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1 “Motivation”

Let G be a finite group. A couple weird things happen at the interaction of equivariant and chromatic
homotopy theory. One is that LK(n)S

hG ' LK(n)ShG – K(n)-locally, homotopy fixed points and homotopy
orbits are the same.

Another goes by the name of the redshift conjecture. This says that algebraicK-theory shifts chromatic
levels. For example:

Example 1.
K(HFp)∧p ' HZp ∨ Σ−1HZp.

Example 2.
K(HZp)∧p ' Σku∧p × (Im J × Zp)×B(Im J × Zp).

Example 3. K(ku) is still unknown, but it is known to have a v2-self map.

. . . and that’s basically all the evidence we have for the following conjecture:

Conjecture 4 (Redshift conjecture).

V (n) ∧K(LK(n)A)
∼→ v−1

n+1V (n) ∧K(LK(n)A)

where A is a ‘suitably finite’ commutative ring spectrum.

Part of the reason this is such a difficult problem is that algebraic K-theory is generally very hard to
compute. How do we compute it? Well, there’s a map from algebraic K-theory to topological cyclic homology
TC, and given a map of ring spectra A→ B, these fit into a pullback square

K(A) //

��

TC(A)

��
K(B) // TC(B).

Topological cyclic homology, in turn, comes from a tower of topological Hochschild homology spectra THH.
Morally, we say “TC(A)∧p = THH(A)S

1

,” and so we reduce to computing these S1-fixed points on THH.
In order to do this, you have to fit together data about the p-subgroups Cpn of S1 in a clever way.

Frequently, we get lucky and have

THH(A)Cpn−1 ' THH(A)tCpn ,

where the t denotes the Tate construction, to be discussed below. There’s a spectral sequence

Ĥ(Cpn ;THH(A))⇒ π∗THH(A)tCpn ,

where Ĥ is Tate cohomology.
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As an aside, here’s the definition of Tate cohomology. We recall that for M a G-module, H0(G;M) = MG

and H0(G;M) = MG. There’s a norm map N : MG → MG given by x 7→
∑
g∈G gx, which one observes

is invariant and independent of the class of x ∈ M mod the action of G. If we take a projective resolution
P∗ and an injective resolution I∗ for M over Z[G], and truncate them by replacing P0 → M → 0 with
H0(G;M) → 0 and 0 → M → I0 with 0 → H0(G;M), then the norm map fits them together into a Z-

graded complex P∗ → I∗. The homology of this is the Tate cohomology Ĥ∗(G;M). This is a fancy way
of saying that

Ĥ∗(G;M) =


H∗(G;M) ∗ ≥ 1

H−∗+1(G;M) ∗ < −1

coker(N) ∗ = 0

ker(N) ∗ = 1.

2 The Tate construction

In the topological case, if M is a G-spectrum, there are spectral sequences

H∗(G;π∗M)⇒ π∗M
hG and H∗(G;π∗M)⇒ π∗MhG,

and the Tate construction on M is a spectrum that fits in between the homotopy orbits and the homotopy
fixed points, so as to give you the above spectral sequence.

More precisely, consider the cofiber sequence

EG+ → S0 → ẼG.

Nonequivariantly, EG+ ' S0, so ẼG ' ∗. On the other hand, (EG+)G ' ∗, so ẼG
G
' S0.

For X a G-spectrum, there’s a map X → F (EG+, X), inducing a diagram

EG+ ∧X //

��

X

��

// ẼG ∧X

��
EG+ ∧ F (EG+, X) // F (EG+, X) // ẼG ∧ F (EG+, X) =: tGX.

Taking G-fixed points gives us a diagram

XhG
//

∼
��

XG //

��

XΦG

��
XhG

N
// XhG // XtG,

where XtG is, by definition, the Tate construction on X. Often, the norm map is nullhomotopic, and we
get an extension XhG → XtG → ΣXhG, as we do algebraically with Tate cohomology.

Proposition 5 (May).

XtG ' F (ẼG,ΣEG+ ∧X)G.

