Gross-Hopkins duality and Pic

Saul Glasman feat. Aaron Mazel-Gee

May 15, 2013

1 Introduction

In stable homotopy theory, we generally index π_* on \mathbb{Z} . The reason we do this is that the Picard group of the stable homotopy category S is \mathbb{Z} , generated by S^1 . For if X is an invertible object, the Künneth formula shows that the homology of X with coefficients in any field, and thus integrally, is the same as that of a sphere, and the Hurewicz theorem shows that X is a sphere.

However, this is no longer true in the category \mathcal{K}_n of K(n)-local spectra. (The smash product is now $-\widehat{\wedge} - = L_{K(n)}(-\wedge -)$, and the unit is $L_{K(n)}S$.) Pic_n = Pic \mathcal{K}_n still has a subgroup \mathbb{Z} , generated by $L_{K(n)}S^1$, but there may now be more invertible objects, and for $S^{\lambda} \in \text{Pic}_n$, we can define $\pi_{\lambda}X = [S^{\lambda}, X]$, thus indexing homotopy groups on the Picard group.

2 The Mazel-Gee interruption

In fact, this group is a *p*-adic Lie group, and the homotopy groups indexed on it exhibit continuity properties. Strickland did this at height 1 for the K(1)-local sphere. He defines $\Lambda = \mathbb{Z}_p[[\operatorname{Pic}_1^*]]$, the "holomorphic \mathbb{Z}_p -valued functions" on Pic₁, and M_{λ} the "module of Dirac delta functions," given by \mathbb{Z}_p with action $\beta \cdot x = \lambda^{\beta} x$.

Recall that $\pi_n L_{K(1)}S = \mathbb{Z}_p/ps$ in degree n = qs - 1 (s prime to p), \mathbb{Z}_p in degree zero, and 0 otherwise. In fact, \mathbb{Z}_p/ps only depends on the p-adic valuation of s, and we have $\mathbb{Z}_p/ps = \mathbb{Z}_p/p^{1-|s|_p}$. Thus the homotopy groups of $L_{K(1)}S$ are 'continuous in s', and we can define $\pi_n L_{K(1)}S$ for all $n \in \mathbb{Z}_p$ by continuity.

Another way to talk about these groups is in terms of the denominator of the Bernoulli number $B_{2s}/4s$. This is a map $\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$, and we'd like to extend it to $\mathbb{Z}_p \to \mathbb{Q}_p/\mathbb{Z}_p$. Number theorists have done this: the Bernoulli numbers appear as special values of the Riemann zeta function, and there's a *p*-adic zeta function that interpolates between them as elements of \mathbb{Q}_p .

There are two obvious generalizations we'd like to have: to other K(1)-local spectra, and to higher heights. The first is still unclear – there's not even a good construction for the Λ -module associated to a cofiber, since computing its homotopy groups requires solving an extension problem. For the second, Behrens has proved a complicated extension to height 2, and we'd hope to get a map $\operatorname{Pic}_2 \to V \to V/MF_*$, where V is the ring of p-adic modular forms.

3 Pic₁ for p > 2

The K(1)-local sphere at an odd prime p shows up as the fiber for a map $KU_p^{\wedge} \to KU_p^{\wedge}$ given by $\Psi^{\gamma} - 1$, where γ is a topological generator for \mathbb{Z}_p^{\times} . Note that $(E_1)_*L_{K(1)}S = (E_1)_*$. Now, ψ^{λ} acts on $KU(S^{2n})$ by λ^n , so if we instead take the fiber of $KU_p^{\wedge} \stackrel{\psi^{\gamma} - \gamma^n}{\to} KU_p^{\wedge}$, we get $L_{K(1)}S^{2n}$. This gives us half the spheres, and we can in fact extend it to get half of Pic₁. For $\lambda \in \mathbb{Z}_p^{\times}$, we define $S(\lambda)$ to be the fiber of $KU_p^{\wedge} \stackrel{\psi^{\gamma} - \lambda}{\to} KU_p^{\wedge}$. This is invertible, with $S(\lambda) \widehat{\wedge} S(\lambda^{-1}) \cong S$, as is shown by the following proposition.

