Talbot 2012: The Calculus of Functors

Mentored by Gregory Arone and Michael Ching

Notes by Chris Kapulkin

Syllabus of Talks

(1) Introduction and overview, by Greg Arone (UVA).
(2) Polynomial and analytic functors, by Dan Lior (UIUC).
(3) Constructing the Taylor tower, by Geoffroy Horel (MIT).
(4) Homogeneous functors, by Matthew Pancia (UT Austin).
(5) First examples, by Joey Hirsh (CUNY).
(6) The derivatives of the identity functor, by Gijs Heuts (Harvard).
(7) Operad and module structures on derivatives, by Emily Riehl (Harvard).
(8) Classification of polynomial functors, by Michael Ching (Amherst).
(9) Orthogonal Calculus I: theory, by Kerstin Baer (Stanford).
(10) Orthogonal Calculus II: examples, by Sean Tilson (Wayne State).
(11) Introduction to embedding calculus, by Daniel Berwick-Evans (UC Berkeley).
(12) Multiple disjunction lemmas, by Greg Arone (UVA).
(13) Embedding calculus, the little disks operad, and spaces of embeddings, by Alexander Kupers (Stanford)
(14) Factorization homology, by Hiro Lee Tanaka (Northwestern).
(15) Applications to algebraic K theory I, by Pedro Brito (Aberdeen)
(16) Applications to algebraic K theory II, by Ernest E. Fontes (UT Austin).
(17) Calculus of functors and chromatic homotopy theory, by Tobias Barthel (Harvard).
(18) Taylor tower of the identity functor, part 2, by Vesna Stojanoska (MIT).
(19) Where do we go from here? by Greg Arone.

This PDF is a collection of hand-written notes taken by Chris Kapulkin at the 2012 Talbot Workshop. The workshop was mentored by Gregory Arone and Michael Ching, and the topic was the calculus of functors.

The aim of the Talbot Workshop is to encourage collaboration among young researchers, with an emphasis on graduate students. We make these notes available as a resource for the community at large, and more resources can be found on the Talbot website:
http://math.mit.edu/conferences/talbot/

Support for the 2012 Talbot Workshop came from the NSF grant DMS1007096.

Greg Atone, intro + Overview (1)

Let X, Y top spores. Consider hap (X, y), hot can we sag about it knowing amemthing about X aud Y.

$$
\pi_{0} \operatorname{Mop}(x, y)=[x, y]
$$

For examulo, if X and X ane spheres are dow' wally boom beach about if

$$
\text { It :H pp }(X, y) \text { is a very complicofod }
$$

Having a cheonempotitions $Y=Y, U_{y} Y_{2}$ does.'t really help, exacuple: $S^{2}=D^{2} u_{S^{\prime}} S^{2}$. But $\left[S^{\prime \prime}, S^{2}\right]$ is mather hard

M, M smooth manifolds

$$
\operatorname{Emb}(M, N)
$$

Even worse: a complicated functor of both variables

Some basic ideas:

1. Some functors deserve to be called polynomial functors.
2. General functors can be approximated with polynomial functors in two ways: interpolation polynomials and Taylor polynomials.

approximation g from left aeron right
aka initial/teruciual UMP
3. The n-th at a polynomial approximation is determined by the n-th cposs-effect or the n-th derivative.

What are polynomial functors?
(1) What are linear functors? $\quad f(x+y-a)=f(x)+f(y)-f(a)$

First deficition: F takes homotopy pushout squares to homotopy puskont squares.
Polyromial of degree n : strougly cocartesicm $(n+1)$ cabos to cocartesian ($n-1$)-cubes.

2.nd cuoss effert
strongly cocastesian is stronger than cocartrsion except deg 1 icocastccian means x 's equiv, rocatesioan sonys thal

Limear functors: $\mathcal{L}_{e}: E \rightarrow C, F(x)=K \times x \quad$ for fixal K Quadratic: $\quad X \longmapsto X \times X$

$$
F(X)=X \times X \times \Sigma_{2} \mathbb{E} \Sigma_{2}^{1}
$$

and more generally
are quadratic

$$
F(X)=(k \times X \times X)^{*} \Sigma_{\Sigma_{2}} \mathbb{E} \Sigma_{2}^{-1}
$$

Let F_{n} the category of ficite sets of cardinality at most n.

$$
\begin{gathered}
G: T_{o p} \rightarrow\left\{\begin{array}{l}
T_{\text {op }} \\
\text { spectra }
\end{array}\right. \\
L_{n} G:=L_{F_{n}}^{\text {Top }}\left(G \mid F_{n}\right) \\
L_{n} G(X)=\operatorname{hocolim}_{\substack{n \geqslant i \rightarrow x}} G(i)=X^{i} \otimes_{i \in F} G(i)
\end{gathered}
$$

This gives a functor $L_{n} G$ together with - natural trausforucation:

$$
L_{n}(G) \longrightarrow G
$$

Moreover, for $X \in F_{n}$ we hove

$$
L_{n} G(X) \longrightarrow X
$$

is an equivalence, thus we can think of $L_{n} G$ as an interpolation of G at $0,1, \ldots, n$.
The fundor $L_{n} G$ is polynomial of deg n.

If G is contravariant, then there is a dual construction:
$G: T_{o p} \longrightarrow T_{o p}{ }^{\text {ap }}$
We can construct $R_{n} G: T o p \rightarrow$ Top op togethen with a watural traersformecetion:

$$
G \longrightarrow R_{n} G
$$

white $R_{n} G(x)=\operatorname{Nat}_{i \in F_{n}}\left(X^{i}, G(i)\right.$
Let M^{d} denote the cathegong of d-dicuonsional manifolds weed everbedolings

Unions of $\mathbb{R}^{d}-B^{d} \subseteq M^{d}$
$B_{n}^{d} \subseteq B$ union of at most n balls.

$$
\begin{aligned}
\mathbb{B}_{n}^{d} \xrightarrow{\pi_{0}} & F_{n} \\
G: M^{d} & \longrightarrow T_{o p} \\
& T_{o p}
\end{aligned}
$$

Spedra
$\ldots \rightarrow L_{n} G \rightarrow L_{n+1} G \rightarrow \ldots \rightarrow G$
may not always converge

$$
\begin{gathered}
G: M^{d} \longrightarrow \text { SowedGing } \\
L_{n} G(M)=E_{m} b\left(i \times \mathbb{R}^{d}, M\right) \otimes_{\mathbb{B}_{n}^{d}} G\left(i \times \mathbb{R}^{d}\right)
\end{gathered}
$$

If G is contravaricuet, then

$$
\begin{aligned}
& \mathbb{R}_{n}(M)= \operatorname{Nat}_{B_{n}^{d}}\left(\operatorname{Emb}\left(i \times \mathbb{R}^{d}, M\right),\right. \\
&G(i \times M)) \\
& \text { (embecldiers) } \\
&\text { (alculus })
\end{aligned}
$$

Back to howotopy case:

$$
G_{i:} T_{o p} \rightarrow T_{\text {op }}
$$

Spectra

We have a sequence of approxicnations

$$
\begin{aligned}
& L_{0} G \longrightarrow L_{1} G \longrightarrow L_{2} G \longrightarrow \ldots L_{n} G \longrightarrow \ldots \ldots G \\
& L_{n} G / L_{n} G(x)=x^{n} / f \cdot d \quad \lambda_{\sum_{n}} c r_{n} G \\
& G(n-2) \longrightarrow G(n-1) \quad g: \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \left(L_{n} g-L_{n-1} g\right)(x)=\binom{x}{n} \cdot c r_{n} g
\end{aligned}
$$

Taylor approximation.
$F: C \longrightarrow D$ is linear if it takes homotopy pushouts to hourotopy pullbades. Similarly, we can define polynomial ix olegn.

$$
\begin{aligned}
& F: T_{o p} \rightarrow T_{o p} \\
& F(X H y)
\end{aligned}
$$

$$
()_{1 .}^{\infty} \sum^{+\infty} x \cdots ; e^{x-1}
$$

Note: $\mathcal{I}_{\text {Top }}$ is not anymore a linear fundor

$$
\begin{aligned}
& x=e^{x-1} \cdot e^{-\frac{x-1}{2}} \cdot e^{(-1)^{\prime \prime \frac{x-1}{n}}=} \\
& =e^{\ln (x+(x-1))}=x \\
& \text { this gives a tower of fibrations } \\
& \text { this has no counter pant } \\
& \text { in topology }
\end{aligned}
$$

Dan Lior, Polynomial and aeralytic functors (2)

Q: What is a polynomial functor of degree n ?

for $C^{\sigma}, D \in\left\{T_{o p+}\right.$, Spectra $\}$

Cubes:

In general

$$
X: P(n) \longrightarrow E
$$

n-cube
' pose of
subsets of $[n]$
regarded as a ofogory

There are natural maps

$$
X \rightarrow \operatorname{holim}\left(\underset{(*)}{ } \int_{w}^{1}\right) \text { for a 2-cabe }
$$

in general: $X_{\phi} \xrightarrow{(*)} h_{0} h_{\text {ic }}\left((P(n)-\{\phi\}) c P(n) \xrightarrow{x}\left(C^{*}\right)\right.$
Def: An n-cube x is cartesian, if $(*)$ is an equivalence, and. k-cartesian, if (*) is. k connected.

Note: we say cartesian for bomotopy Carfosicm! Recall: a map $f: X \rightarrow Y$ is K-connected, if the induced maps:
$\pi_{i} f: \pi_{i} X \longrightarrow \pi_{i} Y$ ate iso for $i<k$
$\pi_{k} f: \pi_{k} X \rightarrow \pi_{k} Y$ is surjective
Examples:
(1)

is cocantesian

(2)

$$
\begin{array}{ll}
\Omega_{X} X & X^{I} \\
X^{I} & 1_{X}^{1}
\end{array}
$$

Def: F is 1-excisive, if it takes colarfesion squares to Cartesian squares.
$f(x)=m x$ linear
$g(x)=m x+b \quad$ texcisive
Example: $1_{\text {Spedra }}:$ Spectra \rightarrow Spectra is 1-excisive.
Recall:
Tho (Blakers - Massey). If the square X :

and $X_{\phi} \rightarrow X_{\{:\}}$is k_{i} - connected. Then X is $\left(k_{1}+k_{2}-1\right)$-Cartesian.

Note that by B-M Thm we know that in Spectra every diagram is Cartesian iff coCartesian So $1_{\text {Spedia }}$ is a 1-excisive functor.

Non-exacuple. $1_{T_{o p_{t}}} T_{o p_{+}} \longrightarrow T_{p_{+p}}$ is not 1-excisive $S^{\circ} \longrightarrow$
$\sum_{*} \sum_{\sum S^{\circ}}$ is cocartesicu because not cartesian $* \rightarrow \sum s^{\circ}$ because:

$$
S^{0} \xrightarrow[\int_{\pi_{0}}]{ } \Omega, \sum s^{0}
$$

Example:

Both \sum^{∞} and Ω_{1}^{∞} are 1-excisive

$$
\sim \operatorname{hotim}\left(\Omega_{\Omega_{1}^{\infty}} \quad \Omega_{10}^{\infty}\right)
$$

is Cartcsiom
Example: $\sum^{\infty} \sum_{1}^{\infty}: T_{o p+} \rightarrow T_{o p+}$ is I-excisive, but $\sum^{\infty} \Omega^{\infty}$ is not 1-excisive. So the compocite of l-exaigive fundors is und necessarily 1-excisive.

Example: Let C be a fixed speofrucu and defiue $G: T . P_{T} \rightarrow$ Spedtra by

$$
G(X)=C \wedge \sum^{+\infty} X
$$

One can check that:
$\left.\begin{array}{l}\text { (i) } G \text { is } 1 \text {-excisive } \\ \text { (ii) } G(*) \approx *\end{array}\right\} \Rightarrow G$ limear
(iii) G satisfies the "coliunit axiom"

$$
\begin{aligned}
& x \rightarrow y \\
& \text { is colarterion iff if, is Capreicm } \\
& \omega^{\infty} X \simeq \Omega_{\infty}^{\infty}\left(\operatorname{hotim}\left(z \rightarrow j_{i}^{y}\right)\right)
\end{aligned}
$$

Colimit axiom. If X is a filtered colimit of finite CW-courplexes, then:

$$
\operatorname{colim}_{\alpha}\left(F X_{\alpha}\right) \stackrel{\sim}{\longrightarrow} F\left(\underset{\alpha}{\operatorname{colim}} X_{\alpha}\right)
$$

Classification of fuactors $F_{i} T_{o p+} \rightarrow$ spadira satisfyiug colim axion

$$
\frac{\operatorname{Hom}(X, Y) \longrightarrow L^{\infty} \operatorname{Hom}(F X, F Y)}{\sum^{\infty} \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}(F X, F Y)} \quad \text { in Top }
$$

Instantiating of $X=5^{\circ}$:

$$
\sum^{+\infty} y \wedge L_{=: C} \longrightarrow F Y
$$

Let $Y=S^{n+1}$. We have

is pushout in Spectia hience it is determined by $F S^{n} \rightarrow F=$
\therefore and hence TS

For CH^{-c} congolvexes:

$$
\int_{*}^{D^{n}} \longrightarrow \int_{y}^{x}
$$

is determined by

$$
\int_{D^{n}}^{\partial D^{n}} \rightarrow x
$$

and that extends to all spaces.

Def: Any n-cube constructed this way is called strongly oo Cartesian.

Def: F is nexcive, if it takes strongly coCartesion $(n+1)$-abbes to (n+1)-Cartesiau cubes.

Example: $X \longmapsto \Sigma^{\infty}(X \wedge X)$ is 2-excisive Thm.(Goodwillie). If $G(x, y)$ is bilinear, then $G(X, X)$ is 2-excisive.

Tale $G(X, Y)=\sum^{\infty}(X \wedge Y)=\sum^{\infty} X \wedge \sum^{\infty} Y$ Thus the Thud gives that $\sum^{\infty}\left(X_{1} X\right)$ is 2-excisive.
2

is then to

not Cartesian.

Geoffrey Hovel, Constructing the Taylor Tower (3)
We will concentrate on Suncfors Toper Toper, bout the theory works in other siecepliciap model categories.
Socucelivers we will assume that $F\left(x_{i}\right)=\phi$. We will construct a facuily of Sernctors $\left\{P_{n} F\right\}_{n=n}$ together with a family of mat. trees

$$
F \rightarrow P_{n} F
$$

s. th. (1) $P_{n} F$ is n-excisive
(2) for all G n-excisive and all $F \rightarrow G$ there exists a factorization

in the homotopy category of functor
(3) for any fiber sequence $F \rightarrow G \rightarrow H$ the sequence $P_{n} F \rightarrow P_{n} G \longrightarrow P_{n} H$
n-excisive $<(n-1)$-excisive

Definition. X poiuted space, S a set
join $\quad X * S:=$ hocofiter $(\underset{S}{V} X \rightarrow X)$
Let n be an integer

$$
\begin{aligned}
P([n+1]) & \longrightarrow T_{\rho_{P}} \\
S & \longrightarrow X * S
\end{aligned}
$$

This is strougly co Cattesion
Exaugle: $n=1$

$$
\begin{array}{ll}
X * \phi=X & X \\
X * p t=C X & \\
X *\{0,1\}=\sum X & C X \\
& C X
\end{array}
$$

Define

$$
\begin{array}{rl}
T_{n} & F(X)= \\
& \operatorname{holim}_{s \in \mathcal{P}_{0}([n+1])} F(X * s)
\end{array}
$$

now-cmpty subsets!

$$
\begin{aligned}
& F \xrightarrow{t_{n} F} T_{n} F \\
& F X \xrightarrow{\simeq} F(X \otimes \varnothing) \longrightarrow \operatorname{holimh} F(X * S) \\
& S \in P_{0}([n \in 1])
\end{aligned}
$$

If F is n-excisive, $F \xrightarrow{l_{1} F} T_{n} F$ is a_{n}
equivalence.
Tn F is a good approximation. but hos wo rasomen to
Def: Define:

$$
P_{n} F(X)=\operatorname{hocolim}\left(F X \xrightarrow{l_{n} F(X)} T_{n} F(X) \xrightarrow{t_{n}^{+} T_{n} F(X)} T_{n}^{2} F(X) \xrightarrow[\longrightarrow]{t_{n} T_{n}^{n}(x)}\right)
$$

We obtain:

$$
F \xrightarrow{p_{n} F} p_{n} F
$$

why does it terminate? it is supposed to solve $F \cong T_{n} F$

If F is n-excioive, $F \xrightarrow[p_{n} F]{\simeq} P_{n} F$ is an equiv.

Remark. $(X * S) * T=X *(S * T)$

- $\sum(X * S)=\sum X * S$

So: $T_{n}(F \circ \Sigma)=T_{n} F \cdot \sum^{\prime}$
and hence: $P_{n}\left(F \circ \sum\right)=P_{n} F \cdot \sum$.

Moral. P F depends on the local behaviour of F around $*$.
Q: ? ? ?

Proposition: $P_{n}: \operatorname{Fun}\left(T_{o p_{x}}, T_{0 p_{*}}\right) \rightarrow F_{u n}\left(T_{o p_{x}}, T_{o p_{*}}\right)$.
commutes with - filtered holimits

- finite holiuits

Proof: In Top* hocolims commute with hocolims holimes commute with hotlines filtered hocolius conemente with finite holims ie. fou\% nerve of a ding.

