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1 Motivation

Mark is going to get the juices flowing as it were.
[picture of π∗S at the prime 2 taken from Hatcher’s website - computation by Mahowald-Tangora-

Kochman]
Each dot represents a Z/2, and vertical lines indicate nontrivial additive extensions. Diagonal and

horizontal lines represent multiplication by η and ν. There is no vertical axis.
There’s a sense of pattern to this diagram, but it’s kind of a mess, and was a mess until Jack Morava

started studying chromatic homotopy theory to organize it.
[picture of π∗S at the prime 3]
[picture of π∗S at the prime 5]
These get easier to do as p increases, and more regular, as can be seen from these pictures alone.
Let’s talk about some of these patterns. The first pattern you see is Im J , where J is a homomorphism

from π∗SO to π∗S. At prime 2, this captures the 8-periodic pattern on the bottom rows, though it misses
some dots. Likewise, there’s a periodic pattern coming from Im J at every prime, which is probably the
easiest part of π∗S to understand.

Definition 1. J : π∗SO → π∗S is induced by the colimit of the maps SO(n) → ΩnSn, each of which
is defined as follows. Given A ∈ SO(n), A can be viewed as a map Rn → Rn, and taking one-point
compactifications gives an element of ΩnSn.

Now, Bott periodicity tells us that π∗SO is Z/2 in dimensions 0 and 1 mod 8, Z in dimensions 3 and 7
mod 8, and 0 in other dimensions. Thus, ImJ has some sort of 8-periodicity to it.

(In fact, the J-homomorphism can be realized as a map of spectra Σ−1bso → S, where bso is the
connective cover of real K-theory with π0 and π1 killed. Unfortunately, this point of view isn’t terribly
useful, since taking connective covers and desuspending has destroyed all ringness in the source.)

Theorem 2 (Adams). In dimension 4k − 1, Im J is a group of order the denominator of Bk

4k , where Bk is
the kth Bernoulli number.

So this is understandable, but also number-theoretic and complicated globally. Things will be easier for
us if we localize at a prime p, which we do from now on.

There’s also a spectrum-level version of this theory localized at p. Namely, if KO p̂ is the p-completion
of KO, there are p-local Adams operations ψ` : KOp̂→ KOp ,̂ and the fiber of ψ` − 1 is defined to be Jp,
where ` is any prime different from p, i.e. a topological generator of Z×p . We get a diagram

Σ−1bso

xx $$
Σ−1KOp̂

��

S

��
tt

Jp // KOp̂
ψ`−1

// KOp .̂

1



2

Here the top right map is the J-homomorphism, and the right map is the Hurewicz homomorphism, which
is fixed by ψ`, so that it lifts to Jp; the diagram shows that the J-homomorphism is just the fiber of this
map.

Theorem 3 (Adams-Baird). SK/p ' Jp.

2 Primes of homotopy theory

In number theory and algebra, one often studies problems by localizing them at each prime p, as well
as rationalizing them (localizing at the prime 0). This corresponds to a chain of inclusions Spec(Q) ↪→
Spec(Z(p)) ↪→ Spec(Z), but we can go no further, corresponding to the fact that Z has Krull dimension 1.

On the other hand, in topology, the sphere has infinite ‘Krull dimension’. Thus there are localizations
S → S(p) → SQ, but also infinitely many intermediate localizations.

Let’s introduce some cohomology theories that will haunt us this week (or for the rest of our lives). Recall
that BP is a spectrum with

BP∗ = Z(p)[v1, v2, . . . ].

Johnson-Wilson theory is given by

E(n) = BP/(vn+1, vn+2, . . . )[v
−1
n ],

and Morava K-theory is given by

K(n) = E(n)/(p, v1, v2, . . . ).

By convention, K(0) = E(0) = HQ. We get an infinite tower of localizations

S → S(p) → · · · → SE(2) → SE(1) → SQ,

called the chromatic tower. (It’s a consequence of the nilpotence theorem that these are the ‘only primes,’
but making this statement rigorous is a little difficult. Hopkins and Devinatz have a notion of ‘field spectra’
which can be used for this purpose. Another way of thinking about this is via the thick subcategory theorem
– if we think of primes as things with respect to which a spectrum can be completed, then this theorem
implies that the only such completions are those with respect to Morava K-theories.)

(Toby: the Bousfield classes of Morava K-theories are minimal, which is another argument for the fact
that they’re similar to maximal primes.)

We can now filter π∗S(p) by letting the nth layer of the filtration be ker(π∗S(p) → π∗SE(n−1)). This is
called the vn-periodic layer. The v1-periodic layer is just im J , which has fundamental period 2(p− 1) for
odd p. Likewise we can pick out the v2- and v3-periodic layers, with periods 2(p2 − 1) and 2(p3 − 1), and so
on.

(Arnav: can there be nontrivial additive extensions between different layers? Mark: I’m not sure.)

3 Periodicity in the layers

Definition 4. The nth monochromatic layer MnS is the fiber of SE(n) → SE(n−1).

Theorem 5 (Nilpotence theorem, Hopkins-Devinatz-Smith). Let I = (i0, . . . , in−1) be a sequence of integers.

Then for a cofinal set of I ∈ Nn, a finite complex Mi exists with BP∗MI = BP∗/(p
i0 , vi11 , . . . , v

in−1

n−1 ), and
for in sufficiently large, there is a self-map

vinn : Σ2in(p
n−1)MI →MI

which is an En-isomorphism, and thus non-nilpotent.

