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1 Introduction

In stable homotopy theory, we generally index m, on Z. The reason we do this is that the Picard group of
the stable homotopy category S is Z, generated by S'. For if X is an invertible object, the Kiinneth formula
shows that the homology of X with coefficients in any field, and thus integrally, is the same as that of a
sphere, and the Hurewicz theorem shows that X is a sphere.

However, this is no longer true in the category K,, of K(n)-local spectra. (The smash product is now
—A— = Lk (n)(—A—), and the unit is L (,,)S.) Pic,, = PicC, still has a subgroup Z, generated by LK(n)Sl,
but there may now be more invertible objects, and for S* € Pic,,, we can define )y X = [S*, X], thus indexing
homotopy groups on the Picard group.

2 The Mazel-Gee interruption

In fact, this group is a p-adic Lie group, and the homotopy groups indexed on it exhibit continuity properties.
Strickland did this at height 1 for the K (1)-local sphere. He defines A = Z,[[Pic]]], the “holomorphic Z,-
valued functions” on Picy, and M) the “module of Dirac delta functions,” given by Z,, with action 8-x = Mz.

Recall that 7, L (1)S = Zy/ps in degree n = gs —1 (s prime to p), Z, in degree zero, and 0 otherwise. In
fact, Z,/ps only depends on the p-adic valuation of s, and we have Z,/ps = Z,/ p'~Isle . Thus the homotopy
groups of Ly (1)S are ‘continuous in s’, and we can define 7, Lg (1)S for all n € Z, by continuity.

Another way to talk about these groups is in terms of the denominator of the Bernoulli number Bs/4s.
This is a map Z — Q/Z, and we’d like to extend it to Z, — Q,/Z,. Number theorists have done this: the
Bernoulli numbers appear as special values of the Riemann zeta function, and there’s a p-adic zeta function
that interpolates between them as elements of Q,,.

There are two obvious generalizations we’d like to have: to other K(1)-local spectra, and to higher
heights. The first is still unclear — there’s not even a good construction for the A-module associated to a
cofiber, since computing its homotopy groups requires solving an extension problem. For the second, Behrens
has proved a complicated extension to height 2, and we’d hope to get a map Pico = V — V/MF,, where V
is the ring of p-adic modular forms.

3 Picy for p>2

The K(1)-local sphere at an odd prime p shows up as the fiber for a map KU]DA — KU;\ given by U7 — 1,
where 7 is a topological generator for ZX. Note that (E1).Lg1)S = (E1)s. Now, ¥* acts on KU(5*") by
A", so if we instead take the fiber of KU;\ W;w KU;\, we get LK(l)SQ”. This gives us half the spheres, and

we can in fact extend it to get half of Pic;. For A € ZX, we define S(A) to be the fiber of KU} VA KU).
This is invertible, with S(A\)AS(A™1) = S, as is shown by the following proposition.

Proposition 1 (Hopkins-Mahowald-Sadofsky). The following are equivalent for X € K,,.
1. X € Picy,;
2. K(n).X is free of rank 1 over K(n).;



3. (Ep)) X is free of rank 1 over (Ep)s.

One can check that 7 acts by A on (F1),S()\), so that X is uniquely determined by S(\) (once we’ve
fixed 7).

Proposition 2 (Hopkins-Mahowald-Sadofsky). There’s a non-split extension
0 — Pic} — Pic; — Z/2 — 0,
where Piccl) 7, is the group constructed above.

Since Z) = Z/(p — 1) ® Z, and p is odd, the only way this extension can be non-split is if Pic; =
Z/(2(p—1)) @ Z,. In particular, there are torsion elements in the Picard group! We can exhibit a 2(p — 1)-
torsion element P as follows. If P = X715(u) is 2(p — 1)-torsion, then taking 2(p — 1)th smash powers gives
52p=1) = 32— pACE-1) = §(y2(P=D). By construction, S2P~1 = §(yP~1), so we must have p = /7.
This exists by Hensel’s lemma. In fact, we can define v = ((p 4+ 1) where ( is a primitive (p — 1)th root of
unity. Thus 4?~! = (p — 1)P*1, so we can take u = /p + 1.