Lemma. Let X be a strongly olartecicin $(n+1)$-cube. Then $F(x) \rightarrow T_{n} F(x)$ factors through a Cartesian aube.

Theorem. $P_{n} F$ is n-excisive.
$(*) F X \longrightarrow T_{h} F X \longrightarrow T_{n}^{2} F X \longrightarrow \ldots$

$$
\operatorname{hocolich}(*)=\operatorname{hocolim}(* *)=\operatorname{hocolim}\left(C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow \ldots\right)
$$

each C_{i} is cartesian, so hocolim $\left(C_{1} \rightarrow C_{2} \rightarrow \ldots\right)$
is cartesian
$P_{n} F(x)$ is cartesian, hence $P_{n} F$ is n-excisive.

Existence of factorization
Let G be n-excisive

In the homotopy allegory the map $G \longrightarrow P_{n} G$ is invertible, yielding

Lemur: $P_{n} F \underset{P_{n} t_{n} F}{ } P_{n} T_{n} F \quad$ is a weal equivalence.
Proof: Left S be a Simile set.
Define Jos $F(x)=F(X+S)$

$$
P_{n} F \xrightarrow{*} P_{n}\left(\underset{U \in \mathcal{P}_{0}(n-1)}{\operatorname{holim}} J_{U} F\right) \xrightarrow{\simeq} \operatorname{holim}_{U n} P_{n} J_{U} F
$$

hotline JU P FF

This composite is $t_{n} P_{n} F$ which is an equivalounc. because $P_{n} F$ is n-excisive. \square
Corollary. $P_{n} F \xrightarrow{P_{n} p_{n} F} P_{n}^{2} F$ is an equivaleuro

Uniqueness of factorization:
Let $F \longrightarrow G$ with G-excisive

$$
\begin{aligned}
& \text { with a factorization } F \longrightarrow P_{n} F \longrightarrow \longrightarrow \longrightarrow \mathbb{G} \\
& F \xrightarrow{P_{n} F} P_{n} F \xrightarrow{v} \\
& p_{n} F \mid \quad \simeq p_{n} P_{n} \not{ }_{F} \\
& P_{n} F \longrightarrow P_{n}^{2} F \longrightarrow P_{n} G
\end{aligned}
$$

\checkmark is uniquely determined by $P_{n} \vee$.
$P_{n} v$ is uniquely determined by $P_{n} v \circ P_{n} p_{n} F$

$$
=P_{n}\left(v \circ p_{n} F\right)
$$

So v is determined by $v \circ p_{n} F$

As a finat recucorle we will give a proof of Levima, $F X \longrightarrow T_{n} F X$ facfors through a cortesion cube, if x is strongly cocartesian. Proof (Reck)
X curbe; Lof $U \in P(\underline{n+1})$ and define

$$
\begin{aligned}
& \left.X_{U}(T)=\operatorname{hocolim}^{\substack{11}} \underset{x(T)}{ } x(T) \rightarrow \frac{11}{s \in U} x\left(T_{u}\{s\}\right)\right) \\
& X_{U}(T) \longrightarrow X(T) * U \\
& F(x(T)) \rightarrow \operatorname{holim}_{U \in P_{0}(n+1)} F\left(X_{U}(T)\right) \rightarrow \operatorname{holime}_{\substack{ \\
}} F(x(T) *(1) \\
& t_{n} F(X(T))
\end{aligned}
$$

7 if x is strougly coCartesian $x_{U}(T)=x(T U U)$

Matthew Parcia, Hourogeneous fundors (4)

$$
\begin{aligned}
& P_{n}(f)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+ \\
& D_{n}(f)=P_{n}(f)-P_{n-1}(f)=\frac{f^{(n)}(0)}{n!} x^{n}
\end{aligned}
$$

Properties of $D_{n}(f)$:
(1) of $\operatorname{deg} n$
(3) exactly of deg n, homogeneons of deg n
(3) $\frac{f(0)}{n!}$

For functors: $F:$ Top* $^{\longrightarrow} \longrightarrow \begin{gathered}\text { Toper } \\ \text { Speetra }\end{gathered}$
(1) deg $n \longleftrightarrow n$-excisive
"deteruiued by values on ($n+1$)-poiul."

(2) $P_{n-1} F=\infty$

Def: A functor F is homogeneous of degree $n, i f$:
(1) F is n-excisive.
(2) $P_{n-1} F=\infty \quad(n$-reduced $)$

Example: Layers of tho Taylor Tousor

$$
D_{n} F:=\text { hofiber }\left(P_{n} F \longrightarrow P_{n-1} F\right)
$$

Proposition. $D_{n} F$ is homogeneou s of degreen.
Proof: Follows fromeo
(1) P_{n} preserves homotopy Siber sequences
(2) $P_{n-1} P_{n} \longrightarrow P_{n-1} P_{n-1}$ is an equivaleceoce
(3) $F \rightarrow G \rightarrow H$ fiber sequence of fundors, If $G \& \|$ are n-exaisive, so is F

$$
\begin{aligned}
& D_{n} F \longrightarrow P_{n} F \rightarrow P_{n-1} F \\
& P_{n-1} D_{n} F \rightarrow P_{n-1} P_{n} F \longrightarrow P_{n-1} P_{n-1} F
\end{aligned}
$$

Example. $F:$ Spectra \rightarrow Spectra $X_{1} \rightarrow X^{\wedge n}$

$$
G: T_{o p *} \longrightarrow \text { Spectra } \quad X \mapsto \Sigma^{+\infty}\left(X^{1 n}\right)
$$

These are both homogeneous of clegree n.

Lemma: $L: C^{n} \rightarrow D$ is k_{i}-excisive in each slot, then the composite functor

$$
C \xrightarrow{\Delta} C^{n} \xrightarrow{L} D \text { is }\left(\sum k_{i}\right) \text {-excisive. }
$$

Lemma. If $L: C^{n} \longrightarrow D$ is reduced in each slot, then $C \xrightarrow{\Delta} C^{n} L$ D is n-reduced (ie. $P_{n-1}(L \cdot \Delta) X X=*$)

Let $\tilde{F}\left(X_{1}, \ldots, X_{n}\right)=X_{1} \wedge \ldots \wedge X_{n}$
Example. C a fixed spedram

$$
F(X)=C \wedge X^{\wedge_{n}}, \quad G(X)=C \wedge \sum^{\infty} X^{A_{n}}
$$

are n-homogeneous.
Moreover, if C has a \sum_{n}-section, then so does $F(X)=\left(C_{\wedge} X^{\wedge n}\right)_{b \sum_{n}}$.
A vire property is;
Thy. $F: T_{o p x} \rightarrow \sigma_{o p x}$ homogeneous of $\operatorname{deg} n$, then FX is an infinite loop space for any $X \in$ Top xe $_{x}$.
Example: (or proof for a linear fender)

$$
\begin{aligned}
& \underset{M P}{5(14) 12>}
\end{aligned}
$$

$$
\begin{aligned}
& F\left(\sum_{X} X\right) \\
& \text { repeatedly }
\end{aligned}
$$

For homogeneous of clog $n \neq 1$, harden, bud docile. We need:

Lemma. F is reduced, then there is a hourogencous fundor of olegn $\mathbb{P}_{n} F$, which fits into a Liber sequence:

$$
P_{n} R \rightarrow p_{n-1} R \rightarrow R_{n} F
$$

Example: $f(x)$ linear if $\hat{f}\left(x_{1}, x_{2}\right)=0$

$$
\hat{f}\left(x_{1}, x_{2}\right):=f\left(x_{1}+x_{2}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)+f(0)
$$

Suppose $f(x)=a x^{2}+b x+c$

$$
f\left(x_{1}, x_{2}\right)=\left(a x_{1} a_{2}\right) \cdot 2
$$

If f is a deg n polynomial, then

$$
\hat{f}\left(x_{1}, \ldots, x_{n}\right)=n!\cdot a \cdot x_{1} x_{2} x_{3} \ldots x_{n}
$$

Def: The $n^{\text {th }}$ cross effect, $\mathrm{cr}_{n} \mathrm{~F}$ is the functor of n variables given by applying F to the cube:

$$
x(\underline{n}-T)=\bigvee_{s \in T} X_{s}
$$

and taking the total homology fiber

$$
\begin{array}{rl}
x_{1} \vee x_{2} \longrightarrow x_{2} & F\left(X_{1} \vee X_{2}\right) \rightarrow F X_{2} \\
& \int_{F\left(X_{1} \vee X_{2}\right)-F X_{1}-F X_{2}+F *}
\end{array}
$$

Proposition. If F is n-excisive, then $c r=F$ is $(n-m)$-excisive in each variable. In partiala, if F n-excisive, then $\operatorname{cr}_{n} F$ is symmetic multilinear and if p is $(n-1)$-exaigqive, cr $r_{n} F$ is trivial

Crn: homogeneous, deg n functors
symmetric umltilimear functors
L is symmetric multilnear $L: C^{n} D$, then $C \xrightarrow{\Delta} C^{n} \xrightarrow{L}$ $\left(L\left(X_{1}, \ldots, X_{n}\right)\right)_{h \sum_{n}}$ is homogeneoug of degn We have an equivalence:

Where $\Delta_{n}: L \mapsto(L \circ \Delta)_{h \Sigma_{n}}$

Suppose we have a fixed spectrum C

$$
L\left(X_{1}, \ldots, X_{n}\right)=C_{\wedge} X_{1} \wedge \ldots X_{n}
$$

on the other hand:
is symmetric meuttilicuor
if L is symmetric undtilinear, then

$$
L\left(S^{0}, s^{0}, \ldots, S^{0}\right) \wedge X_{1} \wedge X_{2} \wedge \ldots \wedge X_{n} \rightarrow L\left(X_{1}, \ldots, X_{n}\right)
$$

The layers of the Taylor Tower are homogeneous of $\log n$, hance:

$$
\begin{aligned}
& \left(\operatorname{cr}_{n} D_{n}\right)\left(X_{1}, \ldots, X_{n}\right)=C \wedge X_{1} \wedge X_{2} \wedge \ldots \wedge X_{n} \\
& \left(D_{n} F\right)(X)=\left(C_{\|} \wedge X^{\wedge n}\right)_{n \Sigma_{n}} \\
& \left(\operatorname{cr}_{n} D_{n} F\right)\left(S^{0}, \ldots, S^{0}\right):=Q^{(n)}(*) \\
& e r_{n} D_{n} F:=D^{(n)} F \quad \text { the } n^{\text {th }} \text { differential of } F \\
& \left(D_{n} F\right)(X)=\left(O^{(n)}(*) \wedge X^{\wedge n}\right)_{n \Sigma_{n}}
\end{aligned}
$$

Thm. The $n^{\text {th }}$ differectial $D^{(n)} \mathrm{F}$ is equivalat to the multiliuearication of $\operatorname{or}_{n} F$.
(both loosely

$$
\left.\underset{\left(k_{1}, \ldots, k_{n}\right)}{\text { hocolim }} \Omega^{k_{1}+k_{2}+\ldots k_{n}} \operatorname{cr}_{n} F\left(\sum^{k_{1}} X_{1}, \ldots, \sum^{k_{n}} X_{n}\right)\right)
$$

So far, we've been evaluationg the derivative at $*$ (in $\mathbb{R} \rightarrow \mathbb{R}$ corresponots do Mtonkoursia) but we unay want tu yry doing that on other rbjects.

Q\&A session Monday:

Let $F: T_{o p t} \longrightarrow T_{o p, s}$ be a bomotopis functor

$$
F \longrightarrow \underset{\iota_{n}}{\operatorname{holim}_{n}} P_{n} F
$$

and...?

$$
X \xrightarrow{r} \quad l(r)=e^{-\operatorname{conn}(r)} \quad \text { length }
$$

map between
spares, spectra,

$$
\begin{aligned}
& F \text { is } E_{n}(c, K) \text { if } \\
& \operatorname{conn}\left(X_{\phi} \rightarrow X_{i}\right) \geqslant k \Rightarrow \operatorname{conn}(a) \geqslant-_{c}+\sum \\
& F: T_{o p *} \rightarrow T_{o p *} \\
& \left\{X_{\phi} \rightarrow X_{i}\right\} \quad i=1, \ldots, n+1
\end{aligned}
$$

F has $E_{n}(c, k)$, if whenever $\operatorname{conn}\left(X_{\phi} \rightarrow X_{1}\right) \geqslant 4$ for $i=1, \ldots, n+1$, we have $\operatorname{conn}(a) \geqslant-c+\sum_{i=1}^{n+1} \operatorname{conn}\left(x_{a \rightarrow x_{i}}\right)$ Given SGX, we say that P is P-andytic; if there is $q \in \mathbb{Z}$ such that F has $E_{n}(n \rho-9, \rho+1)$ for all $n \geqslant 1$ F cunalytic, if it is Scomalytic for some S. Theoreur, If F is S-analytic and $\operatorname{conn}(X)>\rho$, then $F X \xrightarrow{\simeq} \operatorname{holim} P_{n} F(X)$.

Let $F:$ Top $/ X \longrightarrow$ Top / spectra / a

$$
D_{n} F:=\operatorname{hofib}\left(P_{n} F \rightarrow P_{n-1} F\right)
$$

For X a CW-complex

$$
D_{n} F(X) \simeq \Omega^{\infty}\left(\partial_{n} F \wedge\left(\sum^{\infty} X\right)^{\wedge n}\right)_{n \Sigma_{n}}
$$

Every homegeneous functor $T_{o p,}, T_{\text {ops }}$ factors thru:

Spectra $\mathbb{D}_{n}{ }^{-} \rightarrow$ Spectra

Joey Hirsch, First examples (5)
Outline:
(1) $1_{\text {S.Alg }}$
(2) $\operatorname{Mapx}(k,-)$
(1) S-Mod: model category of Spectra
\wedge symmetric woroidal product
S is the unit

$$
S-A l_{y}=C_{\text {om }} \operatorname{Mon}(S-\operatorname{Mod}, \Lambda)
$$

Let's compute $P_{1} F$ where $F: e \rightarrow C$ \& $F_{*}=*$

$$
P_{1} F=\underset{\substack{\text { hocolim } \\ n \rightarrow \infty}}{ } \Omega^{n} F \Sigma^{n}
$$

$$
P_{1}\left(1_{e}\right)=\Omega^{\infty} \Sigma^{\infty}
$$

$$
e \underset{\Omega^{\infty}}{\stackrel{\Sigma^{\infty}}{\leftrightarrows}} \operatorname{Stab}(c)
$$

$$
P_{1}\left(1_{e}\right)=\text { "stable C-houotopy" }
$$

When $\mathcal{E}=R$-Alg Bestera-Mendell

$$
\operatorname{Stab}(R-A l g) \simeq R-\operatorname{Mod}
$$

vio this equivalence $\Sigma^{+\infty} \simeq T \wedge Q_{s}(\cdot) \equiv$ derived indecomp

$$
\begin{array}{ll}
I(A)=\operatorname{hofib}(A \rightarrow \mathbb{R}) \\
R \text {-wodute algelbe sken \& } & T A Q(A)=I(A) / I(A)^{2}
\end{array} \begin{aligned}
& \text { Topological } \\
& \text { Andie }
\end{aligned}
$$

$$
\Gamma^{\infty}(M) \cong R v M
$$

when $R=S, \quad P_{1}\left(1_{S-A / g}\right)(A)=S_{V} \operatorname{TAC}(A)$

$$
D_{1}\left(1_{S-A l g}\right)(A)=\operatorname{TAQ}(A)
$$

Goal: compute $D_{n} 1_{s-A l g}(A)$
We know that: $\left(\text { MultliLin }\left(c r_{n}(1)\right) \circ \Delta(A)\right)_{h \sum_{n}^{n}}=D_{n} 1_{s-A / s}(A)$
Claims. $\operatorname{cr}_{n}\left(I_{S-A I_{S}}\right)\left(A_{1},-, A_{n}\right)=I\left(A_{1}\right) \wedge \ldots \wedge I\left(A_{n}\right)$
Claim. MultiLin $\left(\operatorname{cr}\left(f_{n-A l y}\right)\right)\left(A_{1}, \ldots, A_{n}\right)=\operatorname{TAQ}\left(A_{1}\right) \wedge \ldots \wedge T A Q\left(A_{n}\right)$
So $D_{n}\left(1_{s-A I_{g}}\right)(A)=\left(T A Q(A)^{1 n}\right)_{n \Sigma_{n}^{\prime}}=" \Omega^{\infty}\left(\partial_{n}(1) \wedge\left(\Sigma_{A}^{\infty} A\right)^{1 n} \Sigma_{n}\right)$
Fact. If $I(A)$ is O-connected, then the map
$A \longrightarrow \operatorname{holim}_{n \rightarrow \infty} P_{n}\left(1_{S \cdot A I_{g}}\right)(A)=P_{\infty}(A)$ is an equivalence
Corollary. Let $f: A \rightarrow B$ \& $I(A), T(B)$ o-conucted. If $T A Q(A) \cong T A Q(B)$, then $f: A \longrightarrow B$ is an equivalence.

Proof:

(2) $\operatorname{Map}_{\mathrm{k}}(K,-)$.

