip}} E \wedge E)$
(composition).	$\Delta = \pi_*(E \wedge S \wedge E \to E \wedge E \wedge E)$

Flatness is used to define the last map, which we should be able to identify as a map $E_*E \to E_*E \otimes_{E_*E} E_*E$. **Definition 2.** A (left) Γ -comodule M is a left A-module with a coaction map

$$\psi: M \to \Gamma \otimes_A M$$

which is counital and coassociative.

For example, if X is a spectrum and E is as above, then E_*X is an E_*E -comodule with ψ induced by $E \wedge S \wedge X \to E \wedge E \wedge X$.

The structure of (BP_*, BP_*BP) (and likewise (MU_*, MU_*MU)) comes naturally from formal groups. Specifically, let FGL: CRing \rightarrow Set and SI: CRing \rightarrow Set send a ring R respectively to its set of formal group laws and its set of strict isomorphisms of formal group laws. These are the objects and morphisms of a groupoid in the obvious way. Now, $FGL = \text{Hom}(L, \cdot)$ where $L = \mathbb{Z}[x_1, x_2, \cdots]$ with $|x_i| = 2i$ (the Lazard ring), and $SI = \text{Hom}(LB, \cdot)$ where $LB = L \otimes \mathbb{Z}[b_1, b_2, \cdot]$ with $|b_i| = 2i$. By Quillen's theorem, these are isomorphic to MU_* and MU_*MU respectively.

Theorem 3 (Landweber 1967, Novikov 1967, independently!). These maps give an isomorphism of Hopf algebroids $(L, LB) \rightarrow (MU_*, MU_*MU)$.

Likewise, we have $(V, VT) \xrightarrow{\cong} (BP_*, BP_*BP)$, where $V = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$ with $|v_i| = 2(p^i - 1)$, $VT = V \otimes \mathbb{Z}_{(p)}[t_1, t_2, \ldots]$ with $|t_i| = 2(p^i - 1)$, and V and VT respectively corepresent the p-typical formal group laws functor and the strict isomorphisms of p-typical formal group laws functor.

2 The Landweber exact functor theorem

If E is a complex-oriented cohomology theory with a fixed orientation class, we can construct a formal group law over E_* in a natural way. We now ask: when can we go back?

Let $F(x,y) \in FGL(R_*)$ for R_* a graded ring; this gives a map $MU_* \to R_*$. Thus there's a functor

$$X \mapsto MU_*X \otimes_{MU_*} R_*.$$

This satisfies all the axioms of a homology theory with the exception of turning cofiber sequences into long exact sequences: tensoring with R_* has destroyed exactness. If R_* were flat over MU_* , we'd be fine, but this is too strong.

The same question can be asked *p*-typically: if R_* has a *p*-typical formal group law represented by $BP_* \to R_*$, then when is

$$X \mapsto BP_*X \otimes_{BP_*} R_*$$

a homology theory?

Theorem 4 (Landweber exact functor theorem, Landweber 1976). For a fixed BP_* -module R_* , the above functor is a homology theory iff for all n, the sequence $(p, v_1, v_2, \ldots, v_n)$ is a regular sequence in R_* (that is, each v_n is a non-zero-divisor in $R_*/(p, v_1, \ldots, v_{n-1})$).

The proof is via the study of the category of (finitely presented) BP_*BP -comodules. One arrives at the following theorems:

Theorem 5 (Landweber 1973). The only prime ideals of BP_* which are also BP_*BP -comodules are the ideals $I_n = (p, v_1, \ldots, v_{n-1})$ for $0 \le n \le \infty$.

Theorem 6 (Landweber filtration theorem, Landweber 1973). Any BP_*BP -comodule M which is finitely presented as a BP_* -module has a filtration by comodules

$$0 = M_0 \subseteq M_1 \subseteq \dots \subseteq M_n = M$$

with $M_{i+1}/M_i \cong BP_*/I_{n_i}$.

(We need to be careful in general about our finiteness conditions when dealing with non-noetherian rings. However, since BP_* is coherent as a ring, a module is finitely presented iff it is coherent.)

Proof of LEFT. Consider the exact sequences

$$0 \to BP_*/I_n \xrightarrow{v_n} BP_*/I_n \to BP_*/I_{n+1} \to 0.$$

The sequences given in the theorem statement are regular in R_* iff tensoring with R_* preserves exactness of these sequences, which is true iff $\operatorname{Tor}^{BP_*}(BP_*/I_n, R_*) = 0$. But by the filtration theorem, this is true iff

2. THE LANDWEBER EXACT FUNCTOR THEOREM

 $\operatorname{Tor}^{BP_*}(M, R_*) = 0$ for any finitely presented BP_*BP -comodule M, which is true in turn iff tensoring with R_* is exact on the category of finitely presented BP_*BP -comodules. Finally, if X is a finite CW-complex, then BP_*X is finitely presented, so we establish the excision axiom on the finite CW-complexes, which implies it for all spectra.

The only nontrivial step in the converse is showing that enough finitely presented BP_*BP -comodules show up as BP_*X for finite CW-complexes X – we need some analogue of the periodicity theorem.

Example 7.

- Let $F_a(x,y) = x + y$ over \mathbb{Q} . Then $MU_*(X) \otimes \mathbb{Q} \cong H_*(X;\mathbb{Q})$.
- Let $F_m(x,y) = x + y + \beta xy$ over $\mathbb{Z}[\beta, \beta^{-1}]$ with $|\beta| = 2$. Then $MU_*(X) \otimes \mathbb{Z}[\beta, \beta^{-1}] \cong K_*X$.
- For every elliptic curve, there's a natural FGL over a ring representing modular forms with certain Fourier coefficients, and this gives a homology theory $\text{Ell}_*(X)$, called **elliptic homology**.
- The Johnson-Wilson theories E(n), with $E(n)_* = \mathbb{Z}_{(p)}[v_1, \ldots, v_n, v_n^{-1}]$, are constructed via the LEFT, and we have to invert v_n in order to achieve Landweber exactness.
- Importantly, Morava K-theory K(n) cannot be built in this way. However, there's a spectral sequence $E_2 = \operatorname{Tor}^{BP_*}(BP_*X, K(n)_*) \Rightarrow K(n)_*(X)$ which arises directly from the failure of Landweber exactness. (It's just a Künneth spectral sequence.)