4 Large primes

Proposition 3 (Hopkins-Mahowald-Sadofsky). Suppose 2p —2 > max(n?,2n +2). Then the functor (E})o
from Pic% to the category of E,-modules with S, -action is injective.

Sketch of proof. Let X € ker((E})o). We have an ANSS H**(S,,, (E,)} (X)) = W(Fpn) ® Z,m. X, and by
sparseness of the ANSS, this collapses. Its E5 term looks just like the Fo term for the sphere. There’s a class
in Ej for the sphere corresponding to S — Lk (,)S, which has to correspond in E» for X to a map S — X.
One checks that this gives X = Lg(,,)S. O

One important E,-S,-module is det, the unreduced determinant. S, = O} acts by linear maps on
D, which is a vector space of dimension n? over Q,, giving a determinant map S,, — Z,. The reduced
determinant is the composition of this with the nth root map.

5 Brown-Comenetz duality

The stable homotopy category has an obvious notion of duality given by Spanier-Whitehead duality. A
second natural type of duality is given by Brown-Comenetz duality. For F and X spectra, the Brown-
Comenetz dual of F is a spectrum IF such that (IE),X = (E"X)VY, where for A a locally compact
abelian group, AV is its Pontryagin dual Hom(A, S'). In particular, 7,/E = (7_,E)Y. Brown showed
this exists, and it in fact suffices to define it for the sphere, since we have IE = F(E, I), where I = IS.

Theorem 4 (Gross-Hopkins duality). Ly, € Pic,, and Lg I = 2"2_”S(det) forp >>n.

We also have Lyl = F(M,S,I), allowing us to show that.
T (Mo X)Y 22 [X, Licimyl] ¢ = [S" (= det), LK () DX] = 72 et —+Lic(m) DX.

In particular, this is a formula for the homotopy groups of the K (n)-local Spanier-Whitehead dual of X in
terms of X, though we have to introduce this strange Picard element S(det) in order to do so. If pX =0
mod p, then S(det) behaves like a “p-adic” sphere, which can be accessed by v,-periodicity. In the following
case, we can replace this with an integral sphere.

Theorem 5 (Gross-Hopkins). If F is a finite type n spectrum with pF = 0 with a v,-self map v of degree
p™, then m(F)Y = 7oL (n)DF, where

opnm (ph _ 1
a:7p (p )+n2_n.
p—1



6. THE MAZEL-GEE RESURRECTION 3

Gross-Hopkins duality can be thought of as a sort of Serre duality. If X si a smooth proper algebraic
variety over a field k, F' a coherent sheaf on X, and K is the canonical bundle on X, then Serre duality is
an isomorphism

HY(X;F)V =2 H" "(X;K®F").
Replacing K with I, X with a K (n)-local space, cohomology with homotopy groups, the vector space duality
on the left by Pontryagin duality, and the sheaf duality on the right with Spanier-Whitehead duality, we
recover Gross-Hopkins duality.

Here are a few of the facts that go into this proof. First, Ly ,)DE, ~ »-n’ FE,,, which one can prove via

an ANSS. Second, M, E,, ~ ¥ "E, /I, Third, m(E,/I°) & Q?E’})O/Zw ®(B,)o (En)—¢, where 0 means

the module of Kéhler differentials. Combining these various isomorphisms gives us
(Bn)p I = my(En A Lg(n)l)
> (" Lic(m)DEn A Lic(myI)
= T2 F (B, Lgmyl)
Tn2_¢(MpEy)Y
To2an—t(En/13°))"

n—1
- Q(E'M)O/an ®(En)0 Et*nzfn-

1R 1R

R

We need to prove that Q?b:l)o/z = (Ey)2n(det) = w®™(det), which Gross and Hopkins prove using a lot of
rigid analytic geometry.
6 The Mazel-Gee resurrection

Aaron said some things about the Gross-Hopkins proof and rigid analytic geometry far too fast for me to
copy.



