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1 The Adams-Novikov spectral sequence

If E is a sufficiently nice ring spectrum, there’s a spectral sequence

E2 = Exts,tE∗E
(π∗E,E∗X)→ πt−s(X̂),

where X̂ is the E-nilpotent completion of X, and Exts is the sth right derived functor of HomE∗E in

the category of comodules over the Hopf algebroid (π∗E,E∗E). X̂ is defined in Bousfield’s 1979 paper
on localization of spectra: it’s an E∗-local object receiving a map from X, which in nice cases is an E∗-
isomorphism, forcing LEX ' X̂.

We’ll be most interested in the cases E = HZ/p, MU , and BP , the third being the ANSS. All of these
have nice properties, such as flatness of the associated Hopf algebroid, connectivity, . . . .

Theorem 1 (Novikov, 1967). For any spectrum X, there’s a natural spectral sequence Es,t
r , with dr : Es,t

r →
Es+r,t+r−1

r with

(a) Es,t
2
∼= ExtBP∗BP (BP∗, BP∗X);

(b) If X is connective, then Es,t
2 ⇒ πt−s(X(p)).

The advantage of the ANSS over the classical ASS is that BP∗BP is concentrated in degrees divisible by
2(p − 1). Thus, for example, if BP∗X is also concentrated in such degrees, then Es,t

r = 0 unless 2(p − 1)|t,
and so there are fewer differentials. This phenomenon is called sparseness.

In order to compute the ANSS E2 page, we need to understand the Hopf algebroid (BP∗, BP∗BP ).
Recall that a Hopf algebroid (A,Γ) over a commutative ring K is a cogroupoid object in the category of
(commutative) K-algebras. Thus, for any ring B, Hom(A,B) and Hom(Γ, B) are naturally respectively the
objects and morphisms of a groupoid.

If E∗E is flat over E∗ (we say that ‘E is flat’ for short), then (E∗, E∗E) is a Hopf algebroid with structure
maps

ηL = π∗(E ∧ S → E ∧ E) (source)

ηR = π∗(S ∧ E → E ∧ E) (target)

ε = π∗(E ∧ E → E) (identity)

c = π∗(E ∧ E flip→ E ∧ E) (inverse)

∆ = π∗(E ∧ S ∧ E → E ∧ E ∧ E) (composition).

Flatness is used to define the last map, which we should be able to identify as a map E∗E → E∗E⊗E∗EE∗E.

Definition 2. A (left) Γ-comodule M is a left A-module with a coaction map

ψ : M → Γ⊗A M

which is counital and coassociative.
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For example, if X is a spectrum and E is as above, then E∗X is an E∗E-comodule with ψ induced by
E ∧ S ∧X → E ∧ E ∧X.

The structure of (BP∗, BP∗BP ) (and likewise (MU∗,MU∗MU)) comes naturally from formal groups.
Specifically, let FGL : CRing → Set and SI : CRing → Set send a ring R respectively to its set of formal
group laws and its set of strict isomorphisms of formal group laws. These are the objects and morphisms of
a groupoid in the obvious way. Now, FGL = Hom(L, ·) where L = Z[x1, x2, · · · ] with |xi| = 2i (the Lazard
ring), and SI = Hom(LB, ·) where LB = L ⊗ Z[b1, b2, ·] with |bi| = 2i. By Quillen’s theorem, these are
isomorphic to MU∗ and MU∗MU respectively.

Theorem 3 (Landweber 1967, Novikov 1967, independently!). These maps give an isomorphism of Hopf
algebroids (L,LB)→ (MU∗,MU∗MU).

Likewise, we have (V, V T )
∼=→ (BP∗, BP∗BP ), where V = Z(p)[v1, v2, . . . ] with |vi| = 2(pi − 1), V T =

V ⊗ Z(p)[t1, t2, . . . ] with |ti| = 2(pi − 1), and V and V T respectively corepresent the p-typical formal group
laws functor and the strict isomorphisms of p-typical formal group laws functor.

2 The Landweber exact functor theorem

If E is a complex-oriented cohomology theory with a fixed orientation class, we can construct a formal group
law over E∗ in a natural way. We now ask: when can we go back?

Let F (x, y) ∈ FGL(R∗) for R∗ a graded ring; this gives a map MU∗ → R∗. Thus there’s a functor

X 7→MU∗X ⊗MU∗ R∗.

This satisfies all the axioms of a homology theory with the exception of turning cofiber sequences into long
exact sequences: tensoring with R∗ has destroyed exactness. If R∗ were flat over MU∗, we’d be fine, but
this is too strong.

The same question can be asked p-typically: if R∗ has a p-typical formal group law represented by
BP∗ → R∗, then when is

X 7→ BP∗X ⊗BP∗ R∗

a homology theory?

Theorem 4 (Landweber exact functor theorem, Landweber 1976). For a fixed BP∗-module R∗, the above
functor is a homology theory iff for all n, the sequence (p, v1, v2, . . . , vn) is a regular sequence in R∗ (that is,
each vn is a non-zero-divisor in R∗/(p, v1, . . . , vn−1)).

The proof is via the study of the category of (finitely presented) BP∗BP -comodules. One arrives at the
following theorems:

Theorem 5 (Landweber 1973). The only prime ideals of BP∗ which are also BP∗BP -comodules are the
ideals In = (p, v1, . . . , vn−1) for 0 ≤ n ≤ ∞.

Theorem 6 (Landweber filtration theorem, Landweber 1973). Any BP∗BP -comodule M which is finitely
presented as a BP∗-module has a filtration by comodules

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M

with Mi+1/Mi
∼= BP∗/Ini

.

(We need to be careful in general about our finiteness conditions when dealing with non-noetherian rings.
However, since BP∗ is coherent as a ring, a module is finitely presented iff it is coherent.)

Proof of LEFT. Consider the exact sequences

0→ BP∗/In
vn→ BP∗/In → BP∗/In+1 → 0.

The sequences given in the theorem statement are regular in R∗ iff tensoring with R∗ preserves exactness
of these sequences, which is true iff TorBP∗(BP∗/In, R∗) = 0. But by the filtration theorem, this is true iff
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TorBP∗(M,R∗) = 0 for any finitely presented BP∗BP -comodule M , which is true in turn iff tensoring with
R∗ is exact on the category of finitely presented BP∗BP -comodules. Finally, if X is a finite CW-complex,
then BP∗X is finitely presented, so we establish the excision axiom on the finite CW-complexes, which
implies it for all spectra.

The only nontrivial step in the converse is showing that enough finitely presented BP∗BP -comodules
show up as BP∗X for finite CW-complexes X – we need some analogue of the periodicity theorem.

Example 7.

• Let Fa(x, y) = x+ y over Q. Then MU∗(X)⊗Q ∼= H∗(X;Q).

• Let Fm(x, y) = x+ y + βxy over Z[β, β−1] with |β| = 2. Then MU∗(X)⊗ Z[β, β−1] ∼= K∗X.

• For every elliptic curve, there’s a natural FGL over a ring representing modular forms with certain
Fourier coefficients, and this gives a homology theory Ell∗(X), called elliptic homology.

• The Johnson-Wilson theories E(n), with E(n)∗ = Z(p)[v1, . . . , vn, v
−1
n ], are constructed via the LEFT,

and we have to invert vn in order to achieve Landweber exactness.

• Importantly, Morava K-theory K(n) cannot be built in this way. However, there’s a spectral se-
quence E2 = TorBP∗(BP∗X,K(n)∗)⇒ K(n)∗(X) which arises directly from the failure of Landweber
exactness. (It’s just a Künneth spectral sequence.)