Proposition 1 (Hopkins-Mahowald-Sadofsky). The following are equivalent for $X \in \mathcal{K}_n$.

- 1. $X \in \operatorname{Pic}_n$;
- 2. $K(n)_*X$ is free of rank 1 over $K(n)_*$;

3. $(E_n)^{\wedge}_*X$ is free of rank 1 over $(E_n)_*$.

One can check that ψ^{γ} acts by λ on $(E_1)^{\wedge}_* S(\lambda)$, so that λ is uniquely determined by $S(\lambda)$ (once we've fixed γ).

Proposition 2 (Hopkins-Mahowald-Sadofsky). There's a non-split extension

$$0 \to \operatorname{Pic}_1^0 \to \operatorname{Pic}_1 \to \mathbb{Z}/2 \to 0,$$

where $\operatorname{Pic}_1^0 \cong \mathbb{Z}_p^{\times}$ is the group constructed above.

Since $\mathbb{Z}_p^{\times} \cong \mathbb{Z}/(p-1) \oplus \mathbb{Z}_p$ and p is odd, the only way this extension can be non-split is if $\operatorname{Pic}_1 = \mathbb{Z}/(2(p-1)) \oplus \mathbb{Z}_p$. In particular, there are torsion elements in the Picard group! We can exhibit a 2(p-1)-torsion element P as follows. If $P = \Sigma^{-1}S(\mu)$ is 2(p-1)-torsion, then taking 2(p-1)th smash powers gives $S^{2(p-1)} = \Sigma^{2(p-1)}P^{\wedge(2(p-1))} = S(\mu^{2(p-1)})$. By construction, $S^{2(p-1)} = S(\gamma^{p-1})$, so we must have $\mu = \sqrt{\gamma}$. This exists by Hensel's lemma. In fact, we can define $\gamma = \zeta(p+1)$ where ζ is a primitive (p-1)th root of unity. Thus $\gamma^{p-1} = (p-1)^{p+1}$, so we can take $\mu = \sqrt{p+1}$.

4 Large primes

Proposition 3 (Hopkins-Mahowald-Sadofsky). Suppose $2p - 2 > \max(n^2, 2n + 2)$. Then the functor $(E_n^{\wedge})_0$ from Pic_n^0 to the category of E_n -modules with \mathbb{S}_n -action is injective.

Sketch of proof. Let $X \in \text{ker}((E_n^{\wedge})_0)$. We have an ANSS $H^{*,*}(\mathbb{S}_n, (E_n)^{\wedge}_*(X)) \Rightarrow W(\mathbb{F}_{p^n}) \otimes \mathbb{Z}_p \pi_* X$, and by sparseness of the ANSS, this collapses. Its E_2 term looks just like the E_2 term for the sphere. There's a class in E_2 for the sphere corresponding to $S \to L_{K(n)}S$, which has to correspond in E_2 for X to a map $S \to X$. One checks that this gives $X = L_{K(n)}S$.

One important E_n - \mathbb{S}_n -module is det, the **unreduced determinant**. $\mathbb{S}_n = \mathcal{O}_D^{\times}$ acts by linear maps on D, which is a vector space of dimension n^2 over \mathbb{Q}_p , giving a determinant map $\mathbb{S}_n \to \mathbb{Z}_p^{\times}$. The **reduced determinant** is the composition of this with the *n*th root map.

