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1. Motivation

Chromatic homotopy theory approaches the computations of stable homotopy groups (of spheres, say)
by decomposing them into periodic families. Such families can then be detected by designer cohomology
theories, and it thus becomes an important issue to better understand these. The calculus of functors
opens up completely new methods for approaching this problem.

Another way in which the calculus of functors interacts with chromatic homotopy theory is by means
of interpolations between the stable and unstable theory. Work of Arone, Dwyer and Mahowald as well
as the EHP spectral sequence computations of Mark Behrens, to be discussed in the next talk, are among
the many instances of this general principle.

2. Chromatic stable homotopy theory

Arguably, stable homotopy theory is all about studying the stable homotopy groups of spheres, which
are related to topology, analysis, number theory and so on. So what’s better than constructing a non-
trivial element in the stable stem? Constructing infinitely many!

The roots of chromatic homotopy theory reach down all the way to Adams’ work on the image of J .
In [Ada66], he showed that at p = 2, the mod 2 Moore spectrum M(F2) = S0 ∪2 e1 admits a self map

α : Σ8M(F2) → M(F2)

which is an isomorphism in K-theory. Therefore, iterating this map will never be zero, and we obtain a
family of non-trivial elements in the stable homotopy groups of spheres:

S8k → Σ8kM(F2)
αk

−−→ M(F2) → S1

where the first map is the inclusion of the bottom cell and the last map pinches to the top cell. In fact,
this is a geometric incarnation of Adams periodicity in the E2 term of the Adams spectral sequence.

After this seminal work, people tried to construct other families like this, but they couldn’t really
go beyond ‘the third layer’. In the early 70s, there was even some controversy about the non-triviality
of the first element in the gamma family, which gained public attention when people interpreted it as
a first sign of the decline of mathematics. Incipit Ravenel! As a vast generalization of Adams’ work,
providing completely new insights into the global structure of the stable homotopy category, Ravenel
proposed his conjectures which where proven in the late 80s by Devinatz, Hopkins and Smith. We will
restrict ourselves here to the part of the story that is most relevant to the interactions with the calculus
of functors to be discussed in the second half of the talk.

To this end, we have to introduce a remarkable family of spectra known as Morava K-theories. Ev-
erybody loves them. For the rest of the talk, let us work localized at a fixed prime p. Then, for n
any non-negative integer, the n-th Morava K-theory K(n) (for p) is a homotopy commutative1 complex
oriented ring spectrum with K(n)∗ = Fp[vn, v−1

n ], a graded field, where |vn| = 2(pn − 1). Furthermore,

1that’s not quite true for p = 2
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the associated cohomology theories satisfy a Künneth formula, and this property essentially characterizes
the Morava K-theories. One way to think about these spectra is as the ‘fields’ of stable homotopy theory.

Before we can state one version of the main theorem of Devinatz-Hopkins-Smith, we need to introduce
a little bit of notation. Let’s say a finite p-local spectrum is of type n if K(n−1)∗X = 0 but K(n)∗X �= 0.
A map f : ΣdX → X is said to be a vn-self map if K(m)∗f is an isomorphism for m = n and nilpotent
otherwise. These are the higher analogues of Adams’ map α. Now we are ready:

Theorem 2.1 (Periodicity theorem). A finite spectrum X is of type n if and only if it admits a vn-self
map. Furthermore, these are compatible in the sense that if f : ΣdX → X and g : ΣeY → Y are two

vn-self maps and φ : X → Y is a map of spectra, then there exist integers k, l with dk = el and such that

the following square commutes:

ΣdkX
Σdkφ

��

fk

��

ΣelY

gl

��

X
φ

�� Y.

As an immediate consequence, we see that for ΣdX
f−→ X as in the theorem, the spectrum

T (n) = T (X, f) = hocolim(X
f−→ Σ−dX

f−→ Σ−2dX
f−→ ...)

is independent of the choice of the self-map; moreover, its Bousfield class is independent of the type n
spectrum X. Another, non-trivial consequence of this theorem is the following result of Kuhn:

Corollary 2.2. For any n, there exists a diagram of type n spectra

F (1) → F (2) → ...

over S0
such that hocolimkF (k) → S0

is an isomorphism in T (m)-cohomology for all m ≥ n.

