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1 “Motivation”

Let G be a finite group. A couple weird things happen at the interaction of equivariant and chromatic
homotopy theory. One is that L K(H)ShG ~ Lg(n)Sng — K(n)-locally, homotopy fixed points and homotopy
orbits are the same.

Another goes by the name of the redshift conjecture. This says that algebraic K-theory shifts chromatic
levels. For example:

Example 1.
K(HF,)) ~ HZ,V X' HZ,.

Example 2.
K(HZP)Q o~ Ekuﬁ x (ImJ x Zp) x BImJ x Zy).

Example 3. K(ku) is still unknown, but it is known to have a vg-self map.
...and that’s basically all the evidence we have for the following conjecture:
Conjecture 4 (Redshift conjecture).
V(n) AK(LgmyA) S vy Vi(n) AK(LgmyA)
where A is a ‘suitably finite’ commutative ring spectrum.

Part of the reason this is such a difficult problem is that algebraic K-theory is generally very hard to
compute. How do we compute it? Well, there’s a map from algebraic K-theory to topological cyclic homology
TC, and given a map of ring spectra A — B, these fit into a pullback square

K(A) —=TC(A)
]
K(B) —= TC(B).

Topological cyclic homology, in turn, comes from a tower of topological Hochschild homology spectra T'H H.

Morally, we say “T'C(A)) = THH(A)S1 ,” and so we reduce to computing these S'-fixed points on THH.

In order to do this, you have to fit together data about the p-subgroups Cp» of S* in a clever way.
Frequently, we get lucky and have

THH(A)%" ~ THH(A)*"
where the t denotes the Tate construction, to be discussed below. There’s a spectral sequence
H(Cypn; THH(A)) = m, THH(A)"",

where H is Tate cohomology.



As an aside, here’s the definition of Tate cohomology. We recall that for M a G-module, Hy(G; M) = Mg
and H°(G; M) = M. There’s a norm map N : Mg — MY given by 7 >_gec 9%, which one observes
is invariant and independent of the class of x € M mod the action of G. If we take a projective resolution
P, and an injective resolution I, for M over Z[G], and truncate them by replacing Py, - M — 0 with
Ho(G;M) — 0 and 0 - M — Iy with 0 — H°(G; M), then the norm map fits them together into a Z-
graded complex P, — I.. The homology of this is the Tate cohomology H *(G; M). This is a fancy way
of saying that
H*(G; M) * > 1
H_.1(GiM) x< -1
coker(N) *x=0
ker(N) * = 1.

H*(G; M) =

2 The Tate construction

In the topological case, if M is a G-spectrum, there are spectral sequences
H*(G;m M) = 7, M"¢ and H,(G;n,M) = m, Mg,

and the Tate construction on M is a spectrum that fits in between the homotopy orbits and the homotopy
fixed points, so as to give you the above spectral sequence.
More precisely, consider the cofiber sequence

EG, — S° = EG.

— —G
Nonequivariantly, FG; ~ S% so EG ~ . On the other hand, (FG, )% ~ %, so EG =~ S°.
For X a G-spectrum, there’s a map X — F(EG4, X), inducing a diagram

EGLAX X EGAX

| | |

EG, NF(EG4,X) ——> F(EG.,X)——> EGAF(EG,,X) = teX.

Taking G-fixed points gives us a diagram

XhG XG X<I>G
XhG < XhG XtG7

where X*¢ is, by definition, the Tate construction on X. Often, the norm map is nullhomotopic, and we
get an extension X"¢ — X'¢ — ¥ X) 5, as we do algebraically with Tate cohomology.
Proposition 5 (May).
XY ~ F(EG,SEG, A X)%.
If X is finite and has a trivial C)-action, then
X =~ holim((BC,) _, A £X).
Here (BC,)_,, is defined via James periodicity, which says that for p"~*|r,

(BCpﬁZihr = ET(BCP)SZH’

where X! is defined for a CW-spectrum X by crushing out its (m — 1)-skeleton and restricting to the n-
skeleton of the result. Thus, we can crush ‘negative-dimensional skeleta’ of BC), by crushing actual skeleta
and desuspending. Using this, May’s proposition, and the fact that F(X,Y AZ) ~ F(X,Y) A Z for Z finite,
we get the desired statement about X*C».



3. K(N)T¢ AND CONSEQUENCES 3

3 K(n)'“ and consequences
Proposition 6. If G is a finite group acting trivially on K(n), then
K(n)' ~ .

Corollary 7.
K(n).BG = K(n)*BG.

Proof. K(n).BG = n,K(n) A BG = m,K(n)ng, and likewise K (n)*BG = 7.K(n)"%; since the Tate con-
struction is trivial, these two spectra are equivalent. O

Lemma 8. If K is complez-oriented and K.BG is finitely generated over K,, then
holim_ s K A BG(58) ~ x,
where & is some complex bundle on BG and BG(—¢) the Thom construction on s€.

Proof. K,BG") — K,BG is surjective for sufficiently large r, by the finite generation hypothesis. So there’s
a diagram

K*(Bg(r))—(SH)& K.BG—5¢

\ /

K,.BG—(s+i)¢

with the left map surjective. But (BG())~(+9)¢ has a top cell in some finite dimension, and BG~*¢ has
a top cell in some finite dimension. For sufficiently large j, we can thus make the top map zero, so that
K,BG=(+)8 — K, BG~*¢ is zero as well. O

Lemma 9. Let V be a finite dimensional G-representation and K a complex-oriented spectrum with K,BH
finitely generated over K for all H < G. Then F(S®V K A EG.) is equivariantly contractible.

Proof.
F(S*V,K A EG,) ~ F(hocolim SV, K A EG ) ~ holim F(S™V, K A EG,) ~holim S~V A K A EG .

Now, for any H < G, V is an H-representation by restriction, and likewise FG4 is a model for EH,.
Therefore, (K AN EG A S™V)H ~ K A BH™"¢; and for n >> 0, this is contractible since K,BH is finitely
generated, using the previous lemma. O

In particular, K (n) satisfies the above conditions, so K (n)*® ~ %. As a corollary, if X is type n, then
(LK(n)X)tG =~ %, SO (LK(n)X)hG = (LK(n)X)hG~

Proposition 10. If K is a p-local vy,-periodic spectrum, with v, a unit and v; acting nilpotently for all
0<i<n-—1, then K*C ~ x.

This allows us to access a phenomenon known as blueshift, which says that the Tate construction with
respect to trivial finite group actions tends to decrease chromatic levels.

Theorem 11 (Greenlees-Sadofsky). If K is as above without the nilpotence assumption, then tg(K) is
V1 -periodic.

Theorem 12 (Hovey-Sadofsky). If X is E(n)-local and G acts trivially, then X*¢ is E(n — 1)-local, and in
fact,
<(LnX)tG> = (Ln—1X)

where angle brackets denote Bousfield classes.



Work of Ando, Morava, and Sadofsky gives us a weak equivalence
(E(m)[w]*")7,_, = TE = HW(Fy((y))**)®z, En-1.

Here E(n)[w] is basically E(n) with a p"~! — 1th root of v,,_1, called w, added to its homotopy. We then

have 10T E = W (F,((y))®)[[w1, . . ., w,_2]], where w; is the image of v;z? ~L.

Proposition 13. For E complez-oriented, 7,(E'“?) = E.((z))/[p](x).