Notation. K based finite $C W$-complex
X based space
Tope the category of spaces coufaiming X

$$
\text { as a retrad ie. } X \leftrightarrow Y \xrightarrow[1_{x}]{\alpha} X
$$

K_{1}^{n} will denote an equivariant subquotient of K^{n} (i.e $\exists K_{a}^{n} \subseteq K_{b}^{n} \subseteq K^{n}$ with $\left.K_{1}^{n}=K_{b}^{n} / K_{a}^{n}\right)$
Def: $\overline{\operatorname{Map} *}\left(K_{1}^{n},(Y / X)^{n_{n}} \wedge \operatorname{Map}(K, X)_{*}\right)=$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
f \in \operatorname{Mape}\left(K_{1}^{n}(y / x)^{\Lambda n} \wedge \operatorname{Map}(K, X)_{e}\right) \\
\forall k_{i}^{n} \in K_{1}^{n} \backslash f^{-1}(*) \quad P_{\operatorname{Map}(K, x)}\left(f\left(k_{1}^{n}\right)\right)\left(P_{i}\left(k_{i}^{n}\right)\right.
\end{array}\right. \\
& \alpha\left(P_{i} \cdot P_{(y / x)}\left(f\left(k_{1}^{n}\right)\right)\right) \quad \forall_{1 \leq i \leqslant n} \\
& K_{1}^{n} \xrightarrow{F}(y / x)^{1_{n}} \\
& P_{i} \downarrow \quad \int \alpha \cdot P_{i} \\
& K \xrightarrow[f]{ } X
\end{aligned}
$$

Spoiler alert. $\quad X=*$
Let $M=$ the category of finite sets and surjections

$$
M=
$$

$$
y^{\wedge-} \because M_{n}^{o p} \longrightarrow T_{o p_{x}}
$$

$$
y_{\theta(1)} \wedge \ldots \wedge y_{\theta(m)}
$$

Def: Fix K aud Y. $F_{n}, G_{n}: M_{r}^{o p} \rightarrow T_{o p}$

$$
F_{n}^{K}(m)=\sum^{\infty} K^{\wedge m} ; \quad G_{n}^{W}(m)=\sum^{\infty} y^{\wedge m}
$$

Def: We give $\underset{M_{n}}{\operatorname{Nat}}\left(\sum^{\infty} K^{\wedge}, \sum^{\infty} y^{\wedge}\right)$ the subspace topology by:

$$
\operatorname{Nat}_{M_{n}}\left(\Sigma^{\infty} K^{\wedge}, \Sigma^{-\infty} y^{\wedge}\right) \subseteq \prod_{m \in M_{n}} \operatorname{Map}\left(\sum^{\infty} K^{\Lambda_{m}}, \sum^{\infty \infty} Y^{\wedge m}\right)
$$

Observe: (1) $\operatorname{Nat}\left(F_{n}, G_{n}\right) \xrightarrow{\text { rect }} \operatorname{Nat}\left(F_{n-1}, G_{n-1}\right)$ is a Libration
(2)

$$
\begin{aligned}
\Omega 氵^{\infty} \Sigma^{\infty} \operatorname{Map}(K, y) \xrightarrow{\sigma_{n}} & \operatorname{Nat}\left(F_{n}, G_{n}\right) \\
& M a p \\
& K, y) \longrightarrow \operatorname{Map}\left(K^{\Lambda_{n}}, y^{\Lambda n}\right)
\end{aligned}
$$

$f \longmapsto f^{\wedge n}$
(3)

$$
\begin{aligned}
\sigma_{n} \rightarrow & \operatorname{Nat}\left(F_{n-1}, G_{n-1}\right) \\
& =\operatorname{Nat}\left(F_{n-1}, G_{n-1}\right)
\end{aligned}
$$

Tho.

$$
Q \operatorname{Map}\left(K_{i}\right) \longrightarrow \operatorname{Nat}\left(F_{n}, G_{n}\right)
$$

is the Taylor Tower for $Q \operatorname{Map}(K,-)$, where

$$
Q=\Omega^{\infty} \sum_{i}^{\infty} .
$$

$$
D_{n}(Q \operatorname{Map}(K,-))=M_{a p *}\left(\sum^{\infty} K^{\wedge n} / \underset{\substack{\delta^{n}+\\ \text { diagonal }}}{\Delta^{n} R}, \sum^{\infty} y^{n}\right)^{\Sigma_{n}}
$$

Surprise. $P_{\infty}(\operatorname{Map}(K,-))=\operatorname{Nat}(F, G)$ maps of right modules over the commutation operon

$$
\left\{\begin{array}{c}
\text { finite sets } \\
\text { with surjection }
\end{array}\right\} \unrhd\left\{\begin{array}{c}
\text { commutative } \\
\text { Operads }
\end{array}\right\}
$$

claim. $H \xrightarrow{A}$ Top: product preserving are just commutative algebras in spaces. Proof: $A(1)=: A$

Gigs Heuts, The derivatives of the Identity Jundor (6)
we consider $1_{T_{o p_{e}}}: T_{p_{e}} \rightarrow T_{0 P_{\infty}}$
Aualiticy of $1_{T_{\text {op }}}$

Thu (BM, ES, G)。 Let x be a strongly odartasion n-cube. If for $1 \leqslant i \leqslant n$ the maps $X_{\phi \rightarrow} \rightarrow X_{i}$ are k_{i} - conceded, then X is $\left(1-n+\sum k_{i}\right)$-Cartesian.

Corollary: $1_{\text {Tope }}$ satisfies $E_{n}(n, l e)$ for all $k \in \mathbb{Z}$ and all $n \geqslant 1$. Hence $l_{\text {Tope }}$ is 1 -analytic. In particular, Taylor tower converges on simply-conneded spaces.

Ruck. Convergerice for suitably cuipotent spaces. Derivatives

$$
\operatorname{cotim} \Omega^{k_{1}+\ldots k_{n}} C r_{n}\left(1_{T_{p p s}}\right)\left(\sum^{k_{1}} X_{1}, \ldots, \sum^{i k_{n}} X_{n}\right)
$$

$\sum_{\infty}^{\infty}\left(\partial_{n}\right.$ id $\left.\wedge X_{1} \wedge \ldots \wedge X_{n}\right)$

Construction: Let X be an $n-c u b e$ of spaces.
For $U \subseteq\{1,-n\}$, let

$$
I^{U}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in I^{n} \mid t_{i}=0 \text {, if } i \notin U\right\}
$$

A point in $h f_{i b}(x)$ is a collection

Satisfying:

$$
\left\{\phi_{U}\right\}_{U \mathbb{I}_{n}} \text {, where } \phi_{U}: I^{U} x_{U}
$$

(a)

$$
\left.\right|_{I^{v}} ^{I^{V} \longrightarrow x_{V}} \quad V \leq v
$$

(b) if $t_{i}=1$

$$
\phi_{u}\left(t_{1}, \ldots, t_{n}\right)=\mathbb{x}^{2}
$$

Construction of T_{n}
A point in $\operatorname{cr}_{n}\left(1_{T_{\text {op }}}\right)\left(X_{1}, \ldots, X_{n}\right)$ consists of maps

$$
\phi_{U}: I^{U} \longrightarrow \bigvee_{i \notin U} X_{i}
$$

In particular, get maps:

$$
I^{n-1} \simeq I^{n \backslash\{i\}} \longrightarrow X_{i}
$$

Get $T_{n}^{\prime}: c_{n}\left(1_{T_{p_{p}}}\right)\left(X_{1},-X_{n}\right) \rightarrow \operatorname{Map}_{* *}\left(I^{n(n-1)}, \prod_{i=1}^{n} X_{i}\right)$
Compose with $\prod_{i=1}^{n} X_{1} \longrightarrow \bigwedge_{i=1}^{i} X_{i}$ to get

$$
T_{n}^{n}: \operatorname{cr}_{n}\left(1_{T_{o p_{*}}}\right)\left(X_{1}, \ldots, X_{n}\right) \rightarrow M_{a p_{*}}\left(I^{n(n-1)}, \hat{i n}_{i=1}^{n} X_{i}\right)
$$

Make the identifications $w^{\prime a}$ action:

$$
\left.\begin{array}{rl}
I^{n(n-1)} & =\left\{\left(t_{i j}\right)_{1 \leqslant, j \leqslant n} \mid t_{i i}=0 \quad \forall_{i}\right\} \\
& =\left\{\left(\begin{array}{cc}
0 & - \\
x_{0} & -0
\end{array}\right)^{*} \in I^{n-1}\right.
\end{array}\right\}
$$

Def: (1) $z:=\left\{t \in I^{n(n-1)} \mid t_{i j}=1\right.$ for some $\left.i j\right\}$
(2) $W_{i j}=\left\{t \in I^{n(n-1)} \left\lvert\, t_{i k}=t_{j k} \quad \begin{array}{ll}\forall_{k \leq n}\end{array}\right.\right\}$
(3) $K_{n}:=I^{n(n-1)} /\left(Z \cup \bigcup_{i<j} W_{i j}\right)$

Get a map $T_{n}: \operatorname{cr}_{n}\left(1_{T_{0 p}}\right)\left(X_{1}, \ldots, X_{n}\right) \rightarrow \operatorname{Map}\left(K_{n}, X_{1 \ldots \ldots} \ldots X_{n}\right)$
Claim. This map is \sum_{n}^{n}-equivouriout.
Claim. This map becomes an equivalence after muldilinearating.

Prop. Non-equivaleufly, $K_{n}=$ (n-1)! S^{n-1} Exercise!

$$
\left.\operatorname{Map}_{\mathrm{b}}\left(K_{n}\right) X_{1} \wedge-\wedge X_{n}\right) \simeq \prod_{i=1}^{\frac{(n-1)!}{(n-1)!} \Omega^{n-1}\left(X_{1} \wedge \ldots \wedge X_{n}\right)}
$$

Let's consider the "first step":

$$
L_{n}: \operatorname{Ricr}_{n}\left(1_{T o p x}\right)\left(\sum X_{1},-, \sum X_{n}\right) \rightarrow \prod_{i=1}^{(n-1)!} \Omega^{n} \Sigma^{n}\left(X_{1} \wedge \ldots \wedge X_{n}\right)
$$

Tho. (Hilton - Milnor).

$$
\Omega \sum\left(X_{1} \vee \ldots \vee X_{n}\right) \stackrel{\substack{\text { monowids } \\ \text { ma standard } \\ \text { basis of } L_{e}(n)}}{ } \prod_{n} \Omega\left(X_{1}^{\wedge a_{1}} \wedge \ldots \wedge X^{\wedge a_{n}}\right)
$$

where Lie (n) free Lie algelora on generators $x_{1}, \ldots, x_{n} . \quad a_{i}=$ number of x_{i} 's in a given unonouial

Cor. $\operatorname{cr}_{n}(\Omega, \Sigma)\left(X_{1}, \ldots, X_{n}\right)=\prod_{\text {monomial }} \Omega \sum\left(X_{1}^{\wedge a_{1}} \Lambda_{0} . \wedge X^{\wedge a_{n}}\right)$

$$
\text { s. th. } a_{i} \geqslant 1
$$

for all:
Cor. If all the X_{i} are k-connected,

$$
\begin{aligned}
& \pi_{m}\left(\operatorname{cr}_{n}\left(\Omega, L_{1}\right)\left(X_{1}, \ldots, X_{n}\right)\right) \rightarrow \pi_{m}\left(\prod_{i=1}^{(n-1)!} \Omega \Sigma\left(X_{1} \wedge \ldots \wedge X_{n}\right)\right)
\end{aligned}
$$

is on iso, if $0 \leqslant m \leqslant(n+1)(k+1)-1$
Since $\pi_{m}\left(\Omega, \sum\left(X_{1} \wedge \ldots \wedge X_{n}\right)\right)=\pi_{m}\left(X_{1} \wedge \ldots \wedge X_{n, n}\right)$
in this range ($B M$, Freudenthal), we get
Prop. For $0 \leqslant m \leqslant(n+1)\left(l_{c+1}\right)-1$

$$
\begin{aligned}
& \pi_{m}\left(\operatorname{cr}_{n}(\Omega \Sigma!)\left(X_{1}, \ldots, x_{n}\right) \simeq \pi_{m}\left(\prod_{i=1}^{(n-1)!} x_{1} \wedge \ldots \wedge X_{n}\right)\right. \\
& \pi_{m}\left(\prod_{i=1}^{(n+1)!} \Omega \sum^{n}\left(X_{1} \wedge \quad, 1\right)\right.
\end{aligned}
$$

aud L_{n} induces isols on π_{m} in those degrees
This gives

$$
\Omega^{\ln } c_{r_{n}}\left(1_{T_{o p *}}\right)\left(\sum^{l l} X_{1}, \ldots, \sum^{l} X_{n}\right) \rightarrow \Omega^{l n} M_{a p \neq}\left(K_{n}, \Sigma^{l l} X_{1}, \ldots, \Sigma^{l}, x\right)
$$

\

$$
\begin{aligned}
\Omega^{l n-1} \operatorname{cr}_{n}\left(\Omega, \Sigma^{\prime}\right)\left(\sum^{l-1} X_{1},\right. & \left., \sum^{l-1} X_{n}\right) \\
& \Omega^{l n+1} \prod_{i=1}^{(n-1)!} U \Omega^{n} \sum^{-n^{n}}\left(\sum^{l-1} x_{1}, \ldots n \Sigma^{l i-} x_{n}\right)
\end{aligned}
$$

induces isos on T_{m} for

$$
0 \leqslant m \leqslant \underbrace{(n+1)(k+1)-1-(\ln -1)}_{=1+j u n k}
$$

$\Rightarrow T_{n}$ becoures on equivalence ofter multilinearicing

$$
\begin{array}{r}
\operatorname{colim}_{l \rightarrow \infty} \sum^{\ln } \text { Map* }\left(K_{n}, \sum^{\ln } X_{1} \wedge \ldots X_{n}\right) \\
12 \\
M_{a p_{*}}\left(K_{n}, Q\left(X_{1} \wedge \ldots \Lambda X_{n}\right)\right.
\end{array}
$$

Thue. $\partial_{n}\left(1_{T_{p p_{r}}}\right)=\mathbb{D} K_{n} . \begin{aligned} & \text { spamior-1 Whitchead }\end{aligned}$
Non-equivariantly, $\quad \partial_{n}\left(1_{T_{o p_{x}}}\right)=\bigvee_{i=1}^{(n-1!!} S^{1-n}$

Def: Part (n) is a posct of paptitions of $\{1,-n\}$
$\operatorname{Part}_{L 1}(n)$ is the subset of non-trivial partitions

$$
\text { i.e. } \left.P_{a r t}(n) \neq 1\right\}
$$

Paftry the suebset of parfitions

$$
\text { i.e. } \operatorname{Pant}(n) \backslash\{0\}
$$

Exercise. $K_{n} \simeq\left|\mathcal{M}\left(\operatorname{Pad}_{a}(n)\right) / \mathbb{N}\left(\operatorname{Part}_{21}(n)\right) \cup N\left(P_{\text {art }}^{2}(n)\right)\right|$

$$
\simeq \sum S\left|N\left(\operatorname{Part}_{\text {a }}(n)-\{0,1\}\right)\right| \text { if } n>1
$$

Emily Riehl, Operads and chain rule for the calculus of functors (7)

Context: $C, D, \mathcal{E}^{E}=T_{O P}, \operatorname{Spectra}\binom{=E K M M}{S-$ modules }
$F: C \rightarrow \infty \quad$ homotopy functor (homotopical) $\partial_{n} F \sum_{\text {spectrum }}$
$\partial_{*} F$ forms a symmetric sequence in Spectra
Let $\Sigma_{1}=$ the category of finite sets and iso $\partial_{*} F: \sum \rightarrow$ Spectra
Q: What extra structure is present on $\partial_{x} F$? Example.

$$
\partial_{n} I_{S_{\text {petra }}}= \begin{cases}S & \text { if } n=1 \\ r & \text { th }\end{cases}
$$

since $P_{0} I=\infty \quad p_{1} I=I$
$D_{1} I=h f_{i b}(I \longrightarrow R)=I$
$D_{n} F=\left(\partial_{n} F \wedge X^{\Lambda_{n}}\right)_{h \Sigma_{n}}$
$\partial_{1} F=s \quad$ and $\quad P_{n} I=I \quad h f_{i} b=x$

We'll depute $11:=\partial_{*} I_{\text {Spec }}$.
Example. $\partial_{k} I_{T_{o p s}}$ is an operad ie. a monad in (Spedra, 0,11)
NB. Not a symmetric monoidal category. still have L^{-}-and R-modules.

