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We’ll discuss the following theorem:

Theorem 1 (Goerss-Henn-Mahowald-Rezk). Localize at p = 3. There is a sequence of maps of spectra

LK(2)S → EhG24
2 → Σ8E2hSD16 ∨EhG24

2 → Σ8EhSD16
2 ∨Σ40EhSD16

2 → Σ40EhSD16
2 ∨Σ48EhG24

2 → Σ48EhG24
2

such that the composition of any two maps is null and all possible Toda brackets are zero mod indeterminacy.

Since all Toda brackets are zero, this refines to a finite tower of fibrations with LK(2)S at the top. Note

the periodicity; additionally, EhSD16
2 is 16-periodic, so Σ40EhSD16

2 ' Σ8E
hSD16
2 ; we’ve written it this way to

emphasize the duality in the sequence of maps. Finally, this is not an E2-Adams resolution. In particular,
EhG24

2 is not E2 injective.

1 Preliminaries

At height n = p−1, Gn has infinite cohomological dimension: p is a bad prime. However, it’s not a really bad
prime, and in particular, Gn has finite virtual cohomological dimension, which means that it has finite-index
subgroups that have finite cohomological dimension. We can use these subgroups to build resolutions.

Definition 2. A Morava module is an (En)∗-module with an action of Gn such that these actions com-
mute.

Suppressing the ns, the prototypical example is E∨∗X = π∗LK(n)(E ∧ X). In fact, we’ll generally just
write this as E∗X. We’ll also be assuming that K(n)∗X is concentrated in even degrees.

Let M be a Morava module and consider Homc(Gn,M). This is a Morava module with E∗ acting by its
action on M and with Gn acting by conjugation.

Theorem 3 (Morava). E∗E ∼= Homc(Gn, E∗) as Morava modules.

Theorem 4 (Devinatz-Hopkins). E∗E
hK
n
∼= Homc(Gn/K,E∗) as Morava modules, for K a finite subgroup

of Gn.

Let M ↑GnK be the induced module of a Zp[K]-module M , given by M ↑GnK = Zp[[Gn]]⊗̂Zp[K]M . In

particular, if M = Zp then Zp ↑GnK ∼= Zp[[Gn/K]], and

Homc
Zp(Zp ↑GnK , E∗) ∼= Homc

Zp(Zp[[Gn/K]], E∗) ∼= Homc(Gn/K,E∗) ∼= E∗E
hK

by the above theorem of Devinatz and Hopkins.
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2 The case n = 1, p = 2

We’ve talked about height 1 before, but we avoided p = 2, which is bad here. We have G1 = S1 ∼= Z×2 , E1 is
2-adic K-theory, and EhC2

1 ' KO∧2 . We have a fiber sequence

LK(1)S → KO∧2
ψ3−1→ KO∧2 .

There’s a short exact sequence

0→ Z2[[t]]
t→ Z2[[t]]→ Z2 → 0,

and an isomorphism Z2[[t]] ∼= Z2[[Z2]] sending t to γ− e, where γ is an additive topological generator for the
inner Z2 and e is the zero of the inner Z2. Thus we can write the above short exact sequence as

0→ Z2 ↑G1

C2
→ Z2 ↑G1

C2
→ Z2 → 0,

and apply Homc
Z2

(−, E∗), giving the sequence

0→ E∗ → E∗E
hC2 → E∗E

hC2 → 0.

This is exact because the domains are projective as Z2-modules. This is a sort of algebraic version of the
fiber sequence defining the K(1)-local sphere.

3 The case n = 2, p = 3

We have an exact sequence

0→ G1
n → Gn

det→ Zp → 0.

For n coprime to p, this splits, and we can write Gn ∼= G1
n × Zp.

We now discuss the finite subgroups of the Morava stabilizer group required for the theorem. G24

is a subgroup of order 24, isomorphic to C3 o Q8. Let ω be a primitive 8th root of unity, and S the
noncommuting variable generating S2 over W (F9). Then if s = − 1

2 (1 + ωS) and φ is the generator of
Gal(F9/F3), G24 = 〈S, ω2, ωφ〉.

SD16 is the semidirect product C8 o Gal(F9/F3) generated by ω and φ, and Q8 is an index 2 subgroup.
Let λ be the pullback of the sign representation on Q8 to SD16. One can show algebraically that there’s an
exact sequence of Z3[[G1

2]]-modules

0→ Z3 ↑
G1

2

G24
→ Z3(λ) ↑G

1
2

SD16
→ Z3(λ) ↑G

1
2

SD16
→ Z3 ↑

G1
2

G24
→ 0.