If X is finite and has a trivial Cp-action, then

XtCp ' holim((BCp)−n ∧ ΣX).

Here (BCp)−n is defined via James periodicity, which says that for pn−k|r,

(BCp)
2n+r
2k+1+r ' Σr(BCp)

2n
2k+1,

where Xn
m is defined for a CW-spectrum X by crushing out its (m − 1)-skeleton and restricting to the n-

skeleton of the result. Thus, we can crush ‘negative-dimensional skeleta’ of BCp by crushing actual skeleta
and desuspending. Using this, May’s proposition, and the fact that F (X,Y ∧Z) ' F (X,Y )∧Z for Z finite,
we get the desired statement about XtCp .
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3 K(n)tG and consequences

Proposition 6. If G is a finite group acting trivially on K(n), then

K(n)tG ' ∗.

Corollary 7.

K(n)∗BG ∼= K(n)∗BG.

Proof. K(n)∗BG = π∗K(n) ∧ BG = π∗K(n)hG, and likewise K(n)∗BG = π∗K(n)hG; since the Tate con-
struction is trivial, these two spectra are equivalent.

Lemma 8. If K is complex-oriented and K∗BG is finitely generated over K∗, then

holim−sK ∧BG(−sξ) ' ∗,

where ξ is some complex bundle on BG and BG(−sξ) the Thom construction on sξ.

Proof. K∗BG
(r) → K∗BG is surjective for sufficiently large r, by the finite generation hypothesis. So there’s

a diagram

K∗(BG
(r))−(s+j)ξ //

(( ((

K∗BG
−sξ

K∗BG
−(s+j)ξ

77

with the left map surjective. But (BG(r))−(s+j)ξ has a top cell in some finite dimension, and BG−sξ has
a top cell in some finite dimension. For sufficiently large j, we can thus make the top map zero, so that
K∗BG

−(s+j)ξ → K∗BG
−sξ is zero as well.

Lemma 9. Let V be a finite dimensional G-representation and K a complex-oriented spectrum with K∗BH
finitely generated over K for all H ≤ G. Then F (S∞V ,K ∧ EG+) is equivariantly contractible.

Proof.

F (S∞V ,K ∧ EG+) ' F (hocolimSnV ,K ∧ EG+) ' holimF (SnV ,K ∧ EG+) ' holimS−nV ∧K ∧ EG+.

Now, for any H ≤ G, V is an H-representation by restriction, and likewise EG+ is a model for EH+.
Therefore, (K ∧ EG+ ∧ S−nV )H ' K ∧ BH−nξ¡ and for n � 0, this is contractible since K∗BH is finitely
generated, using the previous lemma.

In particular, K(n) satisfies the above conditions, so K(n)tG ' ∗. As a corollary, if X is type n, then
(LK(n)X)tG ' ∗, so (LK(n)X)hG ' (LK(n)X)hG.

Proposition 10. If K is a p-local vn-periodic spectrum, with vn a unit and vi acting nilpotently for all
0 ≤ i ≤ n− 1, then KtG ' ∗.

This allows us to access a phenomenon known as blueshift, which says that the Tate construction with
respect to trivial finite group actions tends to decrease chromatic levels.

Theorem 11 (Greenlees-Sadofsky). If K is as above without the nilpotence assumption, then tG(K) is
vn−1-periodic.

Theorem 12 (Hovey-Sadofsky). If X is E(n)-local and G acts trivially, then XtG is E(n− 1)-local, and in
fact,

〈(LnX)tG〉 = 〈Ln−1X〉

where angle brackets denote Bousfield classes.
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Work of Ando, Morava, and Sadofsky gives us a weak equivalence

(E(n)[w]tCp)∧In−1
=: TE

∼→ HW (Fp((y))sep)⊗̂Zp
En−1.

Here E(n)[w] is basically E(n) with a pn−1 − 1th root of vn−1, called w, added to its homotopy. We then

have π0TE = W (Fp((y))sep)[[w1, . . . , wn−2]], where wi is the image of vix
pi−1.

Proposition 13. For E complex-oriented, π∗(E
tCp) = E∗((x))/[p](x).