Main Tho 1. Let $F: E \rightarrow D$ howotrpical. Then $\partial_{x} F$ form a $\left(\partial_{*} I_{D}, \partial_{X} I_{\varnothing}\right)$-bimodule.
Maine The 2. Let $F: D \rightarrow E$ and $\Theta: Q \rightarrow D$ both homotopical and reduced, and moreover F fiuitary. Then $\partial_{*}(F G)=\partial_{*} F_{\partial_{X} I D_{*}} \partial_{*} G$ In Spectra composition product is just usual o. Context. (ϵ, \wedge, S) symmetric monoidal category, finitely bicomplete. E^{E} symmetric sequences in Q $(A \circ B)(n)=\bigvee_{\substack{\text { Patrons } \\ \text { of } \underline{n}}} A(k) \wedge B\left(n_{1}\right) \wedge \ldots \wedge B\left(n_{k}\right)=$

$$
=\bigvee_{k=1}^{n}\left(\bigvee_{\underline{n} \rightarrow \underline{k}} A(k) \wedge\left(B\left(n_{1}\right) \wedge \ldots \wedge B\left(n_{k}\right)\right)_{\sum_{k}}\right)
$$

Lemma. C is closed $\Rightarrow(C \Sigma, 0,11)$ is a monoidal category.
Proof: Exercise for undergrads.
Def: An operad P is a monad

$$
P \cdot P \xrightarrow{\mu} P \quad 1 \rightarrow \eta \rightarrow P
$$

associative \& unital.

$$
\mu: P(k) \wedge P\left(n_{1}\right) \wedge \ldots \wedge P\left(n_{k}\right) \rightarrow P\left(n_{1}+\ldots+n_{k}\right)
$$

Def: A right P-module R is a symmetric sequence together with associative and unital action $R \circ P \rightarrow R$.
Rush. Analogously, one defines a left P-module: $P \circ L \rightarrow L$ 。

Exercise. P is reduced if $I / \rightarrow P$ is ar iso in C

11 is L and R module over P.
$F:$ Spectra \longrightarrow Spectra: how to get structure on $Q_{k} \neq$?
Dual derivatives (also in Spedira Σ)

$$
\partial^{*} F=\operatorname{Nat}\left(F X, X^{\wedge n}\right)
$$

Rucks: "tactically restricting F to Speer - EKMM S-modules \rightarrow all object "re fibrant To gel the desircal homotipry type, need cofibranay for F :
Q:F円F cofibraut replacement construction in [Spectra diu, Spectra] $]_{\text {pros }}$ by Small Object Argument.

This is a presented cell spectrum. In particular, get Sub (QF) a filtered category of finite subcomplexes.
So $a^{n} F=\left\{\operatorname{Nat}\left(C X, X^{\wedge n}\right)\right\}$
is a pro- object in spectra.
The. There exists a Quillen equivalence

ID defines the Spanier-Whitehead dual.

$$
\begin{aligned}
& \partial_{*} F=\mathbb{D}\{\underbrace{\operatorname{Nat}\left(C X, X^{\wedge n}\right)}_{\substack{\text { point wise cofibraut } \\
\text { replacement }}}\}_{C \in \operatorname{Sub}(Q F)}= \\
& =\operatorname{hocolimin}^{\operatorname{Map}\left(N a t\left(C X, X^{\wedge n}\right), S\right)} \underset{ }{\operatorname{MESub}(Q F)}
\end{aligned}
$$

Claim. This is a model for the Goodwillie derivatives. Furthermore, structures on $\partial^{*} \mathrm{~F}$ corregemen to dual structures on $\partial_{N} F$.

Example. (Good situation). F homotopical and a comonad presented cell functor. Then $2^{* F}$ is an operad $\Sigma^{\infty}=S_{c} \wedge-$: STets $\longrightarrow \perp$ Spectra: $\frac{\text { Spedro }\left(S_{c},-\right)}{\Delta i^{\prime \prime \prime}}$

Let $S_{C}=$ cofibrailt replacement of S

$$
S_{c} \xrightarrow{\sim} S
$$

$\sum^{+\infty} \Omega^{\infty} X=S_{c} \wedge$ Spedra $\left(S_{c} \wedge X\right)$ and $* \rightarrow S_{c}$ is a generating cofibration. So this is a cell object as desired. \square

$$
\begin{aligned}
\partial^{n}\left(\sum^{\infty} \Omega^{\infty}\right) & =\operatorname{Nat}\left(S_{c} \wedge \operatorname{Hom}_{c}\left(S_{c}, X\right), X^{\wedge n}\right) \\
& \cong \operatorname{Map}\left(S_{c}, S_{c}^{\lambda_{n}}\right) \\
& \cong \operatorname{Map}\left(S_{,} S^{1 n}\right) \quad\binom{\text { interval home }}{\text { in Spectra }}
\end{aligned}
$$

Upshot: dual derivatives of $\sum^{\infty} \Omega^{\infty}$ are equivalent do S.
Operad structure coincides with coendomorphism operad structure.

Turns out $\partial_{*} I_{T_{o p-x}} \simeq \mathbb{D B}(1, S, 1)$
$=\mathbb{D S}$ the bar constr.
Slogan. $\partial_{R} I_{\text {Top, }}$ is Kosrul dual to commutative operad cued
$\mathbb{D B S} \simeq \mathbb{D}\left(1, \partial^{*}\left(\sum^{*} \Omega \Omega^{*}\right), \mathbb{1}\right)$
Proof: $\partial_{t} I_{\text {Tope }}$ is $\mathbb{D}\binom{$ partition }{ posit }$\underset{\substack{\text { homeomorphism }}}{\cong} B(\mathbb{1}, S, \mathbb{1})$

Bar construction:
Thm. (Ching). P a reduced operad, R a right Pucodule, L a loft Produce:

- $B(\mathbb{1 1}, P, \mathbb{1})$ is a cooperad BP.
- $B(\mathbb{1}, P, L)$ is a left $B P$-comodule.
- $B(R, P, \mathbb{1})$ is a right $B P$-comodule. In general, (E, \wedge, S) symmetric monoidal $\Rightarrow\left(C^{\circ p}, \Lambda, S\right)$ symmetric monoidal But closediness does not transport this way

Composition product applied to Cop gives rise to dual composition product $\left(\epsilon^{\Sigma}, \hat{O}, 11\right)$.
But this dual composition product is not associative in general.

$$
A: B(n)=\prod_{k=1}^{n}\left(\prod_{n \rightarrow 1} A(k) \wedge B\left(n_{1}\right) \wedge \ldots \wedge B\left(n_{k}\right)\right)_{\sum_{k}}
$$

Def: Q is a cooperad iff it is a comonoid w.r.t. \hat{o} in $O \Sigma$

Def: P operad, L a left P-module, R a right P-module

$$
\begin{aligned}
& B_{0}(R, P, L): \Delta^{o p} \rightarrow C^{Q} \\
& B_{k}(R, P, L)=R \cdot \underbrace{P_{0} P_{0} \ldots o P}_{k-1 \text { times }} \cdot L
\end{aligned}
$$

Rwho $P=\mathbb{1}$ gives $B(R, 11, L)=R \circ L$

$$
\text { so } \partial_{x}(F G)=B\left(\partial_{x} F, \partial_{x} I_{\infty}, \partial_{x} G\right)
$$

Lemma. If $R \xrightarrow{\leftrightarrows} R^{\prime}, L \xrightarrow{\simeq} L^{\prime}$, and $P \stackrel{\leftrightarrow}{\hookrightarrow} P^{\prime}$, then $B(R, P, L) \xrightarrow{\simeq} B(R, P, L)$.
Main ingredient. $\quad B(\mathbb{R}, P, L) \rightarrow B(R, P, \mathbb{1}) \hat{\circ} B(\mathbb{1}, P, D)$
Connect back to sets \& chain rules

F_{Ω}
$\Omega^{\infty} G$
right $\sum^{\infty} \Omega^{\infty}$-comodute
left $\sum^{\infty} \Omega_{1}^{\infty}$-comodule
$\Rightarrow \partial^{*}\left(\sum^{\infty} G\right)$ and $\partial^{*}\left(F \Omega^{\infty}\right)$ are left and right modules (respectively) over $2^{*}\left(\Sigma^{\infty} \Omega^{\infty}\right)$ operad.
Thu: F,G pointed, stuplicial, honeotopical and F finitary. Then ' $P_{n}(F G) \xrightarrow{\hookrightarrow} \operatorname{Tot}^{\prime}\left(P_{n}\left(F \Omega_{0}\left(\tau^{\prime},^{\prime} 0^{\infty}\right) \Sigma^{\circ}(G)\right)\right.$ tale Really cogibrout replacement, then totatication

Unifying fact: $\partial^{*}(F G) \simeq \partial^{*}\left(F \Omega^{\infty}\right) \underset{\partial^{*}\left(\Sigma^{\infty} \Omega^{\infty} \Omega^{\infty}\right)}{\partial^{*}\left(\Sigma^{+\infty} G\right)}$
if $F=G=I_{\text {Top }}$, then:

$$
\partial^{*}\left(I_{T_{\rho_{j *}}}\right) \bumpeq B\left(\mathbb{1}, \partial^{*}\left(\sum^{\infty} \Omega_{1}^{\infty}\right), \mathbb{1}\right)
$$

$\Rightarrow I_{T_{\text {op, }}}$ Koscul dual to $\partial^{*}\left(\sum_{1, \infty}^{+\infty}\right)$

Michael Ching, Classification of polynomial functors (8)

Story so far: $\quad F: T_{\text {op* }} \rightarrow T_{o p_{*}}$

$$
D_{n} F(X) \simeq \Omega^{\infty}\left(\partial_{n} F \wedge X^{\wedge n}\right)_{n} \Sigma_{n}
$$

$\partial_{n} F:$ spectrum with \sum_{n}-action
$\partial_{*} F$: symmetric sequence of spectra

$$
\begin{aligned}
& \partial_{x} \mid d_{T_{p_{x}}}: \text { operad } \\
& \partial_{x} F: \quad \partial_{x} \mid d_{T_{\text {ope }}} \text { - bimodule }
\end{aligned}
$$

Question: How can we describe the information needed to reconstruct the tower from the derivaliuss $\partial_{x} F$?

General framework for answering questions of the form: given a functor

$$
L: A \longrightarrow B
$$

can we recover $A \in A$ from $L A$ together with extra information?

This is descent theory.
Suppose that L has a Right adjoint

$$
\theta \underset{R}{\frac{L}{R}} B
$$

We will apply this framework to [To pin, Tap.a] with $\left[T_{o p_{*}}^{\text {sin }}, T_{o p_{*}}\right] \stackrel{\partial_{*}}{\ldots} \partial_{*} \mid d_{T_{o p_{t}}-B_{i} M_{o d}}$ leer observation: existence of a adjoint

We have maps:

$$
\begin{aligned}
& L_{A} \xrightarrow{\eta} R L \\
& L R \xrightarrow{\varepsilon} 1_{3}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& L R \xrightarrow[L Q R]{L R} L R L R \\
& L R \xrightarrow{L}+13
\end{aligned}
$$

$K=L R$ is a comonad on B.

and for any $A \in \Omega$

$$
L A \xrightarrow{L \eta_{A}} L R L A
$$

which thales $B:=L A$ into a K-coulgctra

This is our "extra information" on LA
We try to recover A from LA using a cobar construction:
for any K-codgebra B we have

$$
R B \underset{R_{B}}{\stackrel{R \theta}{\rightleftarrows}} R L R B \underset{B L R L}{\rightleftarrows} \rightleftarrows \text { LR }
$$

The cobar construction on B is

$$
\begin{aligned}
& \operatorname{cobar}(R, L R, B)=\operatorname{Tot}\left(\text { simplicial of, } \operatorname{coc}_{c} \mid\right) \\
& =L A
\end{aligned}
$$

If $B=L A$

$$
A \longrightarrow \operatorname{cobar}(R, L R, L A)
$$

Question: what are general conditions that wake this cocap an equivalence?
Example:

$$
\begin{aligned}
& \text { uple: } \operatorname{Topex}^{\sum^{\infty}}{ }^{\Omega^{\infty}} \text { Spectra } \\
& x \rightarrow \operatorname{cobar}\left(\Omega_{1}^{\infty}, \Sigma^{+\infty} \Omega^{\infty}, \Sigma^{\infty} x\right) \text { is an }
\end{aligned}
$$

$$
\text { equivalence, if } X \text { is milpotent }\left(\begin{array}{cc}
i r_{1} & \pi_{1}(X) \text { mitpotat } \\
\pi_{1} \text { ads notpotorathy } \\
\text { on } \pi_{n}
\end{array}\right.
$$

Theorem, The following fundors have right afoot

$$
\begin{aligned}
& {\left[T_{\text {op }}^{*} \text { fin }, S_{p}\right] \xrightarrow{\partial_{x}}\left\{\begin{array}{l}
\text { Right } \partial_{k} \mid d_{\text {Tox }} \\
\text { modulates }
\end{array}\right\} \xrightarrow{\text { forget }} S_{p} \Sigma}
\end{aligned}
$$

Corollary. Let $\left[C^{\text {fin }}, D\right] \underset{\phi}{\stackrel{\partial_{x}}{\leftrightarrows}} M /$ be we of the above with right adjoint ϕ. Then $K=D_{x} \phi: \mu \rightarrow \mu$ is a comorad and for any $F \in\left[C^{\text {in }}, D\right]$ $d_{x} F$ has a K-coalgebra structure.

Theorem. (1) if F is N-excisive for some N (or if $F \cong$ holicm $\left.P_{n} F\right)$, then $F \cong \operatorname{cobor}\left(\phi, \partial_{0}, \partial, F\right)$ i.e. F can be recovered from $\partial_{\star} F$ with its K-coalgebra structure.
(2) More generally, for any $F \in\left[C^{\text {sin }}, D\right]$

$$
\begin{gathered}
P_{n} F \longrightarrow \operatorname{cobar}\left(\phi, \partial_{*} \phi, \partial_{\leq n} F\right) \\
P_{n-1} F \longrightarrow \operatorname{cobar}\left(\phi, \partial_{*} \phi, \partial_{s_{n-1}} F\right)
\end{gathered}
$$

(3) $\underset{\text { space spectrum }}{\left.\operatorname{Nat}(F, G) \longrightarrow \operatorname{Map}_{K}\left(\partial_{*} F, \partial_{*} G\right)\right)}$ of nat. trues, Firs
spacelspodrusen of derived K-codgebra maps $\partial_{*} F \longrightarrow \partial_{*} G$
is an equivalence, if $G \stackrel{\longrightarrow}{\longrightarrow}$ holim $P_{n} G$
(4) There is an equivalence of homotopy theories:

$$
\left\{\begin{array}{l}
N \text {-excisive } \\
F: C^{l i n} \rightarrow D
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
N \text {-truncated } \\
K \text {-coalgebras }
\end{array}\right\}
$$

Proof of (1). Induction on Taylor Tower

$$
\begin{aligned}
& P_{n} F \longrightarrow \operatorname{Tot} P_{n}\left(\phi\left(\partial_{-x} \phi \partial_{*} \partial F\right)\right. \\
& P_{n-1} F \longrightarrow \operatorname{Tot}^{1} P_{n-1}\left(\phi\left(\partial_{*} \phi\right)^{\circ} \partial_{*} F\right) \\
& \int_{\Omega^{n-1}} D_{n} F \xrightarrow[(*)]{ } T \neq \Omega^{-1} D_{n}\left(\phi\left(\partial_{\star} \phi\right)^{\circ} \partial_{\nsim} F\right)
\end{aligned}
$$

Claim: for any $n,(*)$ is an equivalence.
Proof of cain: $D_{n}=\Psi_{n} \partial_{*}$, where $\Psi_{n}(A)=\Omega_{i}^{\infty}\left(A_{n} \wedge X^{A_{n}} \bar{h}_{i}^{\prime}\right.$
So (x) is:

$$
\Omega^{-1} \psi_{n} \partial_{*} F \xrightarrow{\cong} \operatorname{Tot}\left(\Omega^{-1} \Psi_{n}\left(\partial_{*} \phi\right)\left(\partial_{*} \phi\right)^{0} \partial_{*} F\right)
$$

using an extra codegeneracy (giver by unit)

$$
\begin{aligned}
& F \longrightarrow \stackrel{\sim}{\underline{~}} \operatorname{Tot}\left(\phi\left(\partial_{x} \phi\right)^{\bullet} \partial_{\lambda} F\right) \\
& \therefore \downarrow \text { ニgollows from } \\
& P_{N} \longrightarrow \longrightarrow T_{0} P_{N}\left(\phi\left(\partial_{-x} \phi\right)^{0} \partial_{x} F\right)
\end{aligned}
$$

Lemma. If A is n-truncated sym. seq., ϕA is
Nexcisive.