Let M0
I be a desuspension of MI so that its top cell is in dimension zero. Then it’s in fact true that

MnS = lim−→I
(M0

I )E(n).
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We get a diagram
S(p)

��
SE(n)

��

MnS = lim−→(M0
I )E(n)

oo (M0
I )E(n)

oo

SE(n−1)

Thus if x ∈ π∗S(p), we can lift its image to π∗MnS, and this comes from π∗(M
0
I )E(n) for some I, which is

known to be periodic. This allows us to construct infinite families in the stable homotopy groups of spheres.
(Note that the nilpotence theorem gives us periodicity in global M0

I , but it’s often very difficult to find
explicit self-maps giving us these infinite families. If we had a map down to the sphere that would detect
the beta family, . . . whoaaaaaaaaa. I’m beginning to salivate.)

4 Completions

Let M be a finitely generated abelian group. There’s a pullback square

M //

��

∏
pMp̂
��

MQ //
(∏

pMp̂)
Q
.

A similar arithmetic square exists in homotopy theory:

X //

��

∏
pXp̂
��

XQ //
(∏

pXp̂)
Q
.

Likewise, there’s a chromatic fracture square arising from the chromatic tower:

XE(n)
//

��

XK(n)

��
XE(n−1) // (XK(n))E(n−1)

5 Moduli interpretation

The moduli interpretation comes from the Adams-Novikov spectral sequence, which is a spectral sequence

ExtMU∗MU (MU∗,MU∗)⇒ π∗S.

The Quillen-Lazard theorem tells us that this Ext term can be reinterpreted as H∗(MFG), where MFG is
the moduli stack of one-dimensional formal groups over Spec(Z). The chromatic tower then reappears as a
description of this stack, as follows. First, we base change to characteristic p; formal groups over Fp have

a height, so we can filter MFG ⊗ Fp via the closed substacks M≥nFG, which are the moduli stacks of formal

group laws of height at least n. We then letM≤nFG = (MFG)(p)−M≥n+1
FG , which is an open subscheme. The

chromatic tower now becomes

MFG ←↩ (MFG)(p) ←↩ · · · ←↩M≤2FG ←↩M
≤1
FG ←↩ (MFG)Q.

We thus get a spectral sequence H∗(M≤nFG)⇒ π∗SE(n).
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6 Formal moduli

It’s worth pointing out that Mn(SK(n)) 'MnS, so to understand the sphere monochromatically, it suffices

to understand its K(n)-localizations. Let M=n
FG be the closed subscheme M≤nFG ∩M

≥n
FG of M≤nFG. There’s a

spectral sequence H∗((M≤nFG)̂ M=n
FG

) ⇒ π∗SK(n), where this completion is a formal neighborhood of M=n
FG

in M≤nFG. Thus, to understand the K(n)-local sphere, we should try to understand deformations of formal
groups, which was done by Lubin-Tate.

As a stack, M=n
FG ⊗ Fp is a single point, corresponding to the Honda formal group Hn. Its automor-

phisms are Sn, the nth Morava stabilizer group. Lubin-Tate showed that the deformations of Hn are
classified by (En)0 = W (Fp)[[u1, . . . , un−1]]. There’s also a spectrum En wih π∗En = (En)0[u±1].

By the Morava change of rings theorem,

H∗((M≤nFG)̂ M=n
FG

) ∼= H∗c (Gn;π∗En),

where the right-hand side is continuous cohomology of the profinite group Gn, where Gn = SnoGal(Fp/Fp),
the extended Morava stabilizer group. (Defining this uses the fact that Hn can be defined over Fp.)

In fact, this instance of the Morava change of rings theorem can be realized topologically as the statement
that Gn acts on En, with homotopy fixed points EhGn

n ' SK(n). Then the spectral sequence H∗c (Gn;π∗En)⇒
π∗SK(n) is just a homotopy fixed point spectral sequence.

Example 6. Let n = 1. Then EhGal
1 ' KUp̂ is acted on by S1 = Z×p , and this action is just given by the

Adams operation ψ`. Thus, we recover Adams’s theory of the image of J .

7 Bad primes

The cohomology groups H∗c (Gn;π∗En) can, in principle, be computed. This is good news. But there’s bad
news as well. For every chromatic level n, there’s a finite set of bad primes.

Definition 7. The chromatic conductor of the prime p at chromatic level n is the largest r such that Sn
has an element of order pr.

We write n = (p− 1)pr−1s for some s prime to p. If n is divisible by (p− 1), it’s bad, and if it’s divisible
by p(p− 1), it’s even worse – larger chromatic conductors imply more badness.

Badness results in several problems, such as irregular periods and extra exotic p-torsion. For example,
when n = 1, the fundamental period should be 2(p− 1), but at the bad prime p = 2, the period is 8 instead.
When n = 2, the fundamental period should be 2(p2 − 1), but at the bad primes 2 and 3, it’s instead 192
and 144 respectively.

One way to deal with this is to build spectra that detect the badness. For example, if H ≤ Gn is a
subgroup that contains Z/pr, we can form the homotopy fixed points EhHn , which should contain all the
badness of the prime p.

The most basic example is KO ⊆ KU , which contains all the 8-periodicity of 2-local K-theory! Other
examples are TMF and EO(n).

[more pictures are shown]