Sketch of proof. Induction. �
Morally, the perspective on stable homotopy theory provided by the solution of the Ravenel conjecture

is like this: The stable homotopy groups of a finite spectrum, say the sphere spectrum, decompose into
periodic families, very much like light decomposes into periodic waves of different lengths; hence the
term ’chromatic’.

3. Bousfield localization and the Bousfield-Kuhn functors

In order to study the local pieces of the stable homotopy category, as exhibited by the periodicity
theorem, one by one, we need to introduce localization functors. The idea goes back to Adams, again,
but non-changing-the-universe-does-the-trick set-theoretical problems prevented him from solidly laying
down the foundations of the theory. Bousfield later resolved these issues and proved the next result.

Definition 3.1. Let E be any spectrum. The category of E-acyclic spectra CE is the full subcategory
of the category of spectra on objects X such that E ∧ X ∼ ∗. A spectrum Y is called E-local if, for
any X ∈ CE , [X,Y ] = 0. Equivalently, any E-equivalence A → B, i.e., a morphism that becomes an
isomorphism in E-homology, induces an isomorphism [B, Y ] = [A, Y ].

Theorem 3.2 (Bousfield). Let E be any spectrum, then there exists an idempotent functor LE : Sp → Sp
together with a natural transformation η : Id → LE satisfying the following:

(1) LEX is E-local

(2) ηX : X → LEX is an E-equivalence

In fact ηX is terminal with the above property (2), or initial among maps from an X to an E-local object.

(Exercise!)

Remark 3.3. One can construct a nice (Bousfield) model structure on spectra in which the fibrant objects
are precisely the E-local objects, with weak equivalences the stable E-equivalences, and the cofibrations
the usual ones. Alternatively, we could work in the context of ∞-categories.

In general, it is difficult to describe the localized spectrum or its homotopy groups explicitly. However,
if both E and X are connective, Bousfield showed that the E-localization of X is essentially determined
by the arithmetic of π0E.

Example 3.4. If E = M(Fp), then LpX = LEX = holim(· · · → X ∧ M(Z/p2) → X ∧ M(Z/p)), the
p-completion of X. Similarly, E = M(Z(p)) gives p-localization.
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As should be clear from the last section, the functors LK(n) and LT (n) = LT (n) are of central impor-
tance to stable homotopy theory. Since CT (n) ⊂ CK(n), formally we get LK(n) = LK(n)LT (n), hence it is
enough to consider the LT (n).

Example 3.5. K(1)-resolutions: LK(1)X = lim←−n
lim−→{X/pn

α−→ Σ−dkX/pn
α−→ · · · }.

Remark 3.6. The telescope conjecture, the only one of Ravenel’s conjecture that remains open and is
widely believed to be false in general, says that LK(n) = LT (n). If time permits, we will come back to it
at the end of the talk.

A remarkable result, due to Bousfield for n = 1 and generalized to arbitrary n by Kuhn, is that
LT (n)X is completely determined by the zeroth space of X. More precisely:

Theorem 3.7. Let n ≥ 1, then there exists a functor Φn : Top → Sp factoring through T (n)-local
spectra and such that the following diagram commutes

Sp
LT (n)

��

Ω∞

��

Sp

Top.

Φn

��

Sketch of construction. By Theorem 2.2, there exists a type n resolution F (1) → F (2) → · · · of S0. Let
fi : ΣdiF (i) → F (i) be a vn-self-map of F (i), which exists in light of the periodicity theorem 2.1. Define
the functor Φi : Top → Sp by sending a space X to the spectrum with kdith space Map(F (i), X) and
the natural structure maps induced by fi. One can then check that

Φn = limi Φi

has the required properties. �

We note some immediate corollaries.

Corollary 3.8. If Ω∞X � Ω∞Y , then LT (n)X � LT (n)Y .

Corollary 3.9. The counit map � : Σ∞Ω∞X → X has a natural section after T (n)-localization.

Proof. Take Φn(η(Ω∞X)), where η : Id → Ω∞Σ∞ is the unit map. �

In the next section, we will study the interaction of the Bousfield-Kuhn functors with the calculus of
functors.

4. Splitting of the localized Goodwillie tower

Let us start with a motivating example of the kind of results we have in mind.