Can we be more explicit about what K-rodyebre
We need an explicit description of p (the right adjoint to ∂_{*})

$$
\left[s_{p}^{\sin }, s_{p}\right] \xrightarrow{\partial_{k}} s_{p}
$$

Idea: P_{n} preserves hocalion.. of spectra valued functor

$$
\left[T_{\text {op* }}, T_{\text {in }}\right] \xrightarrow{\partial_{*}} \partial_{*}|d|-B_{i} M(x \mid
$$

Define ∂_{*} by left Kan extension from representable fundors

DiS. $: \quad X \in S_{p}^{\text {Sin }} \quad R_{x}: S_{p}^{\text {fin }} \rightarrow f$

$$
R_{x}(-)=\sum^{\infty} \operatorname{Hom}^{(x,-)}
$$

$$
\sum^{+\infty} \operatorname{Hom}(X, y) \wedge_{X} F X \longrightarrow F(M
$$

So we define $\partial_{x}:\left[S_{p} p_{n}, s_{p}\right] \rightarrow \rho_{p} E$

$$
\text { by } \partial_{*} F=\left(\partial_{\not} R_{X}\right)_{\hat{X}_{\in s_{p}} \sin } F X
$$

which has a night adjoint

$$
\begin{aligned}
& \phi: S_{p}^{\Sigma} \longrightarrow\left[S_{p}^{\text {fin }}, S_{y}\right] \\
& \phi(A)=X \longrightarrow \operatorname{Map}_{C_{p}}\left(\partial_{*} R_{x}, A\right) \\
& \prod_{n \geq 1} \operatorname{Map}_{\|}^{\|}\left(\partial_{n} R_{x}, A_{n}\right)^{n \sum_{n}^{\prime}} \\
& \prod_{n \geqslant 1}\left(A_{n} \wedge X^{\wedge n}\right)^{n \Sigma_{n}} \\
& \partial_{n} R_{x} \simeq \mathbb{D} X^{1 n}
\end{aligned}
$$

Classification of polynomial fundors ADDENDA by Michacel Chirg
Casc:

$$
\begin{align*}
& T_{\text {opy }} \rightarrow \text { Spectra }
\end{align*}
$$

$$
\begin{aligned}
& K=\partial_{*} \Phi: \operatorname{Spectra}^{\Sigma} \longrightarrow \text { Spectia }^{\Sigma}
\end{aligned}
$$

$$
\begin{aligned}
& F \longmapsto \partial_{*} F \\
& R_{x}: \text { Topx }_{\text {Sin }} \rightarrow \text { Spectra } \\
& X \in T_{o p} \operatorname{Sin} \\
& R_{x}(-):=\sum^{\infty} \operatorname{Hom}(X,-) \\
& \partial_{n} R_{X}:=\mathbb{D}\left(X^{\wedge n} / \Delta^{n} X\right)
\end{aligned}
$$

Define $\partial_{x}(F):=\partial_{x}\left(R_{x}\right) \wedge F X$

$$
\begin{aligned}
& \prod_{n \geqslant 1} \operatorname{Map}_{\text {R }}^{R}\left(\partial_{n} R_{x}, A_{n}\right)^{\nu \sum_{n}^{2}} \\
& \prod_{n \geqslant 1}\left(A_{n} \Lambda X^{\frac{r}{n_{n}}} / \Delta^{n} X\right)^{n \Sigma_{n}} \\
& \wedge N \text { the morme }
\end{aligned}
$$

Claim. N is a weat epquinteruce. $\prod_{n \geqslant 1}\left(A_{n} \wedge X^{\wedge_{n}} / \Delta^{n} X\right)_{n \sum_{n}}$

$$
K=\partial_{p} \Phi: \text { Spectra }^{2} \longrightarrow \text { Spectra }^{n \geqslant 1}
$$

If A is N-truncated,

$$
\begin{aligned}
& K(A)=\partial_{*} \prod_{n=1}^{N}\left(A_{n} \wedge X^{\wedge n} / \Delta^{n} X\right)_{n \Sigma_{n}} \\
& \simeq \prod_{n=1}^{N}\left(\partial_{q}\left(A_{n} \Lambda X^{\Lambda_{n}} / \Delta^{n} X\right)\right)_{h \Sigma_{n}}
\end{aligned}
$$

Com: commutative operad in Tope
$\operatorname{Com}(n)=S^{0}$ for all $n \in \mathbb{A}$
$X^{\Lambda p t}:$ right $C o m$-nockete $\binom{$ (equivalently: }{$E_{p i} i^{\circ p} \rightarrow T_{o p p}}$

$$
X^{\wedge k} \wedge S^{0} \wedge S^{0} \wedge \ldots \wedge S^{0} \rightarrow X^{\wedge_{n}} \text { Lick sets surpotiong }
$$

where $n \Rightarrow k$

$$
\begin{array}{ll}
1 . x_{2}^{1} & x \wedge X \rightarrow x \wedge x \wedge x \\
& (x, y) \mapsto(x, x, y)
\end{array}
$$

$B\left(X^{11 / 2}\right.$, Com, 1): right cobslodule over coopered B(1, Com
$\operatorname{DB}\left(X^{1 *}\right.$, Com, 1) : right module over $2 T$ 12

$$
\text { II }\left(X^{\wedge n} / \Delta^{n} X\right)=\partial_{*} R_{X}
$$

$$
\begin{aligned}
& K(A)=\prod_{n=1}^{N}\left(\partial_{*}\left(A_{n} \Delta \sum^{\infty} X^{1 n} / \Delta^{n} X\right)\right)_{n \Sigma_{n}} \\
& \simeq \prod_{n=1}^{N}\left(A_{n} \wedge B\left(\partial_{r}\left(\sum^{\infty} X^{\wedge 0}\right), \operatorname{Com}, 1\right)(n)\right)_{n \sum_{n}} \\
& \simeq \prod_{n=1}^{N}\left(A_{n} \wedge B\left(\left[\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array}\right], C_{0 m}, 1\right)(n)\right)_{h \sum_{n}}^{n \sum}
\end{aligned}
$$

$$
\begin{aligned}
& K_{r}(A)=\prod_{n=1}^{N}\left(\prod_{n_{1}+\ldots=n,=n} A_{n} \wedge B(1, \text { Com, } 1)(n,)_{1} \ldots A B\left(1, \sigma_{m}, 1\right)\left(n_{n}\right)\right) \\
& \simeq \prod_{n^{2}=1}^{N}\left(\prod_{n=n_{1}, \ldots+n_{r}} \operatorname{Map}\left(\partial_{n_{1}} I \wedge \ldots \wedge \partial_{n_{r}} I, A_{n}\right)\right)_{n \sum_{n}}^{1 \Sigma_{n}}
\end{aligned}
$$

A K-coalgebra structure on A consists of

$$
A \longrightarrow K_{A}
$$

$$
\begin{aligned}
& A_{n} \longrightarrow\left(\prod_{\substack{n=n_{1}+\ldots n_{r} \\
i, e, n \rightarrow 5}} \operatorname{Map}\left(\partial_{n, \perp} I_{\wedge} \ldots \wedge \partial_{n_{t}} I_{,} A_{n}\right)\right)_{h \Sigma_{n}} \\
& \text { ide. } n \rightarrow s=\downarrow N \\
& {\left[\prod_{n=n_{1}, \ldots+n} M_{a p}\left(\partial_{n}, I_{\wedge} \ldots \wedge \partial_{n_{r}} T, A_{n}\right]^{n \sum_{n}}\right.}
\end{aligned}
$$

This composite gives \sum_{n} "equivalent maps

$$
A_{r} \longrightarrow \prod_{n=n,++n_{r}} \operatorname{Map}\left(\partial_{n_{1}} I_{n} \ldots \wedge \partial_{\left.n_{r} I, A_{n}\right)}\right.
$$

i.e.

$$
A_{r} \wedge \partial_{n_{1}} I \wedge \ldots \wedge \partial_{n_{r}} I \longrightarrow A_{n}
$$

i.e. a right $\partial_{x} I$-module structure

We refer to a K-coalgebra or a divided power right $\partial_{*} I$-module.

Keratin Beer, Orthogonal calculus: theory
We will consider $E:] \rightarrow T_{\text {II }}$

$$
\left\{\begin{array}{l}
\text { finite dimensional inner product } \\
\text { subspaces of } \mathbb{R}^{\infty}
\end{array}\right\}
$$

$\operatorname{mor}(V, W)=O(V, W) \quad$ embeddings
We require E to be cts: $\operatorname{mor}(V, W) \times E(V) \rightarrow E(W)$
Examples: $O(V)$
BO (v)
$\operatorname{Conf}(n, V)$
$\operatorname{Emb}(M, N)$
$\Omega^{\infty}\left(V^{c} \wedge \theta\right)$

$$
\left.\Omega_{\infty}^{\infty}\left(\left(\mathbb{R}^{n} \otimes V\right)^{c} \wedge \theta\right)_{h O(n)}\right)
$$

Def: Let $E=\operatorname{Cat}\left(J, T_{o p}\right) . E \in \varepsilon$ is a polynomial of degree n, if $E(V) \longrightarrow \underset{O \nmid U \subseteq \mathbb{R}^{\prime \prime \prime}}{\longrightarrow} \operatorname{holim} E(U \oplus V)$ is hog equivalence for all $V E J^{O+U \subseteq \mathbb{R}^{1 \prime \prime \prime}} \underset{\tau_{n} E(V)}{ }$

Taylor Polynomids: $T_{n} E=$ hocalim $\left(E \rightarrow \tau_{n} E \rightarrow \tau_{n}{ }^{2} E \rightarrow \ldots\right)$

$$
\begin{aligned}
T_{n} E: E & \varepsilon^{6} \\
\eta_{n} & : T \longrightarrow T_{h}
\end{aligned}
$$

Remarks. (a) Every polynocuial of degree n-1, then it is a polynomial of degree n.
(b) $T_{n} E$ is a polynomial of degree n
(c) If E is polynomial of deg n, then

$$
\eta_{n}: E \longrightarrow T_{n} E
$$

is an equivalence.
(d) $T_{n}\left(\eta_{n}\right): T_{n} E \rightarrow T_{n}^{2} E$ is an equivalence

Universality os Th

Corollary:

Def: E is homogeneous of degree n, if $E \xrightarrow{n} t_{n} E$ and $T_{n-1} E \simeq *$.

Tho. if $E \in \mathcal{E}_{0}$, then

$$
D_{n} E \simeq \Omega^{\infty}\left(\left(\left(R^{n} \otimes V\right)^{c} \wedge \theta\right)_{h O(n)}\right)
$$

Def: \quad hofib $\left(E(V) \rightarrow \tau_{n} E(V)\right)=: E^{(n+1)}(V)$

$$
\begin{aligned}
& E^{(1)}(V)=\operatorname{hofib}(E(V) \rightarrow E(\mathbb{R} \oplus V)) \\
& E(V)=B O(V) \\
& E^{(1)}(V)=\operatorname{hofit}(B O(V) \rightarrow B O(\mathbb{R} \oplus V))=\frac{O(n+1)}{O(n)}=V^{c} \\
& \frac{\| O(\mathbb{R} \oplus V)}{O(n)} \frac{\| O(\mathbb{R} \oplus V)}{O(n+1)}
\end{aligned}
$$

Define: $\operatorname{mor}_{n}(V, W)=\operatorname{Thom}\left\{(f, x) \left\lvert\, \begin{array}{l}f \in \operatorname{mor}(V, W) \\ x \in n \cdot \operatorname{coker} f\end{array}\right.\right\}$
$J(n):=J$ with morn
$J_{m} \longrightarrow J_{n}$ for all $m \leqslant m$

$$
\begin{aligned}
& \varepsilon_{(n)}=\left\{J_{n} \rightarrow T_{o p_{*}} \mid \text { cts, pointed }\right\} \\
& \operatorname{mor}_{n}(V, W) \rightarrow M_{a j_{*} *}\left(E\left(V_{1}\right), E\left(V_{2}\right)\right) \\
& * 1 \longrightarrow \text { constr }_{*}
\end{aligned}
$$

The inclusion $J_{m} \longleftrightarrow J_{n}$ induces a restriction

$$
\operatorname{res}_{m}^{n}: \varepsilon_{n} \longrightarrow \varepsilon_{m}
$$

The map res" has a right adjoint ind

$$
\begin{aligned}
& E^{(n)}=\operatorname{ind}_{0}^{n} E=\operatorname{nat}_{0}\left(\operatorname{mor}_{n}(V,-), E(-)\right) \\
& E \in \varepsilon \quad \Gamma(n)
\end{aligned}
$$

If $E \in \varepsilon_{0}$, then $E^{(n)} \in \varepsilon_{n}$.

$$
\begin{aligned}
& \operatorname{mor}_{n}(V, W) \wedge E^{(n)}(V) \longrightarrow E^{(n)}(V) \\
& W=\mathbb{R} \oplus V
\end{aligned}
$$

Setting $W=\mathbb{R} \oplus V$ we got morn $(V, \mathbb{R}(\otimes) V) \wedge E^{(n)}(V) \rightarrow E^{(n)}(\mathbb{R O U V})$

$$
S^{n} \wedge E^{(n)}(V) \longrightarrow E^{(n)}(\mathbb{R} \in D V)
$$

$$
5 / 16 / 1215
$$

$$
\begin{aligned}
& \left(O E^{(n)}\right)_{\text {kon }}:=E^{(n)}\left(\mathbb{R}^{k}\right) \\
& E^{(1)}(V) \longrightarrow E(V) \longrightarrow E(\mathbb{R} \oplus V) \\
& \underbrace{(I I)(\mathbb{R} \oplus V) \longrightarrow E(\mathbb{R} \oplus V) \longrightarrow E\left(\mathbb{R}^{2} \oplus V\right)} \\
& E(V)=\Omega^{\infty}\left(\left(\left(\mathbb{R}^{n} \otimes V\right)^{c} \wedge \theta\right)_{h O(n)}\right) \\
& \theta E^{(k)}(V)= \begin{cases}* & \text { if } k \not n \\
\theta & \text { if } k=n\end{cases}
\end{aligned}
$$

Sean Tilson, Orthogonal calculus: Examples (10)
(1) Derivatives of $B O(V) \& B \cup(V)$
(2) Derivatives of $\sum^{+\infty} C\left(t_{y} V\right), \sum^{\infty} C(M, N)$
(3) $Q \operatorname{Mor}\left(V_{0}, V\right)_{+}$

Them. (Arone) The n-th derivative of Ant (V) is $M_{a p_{*}}\left(L_{n}^{F}, \sum^{\infty} S^{A d_{n}}\right)$, where $S^{A d_{n}}=\left(\operatorname{Ad}_{A_{n+}\left(F^{n}\right)}\right)^{c}$
Def: \mathcal{L}_{n}^{F} is the posit of direct positions of $F^{n} . \Lambda \subseteq \Lambda^{\prime}$, if every summand of Λ is a subspace of a summand of Λ^{\prime}
Def: $O_{k, n}$ decreasing chains in \mathcal{L}_{n}
$\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}\right), \lambda_{F}=F^{n}=1$ with a basepoint
$S_{i}=$ repeats $i^{\text {th }}$ guy
$d_{i}=$ omits $i^{\text {th }}$ guy if $i \neq k$
$\tau=k$, then $d_{k}(\tau)= \begin{cases}* & \text { if } \lambda_{k-1} \neq 1 \\ \left(\lambda_{0},-, \lambda_{k-1}\right) & \text { if } \lambda_{k-1}=1\end{cases}$
$\left|O_{0}, k\right|=L_{n}^{F}$, where $L_{n}^{F}=\sum \mid \mathcal{L}_{n}-\{$ final objects $\} \mid$

Thu. (1) Exists a $O(n-1)$-equivariaut weal equivaleara

$$
\operatorname{Map}_{x}\left(L_{n}^{\mathbb{R}}, \sum^{\infty} S^{A d_{n}^{R}}\right) \bumpeq \operatorname{Map}_{a}\left(S_{\wedge}^{\prime} K_{n}, \sum^{i} S^{0}\right)_{\sum_{n}} O(n-1)
$$

(2) Exists a $U(n-1)$-equivariact weal equivalence
where $k_{n}=\left|\operatorname{Part}_{n}\right| \backslash\{$ initial \& final $\} \mid$
$\sum^{\infty} C(k, V)$ or $H \mathbb{Z} \wedge C(k, V)$

$$
\begin{aligned}
& C(k, V)=E m b(k, V)=V^{k} \backslash \Delta^{k} V \\
& \Delta^{k} V=\left\{\bar{x} \in V^{k} \mid x_{j}{ }^{-x_{j}}\right. \text { for some ivj\}} \\
& \Delta^{k} V=\bigcup_{\Lambda \in P_{k}^{0}} V^{c(\Lambda)} \quad \text { where } c(\Lambda)=k / \Lambda \\
& c(k, V)=\bigcap_{\Lambda \in \mathbb{P}_{k}^{0}} V^{k} \backslash V^{c(\Lambda)}=\lim _{\Lambda \in P_{k}^{0}} V^{k} \backslash V^{c(\Lambda)}
\end{aligned}
$$

Proposition: $\sum^{\infty} C(k, V) \rightarrow \operatorname{halim}_{\Lambda \in P_{k}^{\infty}} \sum^{\infty} V^{k} \backslash V^{c(\Lambda)}$
Proof: Just sketch... Change the indexing cafogong $S=2^{\left(\frac{k}{2}\right)}$ graphs with k vertices

$$
\begin{aligned}
& S \longrightarrow P_{k} \\
& U \longrightarrow \Lambda(U)=\text { path compouceds of } U \\
& S^{\prime}=S \backslash\{\phi\} \longrightarrow P_{k}^{0} \\
& F: P_{k}^{0} \longrightarrow S_{p e c t r a}^{5 / 16 / 12} T^{3} \\
& \widetilde{F}: S^{\prime} P_{k}^{0} \xrightarrow{F} \text { Spedta }
\end{aligned}
$$

$\underset{p^{0}}{\operatorname{holim}} F \longrightarrow \operatorname{hdim} \tilde{F}$ is a weale equividenere
$x: S^{\prime} \longrightarrow$ Spectra is an n-culbe

$$
U \longmapsto \widetilde{F}(U)=F(\Lambda(U))
$$

$$
\sum_{1}^{\infty \infty} V^{k} \backslash V^{c(\Lambda(u))}
$$

$$
\begin{aligned}
X: S & T_{o p} \\
U & \longrightarrow\left\{\begin{array}{l}
\varepsilon(k, V) \text { if } U=\phi \\
V^{k} \backslash V^{c}(\Delta(U)) \\
\text { oth. }
\end{array}\right.
\end{aligned}
$$

Fact. (1) $\forall U \subseteq\binom{k}{2} \quad x(U) \stackrel{\text { ipen }}{\subseteq} x\left(\begin{array}{l}\left.\binom{k}{2}\right)=V^{k} \backslash V \\ \hline\end{array}\right.$
(2) $\forall U \subseteq\left(\frac{1}{2}\right)$ non-aupty, $x(U)=\bigcup_{x \in U} x(\{x\})$
(3) $x(\phi)=\bigcap_{x \in\binom{k}{2}} x(\{x\})$