Z3(λ), it should be pointed out, is just Z3, but with ω and φ acting by multiplication by −1.
The starting point of the computation is H∗(S1

2 ;F3), where S1
2 is the 3-Sylow subgroup of G2. This

was computed by Henn. This helps for several reasons. First, Ext∗Z3[[S1
2 ]]

(M ;F3) is F3-linearly dual to

Tor
Z3[[S

1
2 ]]

∗ (M ;F3). Second, if G is a finitely generated profinite group and f : M → N is a morphism of
complete Z3[[G]]-modules such that F3 ⊗ f : F3 ⊗Z3[[G]] M → F3 ⊗Z3[[G]] N is surjective, then f is also
surjective (which can be thought of as a version of Nakayama’s lemma).

We start with the augmentation

0→ N1 → Z3 ↑
G1

2

G24
→ Z3 → 0.

We can compute ExtZ3[[S1
2 ]]

(N1,F3) using the long exact sequence in Ext. This allows one to define a map

f : Z3(λ) ↑G
1
2

SD16
→ N1 with f ⊗ F3 surjective. Using the ‘version of Nakayama’s lemma’ from above, this

means that f is surjective, whose kernel we’ll call N2. Again using the long exact sequence in Ext, we can

calculate Ext(N2,F3), and construct another surjective map Z3(λ) ↑G
1
2

SD16
→ N2, with kernel N3.

We want to show N3
∼= Z3 ↑

G1
2

G24
. It turns out that it suffices to show that there’s a map N3 → Z3 ↑

G1
2

G24

which is nonzero on Ext groups. This is difficult but can be done. (Note that all these maps past the first
augmentation map aren’t explicit; Karamanov has constructed explicit approximations to them.)
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We can then tensor this up to G2 itself. It remains to represent these groups by actual spectra. Some of
this can be done via the Devinatz-Hopkins theorem above: for example, Z3 ↑G2

G24

∼= E∗E
hG24 . For SD16, let

eλ be the idempotent

eλ =
1

16

∑
g∈SD16

λ(g)g−1

in Z3[SD16]. We can form the telescope Eλ = colim(E
eλ→ E

eλ→ · · · ), and we have

E∗E
λ ∼= HomZ3[[SD16]](Z3(λ), E∗E)
∼= HomZ3[[SD16]](Z3(λ),Homc(G2, E∗))

∼= HomZ3[[G2]](Z3(λ) ↑G2

SD16
,Homc(G2, E∗))

∼= Homc
Z3

(Z3(λ) ↑G2

SD16
, E∗).

It turns out that E∗E
λ ∼= E∗(Σ

8EhSD16). We take the algebraic sequence and apply Homc
Z3

(−, E∗), giving
us

0→ E∗ → E∗E
hG24 → E∗Σ

8EhSD16
⊕ E∗EhG24 → E∗Σ

8EhSD16 ⊕ E∗Σ40EhSD16

→ E∗Σ
40EhSD16 ⊕ E∗EhG24 → E∗E

hG24 → 0.

Here E∗E
hG24 ∼= E∗(Σ

48EhG24), as mentioned earlier. It remains to realize this topologically.

Proposition 5 (Proposition 2.7 of GHMR). Let H1, H2 be closed subgroups of Gn, with H2 finite. Then
there is a commutative diagram

π∗En[[Gn/H1]]hH2

∼=
��

// (En)∗[[Gn/H1]]H2

∼=
��

π∗F (EhH1
2 , EhH2

2 ) // HomMorava(E∗E
hH1 , E∗E

hH2),

where the top map is the edge homomorphism in the HFPSS.

(Here if E is a spectrum and X = limXi a profinite group, then E[[X]] = holimi(E ∧Xi).)
Realizing maps topologically means lifting them along the bottom map in the square of the proposition,

and so it suffices to show that the top map is surjective. In most cases, the HFPSS collapses, allowing us to
do this. The Toda bracket calculations work in a similar way.

4 Applications

Several applications have been done by combinations of Goerss, Henn, Mahowald, Rezk, Shimimura, Kara-
manov (and Agnès’s thesis!). These include calcuation of π∗LK(2)V (0), finding exotic elements in the Picard
group, a possible disproof of the chromatic splitting conjecture, the Brown-Comenetz dual of LK(2)S, and the

rational homotopy of LK(2)S. We also have LK(2)tmf = EhG24
2 , and we can hopefully use this to compute

LK(2)S entirely.


