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1 Introduction

In stable homotopy theory, we generally index π∗ on Z. The reason we do this is that the Picard group of
the stable homotopy category S is Z, generated by S1. For if X is an invertible object, the Künneth formula
shows that the homology of X with coefficients in any field, and thus integrally, is the same as that of a
sphere, and the Hurewicz theorem shows that X is a sphere.

However, this is no longer true in the category Kn of K(n)-local spectra. (The smash product is now
−∧̂− = LK(n)(−∧−), and the unit is LK(n)S.) Picn = PicKn still has a subgroup Z, generated by LK(n)S

1,

but there may now be more invertible objects, and for Sλ ∈ Picn, we can define πλX = [Sλ, X], thus indexing
homotopy groups on the Picard group.

2 The Mazel-Gee interruption

In fact, this group is a p-adic Lie group, and the homotopy groups indexed on it exhibit continuity properties.
Strickland did this at height 1 for the K(1)-local sphere. He defines Λ = Zp[[Pic∗1]], the “holomorphic Zp-
valued functions” on Pic1, and Mλ the “module of Dirac delta functions,” given by Zp with action β ·x = λβx.

Recall that πnLK(1)S = Zp/ps in degree n = qs−1 (s prime to p), Zp in degree zero, and 0 otherwise. In

fact, Zp/ps only depends on the p-adic valuation of s, and we have Zp/ps = Zp/p1−|s|p . Thus the homotopy
groups of LK(1)S are ‘continuous in s’, and we can define πnLK(1)S for all n ∈ Zp by continuity.

Another way to talk about these groups is in terms of the denominator of the Bernoulli number B2s/4s.
This is a map Z → Q/Z, and we’d like to extend it to Zp → Qp/Zp. Number theorists have done this: the
Bernoulli numbers appear as special values of the Riemann zeta function, and there’s a p-adic zeta function
that interpolates between them as elements of Qp.

There are two obvious generalizations we’d like to have: to other K(1)-local spectra, and to higher
heights. The first is still unclear – there’s not even a good construction for the Λ-module associated to a
cofiber, since computing its homotopy groups requires solving an extension problem. For the second, Behrens
has proved a complicated extension to height 2, and we’d hope to get a map Pic2 → V → V/MF∗, where V
is the ring of p-adic modular forms.

3 Pic1 for p > 2

The K(1)-local sphere at an odd prime p shows up as the fiber for a map KU∧p → KU∧p given by Ψγ − 1,

where γ is a topological generator for Z×p . Note that (E1)∗LK(1)S = (E1)∗. Now, ψλ acts on KU(S2n) by

λn, so if we instead take the fiber of KU∧p
ψγ−γn→ KU∧p , we get LK(1)S

2n. This gives us half the spheres, and

we can in fact extend it to get half of Pic1. For λ ∈ Z×p , we define S(λ) to be the fiber of KU∧p
ψγ−λ→ KU∧p .

This is invertible, with S(λ)∧̂S(λ−1) ∼= S, as is shown by the following proposition.

Proposition 1 (Hopkins-Mahowald-Sadofsky). The following are equivalent for X ∈ Kn.

1. X ∈ Picn;

2. K(n)∗X is free of rank 1 over K(n)∗;
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3. (En)∧∗X is free of rank 1 over (En)∗.

One can check that ψγ acts by λ on (E1)∧∗S(λ), so that λ is uniquely determined by S(λ) (once we’ve
fixed γ).

Proposition 2 (Hopkins-Mahowald-Sadofsky). There’s a non-split extension

0→ Pic01 → Pic1 → Z/2→ 0,

where Pic01
∼= Z×p is the group constructed above.

Since Z×p ∼= Z/(p − 1) ⊕ Zp and p is odd, the only way this extension can be non-split is if Pic1 =
Z/(2(p− 1))⊕ Zp. In particular, there are torsion elements in the Picard group! We can exhibit a 2(p− 1)-
torsion element P as follows. If P = Σ−1S(µ) is 2(p− 1)-torsion, then taking 2(p− 1)th smash powers gives
S2(p−1) = Σ2(p−1)P∧(2(p−1)) = S(µ2(p−1)). By construction, S2(p−1) = S(γp−1), so we must have µ =

√
γ.

This exists by Hensel’s lemma. In fact, we can define γ = ζ(p + 1) where ζ is a primitive (p − 1)th root of
unity. Thus γp−1 = (p− 1)p+1, so we can take µ =

√
p+ 1.