Lemma Let X is a space with $X_{1}, \ldots, X_{\mathbb{L}}$ open in X and such that $X=U X_{i}, X_{0} \cap \cap X_{i}$ If $X(U)=\bigcup_{i \in U} X_{i}$, then X is a homotory pushout
x is hits poo.

$$
\begin{aligned}
& \Rightarrow \sum^{\infty} X \text { is hippy } 90 \text { as well } \\
& \Rightarrow \sum^{\infty} x \text { is htpy pb. } \\
& \sum^{\infty} x(\phi) \simeq \operatorname{hohim} \sum_{S^{\prime}}^{\infty} x(U) \xrightarrow{\simeq} \underset{\substack{\infty \\
P_{k}}}{\operatorname{homim} \sum^{\infty} V^{\prime} \mid v^{\prime \prime}} \\
& T_{n} \sum^{\infty} C(k, V)=T_{n} \operatorname{holim}_{\Delta 6 p_{k}} \sum^{\infty} V^{k} \backslash V^{c(\Lambda)} \\
& =\operatorname{holmm}_{\Lambda \in p_{k}^{0}} T_{h} \sum^{\infty} V^{k} \backslash V^{c(A)} \\
& V^{k} \cong V^{e(\Lambda)} \oplus V^{c}(\Lambda) \\
& e(\Lambda)=k-c(\Lambda) \\
& V^{k} \backslash V^{c(\Lambda)}=V^{e(\Lambda)} 10 \\
& \simeq S^{e(\Lambda)}
\end{aligned}
$$

$$
\begin{aligned}
& \sum^{\infty} V^{k} V^{c(\Lambda)} \simeq \sum^{-1} \sum^{\infty} S^{e(\Lambda) \cdot V} \\
& T_{n} \Sigma^{+\infty} V^{k} \backslash V^{c(\Lambda)}= \begin{cases}\infty & \text { if } c(\lambda)\rangle_{n} \\
\sum^{+-1} \sum^{+\infty} S^{e(\Lambda) \cdot V} & \text { if } e(\Lambda) \leqslant_{n}\end{cases} \\
& T_{n} \sum^{\infty} C(k, V)=\operatorname{holim}_{\substack{\Lambda \in p^{0} \\
\\
e(\Lambda) \leqslant u}} \sum^{1-1} \sum^{\infty} S^{e(\Lambda) \cdot V}
\end{aligned}
$$

$\mathbb{I}_{n} \sum^{\infty} C(k, V)=\operatorname{holime}_{\substack{\Lambda \in p_{k} \\ e(\Lambda) \leqslant n}} F(\Lambda)= \begin{cases}x & \text { if } e(\Lambda)<n \\ \sum^{-1} \sum^{+\infty} S^{e}(\Lambda) \cdot v \\ \text { if } e(\Lambda)=n\end{cases}$
with a
little bit
of thought

Dan Berwick - Evans, Intro to Eurbedfing Calculus (II)
Goal: $F: O(M)^{o p} \rightarrow$ Top urderstand goomol of the
Examples. (1. Emb $(-, N)$

$$
m^{\prime \prime} \leqslant n=\operatorname{dim} N
$$

(2) $\operatorname{lmm}(-, N)$

Let f be the category of "goool" s.m. Sundors

Thm. TiEmb $(-, N) \simeq \operatorname{Imm}(-, N)$
Thm. The following are analytic:
(1) Emb $(-, N)$, if $n-m \geqslant 3$ (if $n>m$ or M compacd soumponect
(2) $\operatorname{Imm}(-, N)\left(\begin{array}{l}\cdot i f n=m, M \text { has no compact } \\ \text { componcuts } \\ \text { if } n>m, \text { no conditions an, }\end{array}\right)$

We can understand $T_{k} \operatorname{Emb}(-, N)$ as shacfifications.

Shaves.
Def: A presheal is a functor $F: \theta(M)^{\text {P }} \rightarrow C$
A presheaf is a sheaf, when

$$
F U \xrightarrow{\cong} \operatorname{holkm}\left(\prod_{i} F U_{i} \longrightarrow \prod_{i j} F U_{i j} \longrightarrow \ldots\right.
$$

for $\left\{U_{i} \rightarrow U\right\}_{i}$ a covering.
Def: $\left\{U_{i} \rightarrow U\right\}_{i \in I}$ is a Jj -covering, if $\forall s c m \quad|S|<k, \exists i \quad S \subseteq U_{i}$.

We can sheafify wort. Jk-coverings

$$
\operatorname{Sh}_{J_{k}}\left((F)_{k}, G\right) \cong \operatorname{Prsh}(F, U(G))
$$

$$
\begin{aligned}
& \left\{v_{i} \rightarrow 0\right\}
\end{aligned}
$$

Polynomial Functors.
Let $A_{0}, \ldots, A_{k} \subseteq \cup \quad A_{i} \cap A_{j}=\varnothing$

$$
\begin{aligned}
x: & P_{k+1} \\
& \longmapsto T_{o p} \\
S & \longmapsto F\left(U \backslash \bigcup_{i \in s} A_{i}\right)
\end{aligned}
$$

Rumble. This is strongly colartesicme.
Polynomial of degree $\leqslant k$ means that those cubes go to cartesian ones under F.
Thm. F is a sheaf w.r.t. Jk-coverings iff F is polynomial of deg $\leq k$.
Cor: $T_{k} F \simeq(F)_{k}$
$k^{\text {th }} \oint_{\text {approximation }}$ polynomial
 w.r.t. JJ

Idea of proof

$$
\begin{aligned}
& T_{k} F(M) \simeq \operatorname{holim}_{U \in O_{k}(M)} F(M) \simeq(F)_{k}(M) \\
& \theta_{k}(M):=\underset{\substack{11}}{\left.\substack{\mathbb{R}^{m}(M)} M \mid j \leqslant k\right\}} \\
& y_{k} \text { sheaves } \\
& \text { ave determined } \\
& \text { by values on } \theta_{(1 t)}
\end{aligned}
$$

Some pictures: looking at Emb (T, N)
(1) $M=S^{1}, \quad N=\mathbb{R}^{n}$

$\in T_{1} \operatorname{Emb}(M, N)$
$\notin T_{2} E_{m b}(M, N)$
(2) $M=\mathbb{R}, \quad N=\mathbb{R}^{n}$

$e T_{k} \operatorname{Eub}(M, N) \quad k$ finite
$\notin T_{\infty} \operatorname{Emb}(M, N) \subseteq E_{m}(M, N)$
limit of the tower

Layers. Start of by choosing a besepoint in $F(N)$

$$
\begin{aligned}
& L_{k} F U:=h f_{i b}\left(T_{k} F(U) \longrightarrow T_{k-1} F(U)\right) \quad \begin{array}{c}
\text { for Eur } \\
\text { choose } \\
H \subseteq N
\end{array} \\
& \begin{array}{c}
L_{k} \operatorname{Emb}(M, N)=\Gamma_{0} \\
\text { scdious Vausisting }
\end{array} \\
& \text { near Sal diagonal } \\
& \text { - configuration space } \\
& \text { ide. } K \text { points in M }
\end{aligned}
$$

$$
\begin{array}{rl}
\pi_{k}^{-1}(s)=\text { total } h \operatorname{sib}(x) \\
x: P_{i s 1} \rightarrow \operatorname{Top}_{x} \\
\omega \\
s & ? R \longmapsto \operatorname{Ens}_{\mathrm{R}}(R, x)
\end{array}
$$

Convergence:

$$
\begin{gathered}
\quad \operatorname{Emb}(M, N) \longrightarrow T_{k} E_{m b}(M, N) \\
\text { is }(3-n+k(n-m+2))-\text { comwecfed } \\
\text { So for } \quad \operatorname{En} m \geqslant 3 \quad E m b(M, N) \stackrel{\simeq}{ } T_{\infty} \operatorname{Emb}(M, N)
\end{gathered}
$$

Greg Arouse, Multiple disjunctions lena $=$ (12)
Thm. (Blocker-Hoseg) Let X_{0} a kobicueasional abical diagram. If X. is strongly colartesian and the maps $X_{0} \rightarrow X_{i}$ are k_{i}-connected for $i=1, \ldots, n$, then X_{0} is $1-k+\sum_{i=1}^{k_{1}} k_{i}=1+\sum\left(k_{i}-1\right)$-cartesian

Corollary. If X is d-comected, then the $\operatorname{map} \quad X \rightarrow P_{n}(l d)(X)$ is $((n+1) d+1)$-conceded.

Let L_{1}, \ldots, L_{k}, N be manifolds
Let L_{0} be the k-dimensional cube

$$
S \longmapsto \frac{11}{i \in S} L_{i}
$$

Consider the cubical diagram $\operatorname{Emb}\left(L_{0}, N\right)$
 the dimension of A
The. The cube $E_{m b}\left(L_{0}, N_{1}\right)$ is $3-n+\sum_{i=1}^{k}\left(n-l_{i} \cdot 2\right)$-cation.
Cor. The map $E m b(M, N) \rightarrow T_{k} E m b(M, N)$ is $(3 n+(k+1)(n-m-2))$-comeded.

Easy multiple disjunction lemma.. The rumbler Ebb (L., N)

$$
\text { is }\left(3-n+\sum\left(n-2 l_{i}-2\right)\right) \text {-cartesian }
$$

I think that easy disjunction holds with the word "cartesian" replaced by "cocartesian"
$\sum^{\infty} E m b(M, N)$
$E m b=h f i b(E m b \rightarrow I m m)$
Proof of Blahers - Massey:

Want: the square $(m+n-1)$-cartesian.

$$
(P, X) \text { is }(m+n-1) \text {-connected. }
$$

$$
\begin{aligned}
& \Pi_{i}(P, x)=0 \text { for } i \leqslant m+n-1 \\
& P=\left\{\gamma:[0,1] \rightarrow X \cup e^{n+1} \cup e^{m+1} \mid \gamma(0) \in e^{m+1}, \gamma(1)=e^{n+1}\right\}
\end{aligned}
$$

$$
X \cup e^{m+1} \cup e^{n+1}
$$

What represents an elencent D if $\pi_{i}(P, X)$
A map $\eta: D^{i} \times[0,1] \rightarrow X \cup e^{\text {m. ep }} \cup e^{n+1}$

$$
\begin{aligned}
& \partial D^{i} \times I \longrightarrow X \\
& D^{i} \times\{0\} \longrightarrow X \cup e^{m+1} \\
& D^{i} \times\{1\} \longrightarrow X \cup e^{m+1}
\end{aligned}
$$

$\eta^{-1}(P)$ is $(i$. . . $)$-dimension. $\eta^{-1}(Q)$ is $(i-n)$-dimensional
Without loss of generality we may a some that $P \in e^{m+1}, Q e e^{n+1}$ are such that η is smooth on $\eta^{-1}\left(\right.$ scuall neighborhoods of $P_{\text {oared }} Q$) $\operatorname{dim}\left(\eta^{-1}(P)\right)+\operatorname{dic}\left(\eta^{-1}(Q)\right)=2 i-m-n \leqslant i-1$.

$$
k=3:
$$

The cube is:

$$
(m+n+r-2) \text { - cartesian }
$$

In particular, it is O-cartesian, iL

$$
m+n+r \geqslant 2
$$

A point in the howotopy pullback

Multiple disjunctions:

Equivalent statement: Let $M, X_{1}, L_{1}, \ldots, L_{n} b_{e}$ manifolds, $L_{i} \subseteq X$ disjoint ($\left.L_{i} \cap L_{j} \stackrel{i \infty j}{=}\right)$ The cube $\operatorname{Emb}\left(M, N-L_{0}\right)$ is

$$
\left(1+\sum_{n}\left(n-m-l_{i}-2\right)\right)-\text { cartesian }
$$

Claim 1. The cube Eur $\left(M, N \backslash L_{0}\right)$ is
Whapyyifly cocartesian
Claim 2. $\quad \operatorname{mab}\left(M_{1} N \backslash\left(L_{1}, L_{2}\right)\right)\left(1-\ln -L_{2}-1\right)$-convocation

$$
\begin{aligned}
& \downarrow \\
& E \operatorname{cob}\left(M, N \backslash L_{1}\right) \rightarrow E \operatorname{Eub}(M, N)
\end{aligned}
$$

Strong disjunctions:

Tom Goodwillie: true except on π_{0}

Goodwillie-Kleiu: Proved for π_{0}, (Poincare Sumbadulíns) Compare:

$$
E m b(M, N)
$$

$$
\operatorname{Map}(K, X)
$$

VS.

$$
\sum^{+\infty} \operatorname{Ewb}(M, N)
$$

$$
\sum^{1 \infty 0} \operatorname{Map}(K, x)
$$

Alexander Kupers, Emberbeding calculus, little disks oberad, spaces of embeddings (13)

$$
\begin{aligned}
& F: O(M)^{o p} \longrightarrow T_{o p} \quad \begin{array}{c}
\text { good } \\
\text { isotopy }
\end{array} \\
& T_{k} F(M)=(F)_{k}(M)=\operatorname{holim}_{k} F(U) \\
& \text { sheaf } \uparrow \quad U \in \theta_{k}(M) \\
& \text { sheaf w.r.1. pk }
\end{aligned}
$$

posen of open subsets of M homeomorptio to a disjoint union of be ball=
Little n-disks operad

$$
\mathbb{B}_{n}(k)=\operatorname{semb}\left(\frac{1}{k} D^{n}, D^{n}\right)
$$

Goals of the lecture:
(1) If M^{m} open submanifold of \mathbb{R}^{m}, F context $f \ldots$." we sech general expression for $\mathbb{F}_{k} F(M)$ in terms of module
(2) $H \mathbb{Q} \wedge E_{m b}=h_{\text {fib }}\left(E m b \rightarrow I_{m m}\right)$

Let M open submamifold of \mathbb{R}^{n}.
A stacalard ball in M is a ball in \mathbb{R}^{k} that is also coutaiked in M

$$
\theta_{h}^{s}(M) \rightleftarrows \theta_{k}(M)
$$

Thy. This incursion induces a cored equivalence

$$
\operatorname{hdim}_{U \in \theta_{k}(M)} F U \simeq \operatorname{holim} \quad F V
$$

Some operad theory
O operad $\leadsto F \theta$ " \because-labelled forest"

+ some bullshit

Def: A (weale) right module over is a symmetric sequence M with composition maps

Examples: Every operad is a right module over itself

Example: $M(A)=s E m b\left(A \times D^{m}, M\right)$ is a right module over \mathbb{B}_{m}

Lemma. There is an equivalence of od. egories:

$$
\left\{\begin{array}{c}
\text { night modeles } \\
\text { over }
\end{array}\right\} \sim\left\{\begin{array}{l}
\text { funotors } \\
\operatorname{Fun}\left(F\left(\theta^{\prime}\right)^{\circ p}, D\right)
\end{array}\right)
$$

Proof:

$$
\begin{array}{r}
M \longmapsto M(A)=: H(A) \\
M(B) \otimes \mid \underbrace{}_{S A \rightarrow B} \quad Q \in B\left(f^{-1}(b)\right) \\
\\
\\
H(A)
\end{array}
$$

given by using … repeatedly

$$
M(A): c M(A)<\quad+M
$$

$\xrightarrow{\text { Lemma. }} \int_{s E_{n u} \delta^{\delta}(-, M)} F\left(\mathbb{B}_{n}^{\delta^{\delta}}\right) \xrightarrow{e v^{\delta}} \delta_{\infty}^{\delta^{\circ}}(M)$ is an equivaleurs of categories

$$
\begin{aligned}
& T_{n} F(M)= \operatorname{holim}_{U \in \mathbb{O}} F(M) \\
&=\operatorname{holim}_{k}^{\delta}(M) F(\operatorname{im}(x)) \\
&(x, x) \in \int \operatorname{sEm}_{m}^{\delta}(\cdots, M) \\
& F\left(\mathbb{B}_{m}^{\delta}\right)_{\leqslant n}
\end{aligned}
$$

BEt:2F\%

$$
\begin{aligned}
& E m b(M, Y)=h \operatorname{fib}(E \operatorname{Emb}(M, V) \rightarrow \operatorname{Imm}(M, V)) \\
& \text { eadidean }
\end{aligned}
$$

$$
\begin{aligned}
& M=\frac{\|_{k}}{k} D^{n}, V=\mathbb{R}^{n} \\
& \operatorname{Imm}(M, V) \simeq \prod_{k}\left(G L_{n}(\mathbb{R}) \times V\right) \\
& E_{m d}(M, V) \simeq \prod_{k}\left(G L_{n}(\mathbb{R}) \times C(k, V)\right. \\
& \quad \overline{E m b}(M, V) \simeq C(k, V)
\end{aligned}
$$

Hiro Lee Tanka, Factorization homology (14)
(and Manifold Calculus)
Def: Mild is a Top-eriched category whose objects are n-manifolds and whose urovphisms are defined via $\operatorname{Hom}(X, Y)=E m b(X, Y)$.
Everything here is smooth.
we did this:

$$
F: \theta(M)^{a p} \longrightarrow \varepsilon
$$

But we would be better off with:

$$
F:(M f l d / M)^{o p} \longrightarrow \delta
$$

But really we want to study that:

$$
F: \text { Meld }{ }^{\circ p} \longrightarrow C^{s}
$$

Def: Let Disk be the full subcategory of Meld, whose objects are of the form $\frac{1}{i} \mathbb{R}^{n}$ for $0 \leqslant j<\infty$.