5 Brown-Comenetz duality

The stable homotopy category has an obvious notion of duality given by Spanier-Whitehead duality. A second natural type of duality is given by Brown-Comenetz duality. For E and X spectra, the **Brown-Comenetz dual** of E is a spectrum IE such that $(IE)_n X \cong (E^n X)^{\vee}$, where for A a locally compact abelian group, A^{\vee} is its **Pontryagin dual** Hom (A, S^1) . In particular, $\pi_n IE \cong (\pi_{-n}E)^{\vee}$. Brown showed this exists, and it in fact suffices to define it for the sphere, since we have $IE \cong F(E, I)$, where I = IS.

Theorem 4 (Gross-Hopkins duality). $L_{K(n)}I \in \operatorname{Pic}_n$, and $L_{K(n)}I \cong \Sigma^{n^2-n}S(\det)$ for p >> n.

We also have $L_{K(n)}I \cong F(M_nS, I)$, allowing us to show that.

$$\pi_t(M_n X)^{\vee} \cong [X, L_{K(n)}I]_{-t} \cong [S^{n-n^2-t}(-\det), LK(n)DX] = \pi_{n-n^2-\det -t}L_{K(n)}DX.$$

In particular, this is a formula for the homotopy groups of the K(n)-local Spanier-Whitehead dual of X in terms of X, though we have to introduce this strange Picard element $S(\det)$ in order to do so. If $pX = 0 \mod p$, then $S(\det)$ behaves like a "p-adic" sphere, which can be accessed by v_n -periodicity. In the following case, we can replace this with an integral sphere.

Theorem 5 (Gross-Hopkins). If F is a finite type n spectrum with pF = 0 with a v_n -self map v of degree p^m , then $\pi_t(F)^{\vee} \cong \pi_{\alpha-t}L_{K(n)}DF$, where

$$\alpha = \frac{2p^{nm}(p^n - 1)}{p - 1} + n^2 - n$$

6. THE MAZEL-GEE RESURRECTION

Gross-Hopkins duality can be thought of as a sort of Serre duality. If X si a smooth proper algebraic variety over a field k, F a coherent sheaf on X, and K is the canonical bundle on X, then Serre duality is an isomorphism

$$H^i(X;F)^{\vee} \cong H^{n-i}(X;K\otimes F^{\vee}).$$

Replacing K with I, X with a K(n)-local space, cohomology with homotopy groups, the vector space duality on the left by Pontryagin duality, and the sheaf duality on the right with Spanier-Whitehead duality, we recover Gross-Hopkins duality.

Here are a few of the facts that go into this proof. First, $L_{K(n)}DE_n \simeq \Sigma^{-n^2}E_n$, which one can prove via an ANSS. Second, $M_nE_n \simeq \Sigma^{-n}E_n/I_n^{\infty}$. Third, $\pi_t(E_n/I_n^{\infty}) \cong \Omega_{(E_n)_0/\mathbb{Z}_{p^n}}^{n-1} \otimes_{(E_n)_0} (E_n)_{-t}$, where Ω means the module of Kähler differentials. Combining these various isomorphisms gives us

$$(E_n)_t^{\wedge} I \cong \pi_t(E_n \wedge L_{K(n)}I)$$

$$\cong \pi_t(\Sigma^{n^2} L_{K(n)}DE_n \wedge L_{K(n)}I)$$

$$\cong \pi_{t-n^2}F(E_n, L_{K(n)}I)$$

$$\cong \pi_{n^2-t}(M_nE_n)^{\vee}$$

$$\cong \pi_{n^2+n-t}(E_n/I_n^{\infty}))^{\vee}$$

$$\cong \Omega^{n-1}_{(E_n)_0/\mathbb{Z}_{n^n}} \otimes_{(E_n)_0} E_{t-n^2-n}.$$

We need to prove that $\Omega_{(E_n)_0/\mathbb{Z}_{p^n}}^{n-1} \cong (E_n)_{2n}(\det) \cong \omega^{\otimes n}(\det)$, which Gross and Hopkins prove using a lot of rigid analytic geometry.

6 The Mazel-Gee resurrection

Aaron said some things about the Gross-Hopkins proof and rigid analytic geometry far too fast for me to copy.