4 Large primes

Proposition 3 (Hopkins-Mahowald-Sadofsky). Suppose 2p− 2 > max(n2, 2n+ 2). Then the functor (E∧n )0
from Pic0n to the category of En-modules with Sn-action is injective.

Sketch of proof. Let X ∈ ker((E∧n )0). We have an ANSS H∗,∗(Sn, (En)∧∗ (X)) ⇒ W (Fpn) ⊗ Zpπ∗X, and by
sparseness of the ANSS, this collapses. Its E2 term looks just like the E2 term for the sphere. There’s a class
in E2 for the sphere corresponding to S → LK(n)S, which has to correspond in E2 for X to a map S → X.
One checks that this gives X = LK(n)S.

One important En-Sn-module is det, the unreduced determinant. Sn = O×D acts by linear maps on
D, which is a vector space of dimension n2 over Qp, giving a determinant map Sn → Z×p . The reduced
determinant is the composition of this with the nth root map.

5 Brown-Comenetz duality

The stable homotopy category has an obvious notion of duality given by Spanier-Whitehead duality. A
second natural type of duality is given by Brown-Comenetz duality. For E and X spectra, the Brown-
Comenetz dual of E is a spectrum IE such that (IE)nX ∼= (EnX)∨, where for A a locally compact
abelian group, A∨ is its Pontryagin dual Hom(A,S1). In particular, πnIE ∼= (π−nE)∨. Brown showed
this exists, and it in fact suffices to define it for the sphere, since we have IE ∼= F (E, I), where I = IS.

Theorem 4 (Gross-Hopkins duality). LK(n)I ∈ Picn, and LK(n)I ∼= Σn
2−nS(det) for p >> n.

We also have LK(n)I ∼= F (MnS, I), allowing us to show that.

πt(MnX)∨ ∼= [X,LK(n)I]−t ∼= [Sn−n
2−t(−det), LK(n)DX] = πn−n2−det−tLK(n)DX.

In particular, this is a formula for the homotopy groups of the K(n)-local Spanier-Whitehead dual of X in
terms of X, though we have to introduce this strange Picard element S(det) in order to do so. If pX = 0
mod p, then S(det) behaves like a “p-adic” sphere, which can be accessed by vn-periodicity. In the following
case, we can replace this with an integral sphere.

Theorem 5 (Gross-Hopkins). If F is a finite type n spectrum with pF = 0 with a vn-self map v of degree
pm, then πt(F )∨ ∼= πα−tLK(n)DF , where

α =
2pnm(pn − 1)

p− 1
+ n2 − n.



6. THE MAZEL-GEE RESURRECTION 3

Gross-Hopkins duality can be thought of as a sort of Serre duality. If X si a smooth proper algebraic
variety over a field k, F a coherent sheaf on X, and K is the canonical bundle on X, then Serre duality is
an isomorphism

Hi(X;F )∨ ∼= Hn−i(X;K ⊗ F∨).

Replacing K with I, X with a K(n)-local space, cohomology with homotopy groups, the vector space duality
on the left by Pontryagin duality, and the sheaf duality on the right with Spanier-Whitehead duality, we
recover Gross-Hopkins duality.

Here are a few of the facts that go into this proof. First, LK(n)DEn ' Σ−n
2

En, which one can prove via

an ANSS. Second, MnEn ' Σ−nEn/I
∞
n . Third, πt(En/I

∞
n ) ∼= Ωn−1(En)0/Zpn ⊗(En)0 (En)−t, where Ω means

the module of Kähler differentials. Combining these various isomorphisms gives us

(En)∧t I
∼= πt(En ∧ LK(n)I)

∼= πt(Σ
n2

LK(n)DEn ∧ LK(n)I)
∼= πt−n2F (En, LK(n)I)
∼= πn2−t(MnEn)∨

∼= πn2+n−t(En/I
∞
n ))∨

∼= Ωn−1(En)0/Zpn ⊗(En)0 Et−n2−n.

We need to prove that Ωn−1(En)0/Zpn
∼= (En)2n(det) ∼= ω⊗n(det), which Gross and Hopkins prove using a lot of

rigid analytic geometry.

6 The Mazel-Gee resurrection

Aaron said some things about the Gross-Hopkins proof and rigid analytic geometry far too fast for me to
copy.