Def:

The left Kan extension of $\left.A\right|_{D_{i s k} \leqslant j}$ along the inclusion Disk sj \longrightarrow Meld will be denoted by $T_{j} A$ and will be called the $i^{\text {th }}$ polynomial approximation to A.

we say that A is analytic, if the map $T_{\infty} A \rightarrow A$ is a weal equivalence.

We say that $T_{\infty} A(M)$ is the factorization homology of M with coefficicuts in A denoted by $\int_{M} A$.
Example: Mold ${ }^{f r} \rightarrow$ Top is analytic.

$$
\begin{aligned}
T_{\omega} A(M) & =E_{m} b^{\operatorname{sr}}(-, M)(\otimes) \operatorname{Disk}_{m} b^{f r}\left(\mathbb{R}^{n},-\right) \text { cnYoneda } \\
& \simeq \operatorname{Emb} b^{f r}\left(\mathbb{R}^{n}, M\right) \\
& \simeq M
\end{aligned}
$$

Example. Let $U=\mathbb{R}^{n}-\{0\}$. Then $\operatorname{Emb}^{f_{r}}(U,-)$ is not analytic.
Proof: This functor agrees with the previous the because one can always fill in tho point. So
Meld is symmetric monoiclal with 11.
Suppose C is also symmetric monoidal, and restridt our attention to symmetric monoidal fundors $(M \mid d, \|, \phi) \rightarrow(C, \infty, i)$

Typical examples:

$$
\begin{aligned}
& A:(\text { Mifld, } \perp) \rightarrow \underbrace{(E, \otimes)} \\
& \text { (Chaink, } \oplus \text {) } \\
& \left(\text { Chain }_{k}, \otimes_{k}\right) \\
& \text { (Spectra, } \wedge \text {) }
\end{aligned}
$$

Obs. AlDisk defines au $E_{n}{ }_{n}^{f r}$-algebra Aldisk dir dines an E_{n}-algebra
Exauple. $n=2 \mathbb{R}^{n}$ \|f $\mathbb{R}^{n} \xrightarrow{\&} \mathbb{R}^{n}$

$$
A\left(\mathbb{R}^{n}\right) \otimes A\left(\mathbb{R}^{n}\right) \longrightarrow A\left(\mathbb{R}^{n}\right)
$$

$n=1$
AlDiskif definos an Am-algebra.

Thm (excision). Given $M=N_{0} \frac{\|}{V \times T \mathbb{R}} N_{1}$, we have:

$$
\int_{M} A \simeq \int_{N_{0}} A \int_{V \times \mathbb{R}} A \int_{1} A \quad \text { the lomotapy } \quad \text { tevisor produd }
$$

N。

Example: $M=S^{\prime}$:

$$
\int_{S^{\prime}} A=\int_{\mathbb{R}} A<\int_{\mathbb{R} \backslash \mathbb{R}} A \int_{\mathbb{R}} A \text { but } \int_{\mathbb{R} \perp \mathbb{R}} A \approx \int_{\mathbb{R}} A\left(\int_{\mathbb{R}} A\right)^{o p}
$$

Def: A homology theory for n-manidolds
is a symmetric mokloidal functor

$$
H:(\text { Mfld, } 11) \rightarrow(C, \otimes)
$$

s.th. (1) H is its as a fundor belween topological categories i.e. $\operatorname{Hom}(x, y) \rightarrow \operatorname{Hom}(H X, H y)$ cts.
(2) H is excisive.

Thu. $\mathbb{E}_{n}^{\text {fr}-a l g ~}(E) \simeq\left\{\begin{array}{c}\text { Homology theories } \\ \text { for } n \text {-melds }\end{array}\right\}$
$\mathbb{E}_{n}-\operatorname{alg}(\delta) \simeq\left\{\begin{array}{l}\text { Howdogy theories for } \\ \text { framed } n-m g l a l s\end{array}\right\}$
Manifold calculus.

Thm/Def: $T_{j} F:=$ Right Kan extension of $F \mid D_{i s k}{ }_{j}^{\circ} \mathrm{j}$ along $D_{i s k} \leqslant_{j} \hookrightarrow$ MIld

Thu. $T_{\infty} F(M) \simeq \operatorname{Hom}_{R-\operatorname{Mod}_{\text {rich }}}(E m b(-, M), F)$

Corj/Thm. Let F symmetric monoidal. Given $M=N_{0} \frac{11}{V \times \mathbb{R}} N_{1}$, we have:

$$
T_{\infty} E(M) \simeq \operatorname{cobar}\left(\operatorname{Tot}\left(N_{0}\right), \operatorname{Tot}(V \times \mathbb{R}), \operatorname{Tot}\left(N_{1}\right)\right)
$$

Def: A houcology cotheong for n-mauifolds is a symmetric momoidal functor

$$
H:(\text { Mfld }, \text { op } 11) \longrightarrow(C, \otimes)
$$

s.th. 1. $1 t$ is $\mathrm{ct}_{\text {, }}$,
2. H satisfies coexision.
t amalogous theorem
as befo..

Pedro Brito, Applications to K-theory I (15)
$A(X)$ Waldhausen A -theory
A: Top \rightarrow Spectra

$$
A(x)=K(\underbrace{\mathbb{S}[\Omega, X]})
$$

Thm (Waldhausen). (i) $A(X) \simeq \sum_{+\infty}^{+\infty} X \times$ Whir Diff
(ii) $\Omega^{2} \Omega^{\infty} W^{\operatorname{Diff}}(X) \simeq C(X)^{+}$stable isotopy thong

Main idea.

$$
A(X) \xrightarrow{\text { trace map }} \mathcal{L}(X):=\sum_{i+}^{\infty} \operatorname{Map}\left(S^{\prime}, X\right)
$$

(1) Compute derivatives of the free loop spaces.

$$
F(K)=\sum_{i}^{\infty} \operatorname{Map}(K, X) \quad F: T_{o p}^{o p} \longrightarrow \text { Spectra }
$$

$$
T_{u} F(K)=\text { homotopy sheafification of } F \text { writ. IX }
$$

$$
=\mathbb{R} \operatorname{Hom}_{\Gamma_{k}}(\operatorname{Map}(-, K), F)
$$

where $\Gamma_{u}=$ Fin Sets $\leqslant n$
If k is a finite complex, then we may tater:

$$
=\operatorname{Hom}_{\Gamma_{n}}\left(M_{a p}(-, K), F\right)
$$

We can also taler

$$
\simeq \operatorname{Hom}_{\Omega_{n}}\left(K^{\wedge-}, \sum^{\infty} X^{\wedge-}\right)
$$

This turns out to be $P_{n} F_{0}$
$\tau_{\text {in the sense Gooduillic }}$ (ie. Taylor, not interpolation)
Relative case: $\partial_{x} \mathscr{R}(X):=$ coefficient (i.e. $X v_{x} S^{0}$) $x \in X \quad$ of the linearication

$$
\begin{aligned}
& Z_{x} \\
& \underset{x}{ } \longmapsto \operatorname{hfib}(F(Z) \rightarrow F(x))
\end{aligned}
$$

$$
\partial_{x} \mathcal{L}(X) \simeq \Gamma\left(\Sigma_{+}^{\infty} W \longrightarrow S^{\prime}\right)
$$

Spedrum fibered over S^{\prime}
where $W:=\left\{(S, k) \in X^{S^{\prime}} x \cdot S \mid f(k)=x\right\}$
Goodwillie's notation for $\Gamma\left(\Sigma^{\infty}+W \rightarrow S^{\prime}\right)$ is

$$
\int^{k \in K} \sum_{+}^{\infty} \operatorname{Map}_{x}\left(\left(S^{\prime}, k\right),(X, x)\right) d k
$$

$$
\Gamma\left(\Sigma^{\infty} W \rightarrow S^{\prime}\right) \cong \operatorname{Map}_{x}\left(S_{+}^{1}, \Sigma^{\infty} L \Omega_{x} X\right) \text {. }
$$

(2) A-theory.

$$
\begin{aligned}
& C(X)=\underset{k}{\text { hocolim } C\left(X \times I^{k}\right)} \\
& C(Z):=D_{i f}(Z \times I, \text { rel } Z \times\{0\}, \partial Z \times I)
\end{aligned}
$$

concordence space of z

The map $C(Z) \longrightarrow C(Z, I)$ is $\frac{\text { diun Z }}{3}$ rosun.
Prop. C is a homotopy Sunctor (at loast on compact mavifolds).

Want: calculate $\partial_{x} E(X)$
catefflacidient of the linearization of

$$
Z \longmapsto \operatorname{lifib}(C(Z) \rightarrow C(X))
$$

$$
\operatorname{mamimen}_{n} \Omega^{n} \operatorname{hfib}\left(\varepsilon\left(x v_{x} S^{n}\right) \longrightarrow \varepsilon(x)\right)=\text { ? }
$$

It suffices to look at

$$
\operatorname{hfib}\left(c\left(X v_{x} S^{n}\right) \rightarrow c(x)\right)
$$

\uparrow unstable concordance spore

$$
x^{\prime} \simeq X v_{x} S^{n}
$$

$$
C(\underbrace{X r_{x} S^{n}}_{X^{\prime}}) \longrightarrow C(x) \rightarrow C E(\mathbb{X})
$$

where $C E_{X}(\mathbb{X}):=E_{m b} b(\{*\} \times I, X \times I$, rel L, $)$

$$
\begin{aligned}
& (t, 0) \longmapsto(x, 0) \\
& \text { concordeure } \\
& \text { embed dings }
\end{aligned}
$$

Using manifold calculus we obtain the a proximation: $C E_{x}(\mathbb{X}) \longrightarrow T_{2} C E(\mathbb{X})$ that, by $B-M$, is $\sim 2 n$-connected.

$$
\begin{aligned}
& \left.\sum_{P B}^{5 / 17 / 12}\right\rangle^{5} . \\
& \Gamma\left(E \rightarrow T^{(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{2} C E_{x}(I) \longleftarrow L_{2} C E_{x}(I) \\
& C E_{x}(I) \rightarrow T_{1} C E_{x}(I)
\end{aligned}
$$

total fiber $\left(\begin{array}{ccc}C E(2) & \longrightarrow C E(1) \\ 1 & & d \\ C E(1) & \longrightarrow C E(*)\end{array}\right)$

$$
C E(2) \simeq X \underset{\substack{\text { conf space } \\ \text { of }}}{\sum_{\left.(X X I)^{2} \backslash \Delta\right)}}
$$

$$
\begin{aligned}
& \text { of space } \\
& 2 \text { points }
\end{aligned}
$$

$$
E=\operatorname{bfib}\left(\begin{array}{cc}
(X \times I)^{2} \backslash \Delta & X \times I \\
\left.\right|^{2} & \left.\right|_{x}
\end{array}\right)
$$

$$
\simeq n \operatorname{sib}(\underbrace{(X \times I) \backslash\{p t\}}_{\simeq X \vee s^{n}} \longrightarrow \underbrace{X \times I}_{\approx X}
$$

$$
\begin{aligned}
T_{2} C E_{x}(I) & \simeq \Omega_{i}^{2} \sum^{n} \Omega_{x} x \\
C E_{x}(I) & \longrightarrow \Omega_{i}^{2} \Sigma_{i}^{n} \Omega_{x} x \\
\partial_{x} C(x) & \simeq \Omega^{2} \sum_{*}^{\infty} \Omega_{x} x \\
\Rightarrow & \partial_{x} A(x) \simeq \sum_{i}^{\infty} \Omega_{x} x
\end{aligned}
$$

Recap. $A(X) \longrightarrow \mathcal{L}(X)$

$$
\begin{aligned}
& \partial_{x} \mathcal{L}(x)=\operatorname{Map}_{x}\left(s_{1}^{\prime} \sum_{+}^{\infty} \Omega_{x} x\right) \\
& \left(\partial_{x} \mathcal{L}(x)\right)^{h s^{\prime}} \simeq \sum_{+}^{\infty} \Omega_{x} x \\
\Rightarrow & \partial_{x} A(X) \simeq\left(\partial_{x} \mathcal{L}(x)\right)^{h s^{\prime}}
\end{aligned}
$$

Thm. (Goodwillie) $F \rightarrow G$ homotopy Sun. + S-analytic, and $\partial_{x} F(x) \stackrel{ }{\leftrightarrows} \partial_{x} G(X)$ $\forall(x, x \in X)$
$\Rightarrow \tilde{F}(X) \simeq \tilde{G}(X)$ Sor all ρ-conuected X.

Ernest Fontes, Applications to K-theory 2. (16)
Goal: $D_{1} K \xrightarrow{\simeq} \operatorname{THH}(B ; M)$

K-theory:
Def: A Waldhausen category ${ }^{t}$ is a category ε, pointed. equipped with $\operatorname{cof}(C)$ and $w(C)$ subcategories of C S. th.
(1) iso $C S \operatorname{cof}\left(C^{6}\right), w(C)$
(2)

(3) $\operatorname{cof}(\varepsilon), w(\varepsilon) \cap \operatorname{cof}(\varepsilon)$ are pughout stable
(4) $O \longmapsto C$ for all $C \in C$

Exampl-c: Let R ring, P_{R} category of Sin. gen.
R-modules, prop., $\omega E=$ iso
$a>b$ if injection with quotient in P_{R}
Runts.

Def: $S_{n} 6$ is the category defined via

$$
\begin{aligned}
& x=a_{00}^{\succ} a>a_{0_{1}}>\longrightarrow a_{0_{2}} \ggg>a_{o n} \\
& \forall 0 \leqslant i \leqslant j \leqslant n \quad a_{0 i}>a_{0 j} \longrightarrow a_{i j} \quad *=a_{i i}
\end{aligned}
$$

simplicial Waldharsen category
Def: $K(\varepsilon):=\Omega\left|\mathbb{N}, w\left(\frac{S}{0}\right)\right|$.
Ruck. (1) $\left|N_{0} w\left(S_{0}^{n-1} C\right)\right| \simeq \Omega_{1}\left|N_{0} w\left(S_{0}^{n} C^{6}\right)\right|$
$\Rightarrow K(E)$ is a spectrum
$\left.\begin{array}{c}\text { (2) }\left|W_{0} w\left(S_{0} C\right)\right| \xrightarrow{\imath}\left|W_{0} w S_{0} G\right| \\ K(E) \simeq L S)\left|o b\left(w S_{0} \theta\right)\right|\end{array}\right\} \quad \theta$ additive
(3) $\left|N_{0}, S^{P} \cdot C\right|$ is $(p-1)$-connected.

Idea of Hochschild hocuology:

$$
\begin{aligned}
{[n] } & \longrightarrow R \otimes R \otimes \ldots \otimes R \\
\pi_{*}\left|R \otimes R^{\otimes_{n}}\right| &
\end{aligned}
$$

Def: For 6 spectral category

$$
\begin{aligned}
& W_{k}^{c y c}(C)=\bigvee_{c_{0},-, c_{n}}^{C}\left(c_{0}, c_{1}\right) \wedge C^{6}\left(c_{1}, c_{2}\right) \wedge \ldots \wedge C^{6}\left(c_{n}, c_{0}\right) \\
& T H H\left(P_{R}\right)=D\left|W_{0}^{c_{y c}} w S_{0} P_{R}\right|
\end{aligned}
$$

$$
11
$$

THH(R) (topological Hochsichild homology)

$$
K(R)=K\left(\mathcal{P}_{R}\right) \simeq \Delta\left|o b\left(S_{0} \mathcal{P}_{R}\right)\right| \xrightarrow{t r} \Omega\left|N_{0}^{c y c} w S_{0} \mathcal{P}_{R}\right|
$$

11
THH(R)

Intertucle about TC (topological cyclic homology)
$\operatorname{THH}(E)$ as an S^{\prime}-spectrum Fix p.

$$
\begin{gathered}
F, R: T H H(E)^{C_{p n}} \longrightarrow T H H(E)^{C_{p+1}} \\
T C(\varepsilon, p)=\text { holm } T H H(E)^{C_{p n}}
\end{gathered}
$$

Theorem. (Dundas-Mc(arthy), Suppose $R \xrightarrow{f} S$ is a map of simplicial rings s. th. $\pi_{0}(\delta)$ has milpoht kernel. Then

is homotopy cartesian.
Ruck. $K\left(\sum^{\infty}, \Omega X\right)=A(X)$ compare.

Let R a ring, M an R-bimodule, simpticial.

$$
K(R ; M)=K(R \leftrightarrow M)
$$

$M \wedge X=M \otimes * / M \otimes *$
for X finite seels,
$K\left(R ; M_{j} X\right)$
and analogously THH $(R ; M, Y)$

$$
K(R ; M ; X) \xrightarrow{f} K(\mathbb{R})=K(R ; O ; \otimes)
$$

Define: $\hat{K}\left(R_{;} M ; X\right)$ as hfib (f)
$R \oplus M$ - modules
R-modute equipped with $P \longrightarrow P \oplus M$

$$
\begin{aligned}
& D_{1} K\left(R_{j} M_{j} X\right)=\operatorname{hocolim} \Omega^{n} \tilde{K}\left(R_{j} M_{j} \Sigma^{n} X\right) \\
& K\left(R_{j} M\right)=\Omega\left|\frac{\|}{c \in S_{0} p_{R}} \operatorname{How}(c, c \otimes M)\right| \\
& \text { abulian groups } \\
& T H H(R ; M)=\bigoplus_{c_{0},-, c_{n} \in P_{R}} H_{\text {ablem }}\left(c_{n}, c_{q}\right) \oplus \ldots(\oplus) \text { Hour }\left(c_{n-1}, c_{n}\right) \\
& \text { (4) } \operatorname{How}\left(c_{n}, c_{0} \otimes M\right) \\
& \simeq \Omega,\left|\bigoplus_{c \in S . P_{R}} \operatorname{How}(c, c \otimes M)\right| \\
& K(R ; M)=K(R) \times \tilde{K}(R ; M)
\end{aligned}
$$

Thme. If M is $\operatorname{conn}(M)$,

$$
\begin{aligned}
& \widetilde{K}(R, M) \xrightarrow{t H H}(R, M) \\
& D,{ }_{K},(R, M) \stackrel{U}{ } J
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proo }: A_{p}:=\left|\frac{1}{c \in S P P_{R}} \operatorname{Hom}(c, c \otimes M)\right| \\
& B_{p}:=\left|\underset{c \in S_{0}^{P} \mathcal{P}_{R}}{ } \operatorname{Hom}(c, c \otimes M)\right| \\
& C_{p}:=\left|S_{0}^{(p)} P_{R}\right| \\
& \hat{K}(R, M) \xrightarrow{t r} T H(R, M)
\end{aligned}
$$

A_{p}, C_{p}, cof all $(p-1)$-connected, so by $B-M$:

$$
\begin{aligned}
& \text { total hfib }\left(\begin{array}{cc}
A_{p} \rightarrow & B_{p} \\
1 & 1 \\
\operatorname{cof}
\end{array}\right) \\
& \text { is }\left(p-1 t_{p}=1-1\right) \text {-conuected } \\
& \text { hfib }\left(\operatorname{ffi}_{p} \rightarrow b_{p} \rightarrow f_{i} b_{p}\right) \text { is }(p-1+p-1-1) \text {-comectied } \\
& \therefore d_{p} \text { is }(2 p-3)-\text { comuracted }
\end{aligned}
$$

$$
\begin{aligned}
& B: \operatorname{cof}_{p} \longrightarrow B_{p} \\
& V_{\mathcal{C}^{\prime}}(m \rightarrow \text { couneded spaces }) \\
& I /_{n^{\prime}}=h f_{v} b(V() \longrightarrow \text { (b) } \\
& \text { blah blab blah }
\end{aligned}
$$

Toby Bathes, Calcuks and chromatic homotops theory (ix)
Intro to chromotopy.

$$
S^{0} \xrightarrow{\circ 2} S^{0} \longrightarrow S / 2 \rightarrow S^{1}
$$

Aclans.

$$
\Sigma^{\infty} s / 2 \xrightarrow{\alpha} S / 2 \text { s.th. }
$$

$K(\alpha)$ iso (and hence $\alpha^{k} \neq 0$)

$$
\begin{aligned}
& S^{\mathbb{S}_{k}} \longrightarrow \sum^{8 k} S / 2 \xrightarrow{\alpha^{k}} S / 2 \longrightarrow S^{1} \\
& \Rightarrow \alpha_{k} \in \pi_{\delta k-1} S \quad \forall k
\end{aligned}
$$

From now on: everything is p-local
"We need to define Morava K-theovy. And by defining I mean: their existence"
Morava K-theory. $K(n)$

- $K(n)_{*}=\mathbb{F}_{p}\left[v_{n}, v_{n}^{-1}\right] \quad\left|v_{n}\right|=2\left(p^{n}-1\right)$
- htpy comm ring spectra, complex or in char p+2
- Künneth formula (this formula essentially charactevires them)

Def: Let X finite spectrum. We say that X has type n, if $K(n) \times \neq 0$, but $K(n-1)_{*} x=0$

$$
\begin{array}{r}
f: \sum^{d} X \rightarrow X \quad \begin{array}{ll}
\text { is } & v_{n} \text {-self-map, if } \\
K(m)_{*}(f) & = \begin{cases}\text { iso } & m=n \\
\text { nilpodent } & \text { oth. }\end{cases}
\end{array} .
\end{array}
$$

Thu. (Periodicity theorem). X finite

- X has type $n \Rightarrow$ it admits a v_{n}-self-map

$$
f: \Sigma^{d} X \longrightarrow X
$$

- if (X, f, d) and (Y, g, e) are such and there is $\varphi_{r+r e}: X \rightarrow Y$, then $\exists_{r, s \in \mathbb{N}}$
 with ores

Telescopes: X finite of type n

$$
\begin{aligned}
& \Rightarrow \text { exists } v_{n} \text {-self-map of } X \\
& T(n)=T(X)=T(X, f):=\operatorname{hocolim}\left(X \xrightarrow{f} \Sigma^{d} X \rightarrow \ldots\right)
\end{aligned}
$$

telescopes
are Bousfield equivalent
Corollary. (Resolutions). Exists a finite spectrum $X(i)$ of type n,

such that hocolim $X(i) \longrightarrow S^{0}$ is an $T(m)$-equivalence for all $m \geqslant n$.

Localizations (Bousfield-Kuhn fundor).
Def: Let E and X be spectra. We say that X is E-acyclic, if $X_{\wedge E} \simeq *$. Let θ_{E} be the category E-acyclic spectra.

- Y a spectrum is called E-local, if

$$
[X, Y]=0 \quad \text { for all } X \in G_{E}^{G}
$$

Thu: (Bousfield). Let E be a spectrum. Then $\exists L_{E}:$ Spectra \longrightarrow Spectra an idempotent fundor with a natural transformation $\eta_{E}:$ Id $\rightarrow L_{E}$ s. th.
(1) $L_{E} X$ is E-local for all X.
(2) $X \rightarrow L_{E} X$ is an E-equivalence.

Example. $L_{T(n)}$ telescopic localization $L_{k(n)}$ localization at Morava K-theory

$$
C_{T(n)} \subset C_{K(n)}^{\delta} \Rightarrow L_{K(n)}=L_{K(n)} L_{T(n)}
$$

Telescope conjecture?

Example, $L_{K(1)} X=L_{T(1)} X=$

$$
=\underset{n}{\operatorname{holim}}\left(\operatorname{hocolim}\left(X / p^{n} \xrightarrow{\alpha} \sum^{\infty} X / p^{n} \xrightarrow{\alpha} \ldots\right)\right)
$$

Tho. (Bousfield, Kuhn). For all $n \in \mathbb{L}$, there exists a functor $\Phi_{n}:$ Top \longrightarrow Spectra s.th.

and for all $Z \in T_{\text {op* }} \Phi_{n}(Z)$ is $T(n)$-local.
Corollary. $\sum^{\infty} \Omega^{\infty} X \xrightarrow{\varepsilon} X$ aduits a section after $T(n)$-localization.
Proof: $\Omega_{0}^{\infty} \sum^{\infty} \Omega^{\infty} X$

Applying Φ_{n} :

$$
\begin{gathered}
\eta_{n} / L^{L_{T(n)} \sum_{1}^{\infty} \Omega^{\infty} X}{ }_{L_{T(n)}} \varepsilon_{X} \\
L_{T(n)} X
\end{gathered}
$$

Localized Boodwillie calculus. (All theorems from now on are due to Kuhn).

Tho. Let $F:$ Spectra \rightarrow Spectra. The fiber sequence:

$$
D_{d} F(X) \longrightarrow P_{d} F(X) \longrightarrow P_{d-1} F(X)
$$

splits $T(n)$-locally.
Corollary, holim $L_{n} P_{(n)} T(x)=\prod_{i=0}^{\infty} L_{T(n)} D_{i} F(x)$
Short recap of Tale spectra: Y spectrum with G-action

$$
Y_{h G} \xrightarrow[R]{N_{G}} Y^{h G}
$$

Klein: Norm map ungerely chosen by being an equintan, if y is finite free

$$
\operatorname{cofib}\left(Y_{h G} \xrightarrow{N_{G}} y^{h G}\right)=y_{\text {Tate }}^{t G}
$$

Tate spectrum
Prop. (McCarthy). There exists a homology pullback:
(dual calculus)

Proof: $\quad \alpha: F X \longrightarrow\left(\Delta_{d} F(X)\right)^{h \Sigma_{d}}$
Rum. TFAE:
(1) $\{F$ d-excisive fundor $\}$
(2) $\left\{\begin{array}{lc}\cdot G & (d-1) \text {-excisive functor } \\ 0 H & d \text {-homogeneous functor } \\ \cdot G \longrightarrow()_{\text {diagonal }} & \end{array}\right.$
aba $P_{d-1} F$
de $D_{d} F$

Proof:

Thu. $L_{T(m)}\left(L_{T(n)} S^{0}\right)^{t=*} \Longrightarrow \operatorname{Thm}^{2 / /} T_{(n)}^{*}$ locally *

Verna Sojanoska, The Taylor Tower of the identity 2. (18) $\partial_{x} \mid d$

$$
\text { Id: Top } \longrightarrow T_{o p_{*}}
$$

In good cases $X \cong$ holim $P_{n} X$

$$
\begin{aligned}
& \text { GSA: } \\
& E_{1}(X)=\pi_{*}^{S} D_{n} X \Rightarrow \underbrace{\pi_{*} X}_{\text {unstable }} \text { (more complicated than stable) }
\end{aligned}
$$

How can we compute $E_{1}(X), E_{1}\left(S^{k}\right)$?

$$
\begin{aligned}
& H_{*}\left(D_{n} S^{k}, \mathbb{F}_{p}\right)=H_{*}\left(\partial_{n}\right) \otimes H_{k}\left(S^{k}\right) \\
& H_{*}\left(\sum_{n}, H_{*}\left(D_{n} S^{k}, \mathbb{F}_{p}\right)\right)=H_{*}\left(\sum_{n}, H_{*}\left(\partial_{n}\right) \otimes H_{k}\left(S^{k n}\right)\right)
\end{aligned}
$$

Chromatic Approach
\rightarrow decomposing into frequencies p, V_{1}, V_{2}, \ldots colors

Type m complexes know about V_{m}-periodicity Decompose $T_{*} S^{k}$ into v_{m}-periodic parts.
The. Let k be odd. Then

$$
D_{n} S^{k}=\left\{\begin{array}{l}
* \quad n=p^{i} \\
D_{p i}\left(S^{k}\right) \text { has type } i<\text { knows }
\end{array}\right.
$$ about V_{i}-periotic hill in g^{k}

Let's look at:

$$
\begin{aligned}
& S q: X 1 \longrightarrow X \wedge X \\
& \stackrel{H}{H}: \sum \sum \sum \sum \sum \sum_{i} X X^{\wedge i} \longrightarrow \sum\left(X_{\wedge} X\right) \\
& H \text { is adjoint to } \hat{H}
\end{aligned}
$$

2-1orally: fiber sequences
in $T_{\text {pe }}$

$$
\begin{gathered}
P_{n} S^{k} \xrightarrow{E} P_{n}\left(\Omega \sum_{n}\right)\left(S^{k}\right) \longrightarrow P_{n}\left(\Omega, \Sigma^{\prime} s_{q}\right)\left(S^{k}\right) \\
\Omega P_{n}^{\prime}\left(S^{h+1}\right)
\end{gathered}
$$

in Sped. $D_{n} s^{k} \longrightarrow D_{n}\left(\Omega \Sigma^{-1}\right)\left(s^{k}\right) \longrightarrow D_{n}\left(\Omega \sum^{\prime} s_{q}\right)\left(s^{k}\right)$

$$
\Omega^{\prime \prime} D_{n} S^{k+1}
$$

Lemma: Let $F: T_{\text {opes }} \rightarrow$ Top* , (stably $i-$ excisive for all $i)$. Then
(i) $P_{n}\left(F \cdot S_{q}\right) \approx P_{\left\lfloor\frac{n}{2}\right]}|F|\left(S_{q}\right)$
(ii) $D_{n}\left(F \cdot S_{q}\right)= \begin{cases}D_{1 / 2}(F)\left(S_{q}\right) & n \text { even } \\ * & n \text { odd }\end{cases}$

Proof: Chain rule.

So by the Lemma:

$$
P_{n}\left(\Omega j \sum^{1} \cdot S_{q}\right)\left(S^{k}\right) \simeq \Omega P_{\left\lfloor\frac{n}{2}\right\rfloor} S^{x+1} \quad \text {. Top }
$$

and

$$
D_{n}\left(\Omega_{1} \cdot \Sigma \cdot S_{q}\right)\left(S^{k}\right)= \begin{cases}D_{n^{\prime}}\left(S^{x_{k+1}}\right) & n=2 n^{\prime} \\ * & n \text { odd }\end{cases}
$$

Wout to show $D_{n}\left(S^{6}\right) \simeq *$, if $n \neq 2^{j} j \geqslant 0$ n odd

$$
\begin{aligned}
D_{n} S^{k} \cong \Omega \Omega D_{n}\left(S^{k_{k}+1}\right) \simeq & \simeq \Omega^{2} D_{n}\left(S^{k+1}\right) \rightarrow \ldots \\
\ldots \longrightarrow & \underbrace{\Omega D_{n}^{\infty} D^{\infty} S^{k}}_{=\text {hocolim } \Omega^{p} D_{n} \sum^{P} S^{k}}=D_{1} D_{n} S^{k} \simeq x
\end{aligned}
$$

Induction hypothesis $n=s \times 2^{5}$ s odd $s>1$ Want: $s \cdot 2^{j+1}=2 n$ and all spheres

$$
\begin{aligned}
& D_{2 n} S^{k} \rightarrow \Omega, D_{2 n} S^{k+1} \longrightarrow \Omega, D_{n} S^{2 k+1} \simeq x \\
& 12 \\
& D_{1}\left(\Omega \Omega D_{2 n}\right)\left(S^{k+1}\right) \simeq \infty
\end{aligned}
$$

$$
\partial_{n}=\left(\sum_{i} S K_{n}\right)^{V}
$$

partition complex

Find a smaller complex B_{k} s.th.

$$
K_{p^{k}} \simeq B_{k}
$$

$$
\text { Tits building for } G L_{k}(\mathbb{Z} \text { 位 }
$$

$\therefore \forall S^{n-1}$ and, along the way, show $k_{n} \simeq_{8}$
B_{k} : simplicial set of flags in $\left(\mathbb{F}_{p}\right)^{k}$ $0 \subset V_{1} \subset V_{2} \subset \ldots c V_{s} \subset \mathbb{T}_{p} k$ subspaces
$\Downarrow \mathbb{F}_{p}^{k} \cong f^{h}$ and think of flags as giving a partition
$K_{p}{ }^{2}$

$$
\begin{aligned}
& \partial_{2}=\text { poses of nontrivial partitions }\left(\begin{array}{c}
>1 \&<_{n} \\
\text { sets in } \\
\text { a partition }
\end{array}\right) \\
& \partial_{n} \simeq\left(V S^{n-1}\right)^{v}, \quad K_{n} \simeq V / S^{n-3} \\
& n=2 \Rightarrow K_{2}=\phi \Rightarrow \partial_{2}=S^{-1} \text { trivial } \sum_{2} \text {-action }
\end{aligned}
$$

For general n :

$$
\begin{aligned}
& Y\{\stackrel{\text { bijective }}{\text { and order presscrivis) }} C \\
& C \\
& H_{\lambda} C \sum_{n}
\end{aligned}
$$

stabilizes each subset of λ up to conjugacy

$$
K_{n} \simeq|S|
$$

$$
H_{\lambda}=\sum_{n_{1}}^{1} \times \ldots \times \sum_{n_{d}}
$$

C : collection of subgroups $\subseteq G$ (closed under conjugacy)

$$
X \backsim G \quad X \longmapsto \mid \text { so }(X) \supseteq H \text { which stabilizes }
$$ simplicices of X

X has C^{6}-isotropy, if 1 so $(X) \subseteq C^{6}$
$X \rightarrow Y$ is C^{6}-equivalence, if $\forall_{14} \quad X^{H} \simeq Y^{H}$

Prop. There exists a unique functorial C-gppoinmtion such that for all X, exists $X_{e} \longrightarrow X$ s.th. it is a $\varepsilon_{\text {-equivalence and } X_{E} \text { has }}$ C-isotropy

Example. if $\theta=$ all subges

$$
C=\{G\}
$$

$$
E=\{\{e\}\}
$$

$$
\begin{aligned}
& X_{6}=X \\
& X_{C}=X^{G} \\
& X_{6}=E_{G} \times X
\end{aligned}
$$

Define: $F \varphi=(*)_{\epsilon}$

$$
C \text { is a poset } \Rightarrow E C \longrightarrow|C|
$$

not an equivalence

$$
\begin{aligned}
(E C)^{H}= & |H \downarrow E|= \begin{cases}x & \text { if } H \in C \\
& \mid \prime \\
& \left\{H^{\prime} \subseteq C^{\prime} \mid H C H^{\prime}\right\}\end{cases}
\end{aligned}
$$

$\mathcal{F}=$ collection of non-tromsitive, non-trivial subgroups of \sum_{n}
Let $S \subseteq \mathcal{S}_{\mathcal{S}} \&$ it tarns out $E S \xrightarrow{r} \underset{G}{ }$

This means $K_{n} \simeq|\mathcal{F}|$
E: nontrivial elencentary abeliau subgroups of Σ_{n}

$$
\xi=\varepsilon^{6} \cap \mathcal{F}
$$

$$
E \varepsilon^{\prime} \rightarrow E \mathcal{H} \text { is } \mathcal{E}^{6} \text {-approximation }
$$

are iso on equiv. homology
and something, something, something