Example 4.1. The Goodwillie tower of the functor Q gives in particular a cofibration sequence P2(X) →
X

δ−→ Σ(X ∧X)hΣ2 , which specialized to X = S−1 can be identified, after a shift, with

RP∞
−1 → RP∞

0 → S0

This can be shown to split after T (n)-localization, whereas the connecting map δ : S0 → ΣRP∞
−1 is

non-zero in mod 2 homology.

First of all, we will need a general lemma about the interaction between Bousfield localization and
the calculus of functors.

Lemma 4.2. (i) If F : Sp → Sp is finitary and f : X → Y is an E∗-equivalence, then so are

DdF (f) and PdF (f).
(ii) If f : F → G is a natural transformation which is a pointwise E∗-equivalence, then so are Ddf

and Pdf .

We are now ready to state Kuhn’s splitting theorem.

Theorem 4.3. Let n ≥ 1 and F : Sp → Sp, then the map

pd(X) : PdF (X) → Pd−1F (X)

has a natural section (up to homotopy) after T (n)-localization.
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Remark 4.4. Observe that, in general, one cannot expect the localized tower to converge, as LE does
usually not preserve products. We will study a particular and important example of this in the next
section.

We note two immediate consequences.

Corollary 4.5. (i) holimdLT (n)PdF (X) =
�

d LT (n)DdF (X).

(ii) If En denotes Morava E-theory, then E∗
n(PdF (X)) �

�d
c=0 E

∗
n(DcF (X)).

Remark 4.6. Kuhn also deduces that LT (n)Σ
∞BG+ is self-dual in the category of T (n)-local spectra.

The key ingredient in the proof of the theorem is a vanishing result for Tate spectra. Recall that, if
Y is a G-spectrum for G a finite group say, we can construct homotopy orbit and fixed point spectra,
namely YhG = (EG+ ∧Y )/G and Y hG = Map(EG+, Y )G. Its Tate spectrum Y tG is then defined by the
following cofiber sequence:

YhG → Y hG → Y tG

where the first map is the norm map. By a result of Klein, this natural transformation can be uniquely
characterized by the property that it is an equivalence whenever Y is a finite free G-spectrum. Moreover,
note that, if R is a ring spectrum with trivial G-action and M ∈ ModR, then RtG is a ring spectrum
and M tG ∈ ModRtG . Tate spectra enters the calculus of functors in the following way.

Proposition 4.7. If F : Sp → Sp is any functor, for any d and X there exists a pullback diagram

PdF (X) ��

��

(∆dF (X))hΣd

��

Pd−1F (X) �� (∆dF (X))tΣd

Sketch of proof. Without loss of generality we can assume that F is d-excisive. In this case, the horizontal

maps are induced by the composite map αd(X) : F (X)
∆−→ F (X)hΣd → (∆dF )(X)hΣd

∼←− (∆dF )(X)hΣd ,
constructed using McCarthy’s dual calculus. Here we have to use the key observation that (∆dF )tΣd is
(d− 1)-excisive to identify

Dd((∆dF )hΣd) → Pd((∆dF )hΣd) → Pd−1((∆dF )hΣd)

with the norm sequence for ∆dF . �

Remark 4.8. This proposition says, in colloquial terms, that the classification of n-excisive functors is
controlled by the Tate spectrum (∆dF (X))tΣd . To be more precise, the data of a reduced n-excisive
functor F is equivalent to the following:

• a reduced (n− 1)-excisive functor Pn−1(F ),
• an n-homogeneous functor DnF , as classified by Goodwillie, and
• a natural transformation αn : Pn−1(F ) → (∆nF )tΣn , where ∆nF is the diagonal of the multi-

linearization of the n-th cross effect of F .

The functor F can then be obtained by forming the pullback F � Pn−1(F )×(∆nF )tΣn (∆nF )hΣn

Proof of Theorem. To shorten notation, let’s write L = LT (n) from now on. Using the natural transfor-
mation Id → L and Proposition 4.7, we obtain a commutative diagram

DdF (X) ��

��

DdLF (X)
∼ ��

��

(∆dLF (X))hΣd

��

PdF (X) �� PdLF (X) �� (∆dLF (X))hΣd

in which the upper and lower left horizontal maps are T (n)-equivalences by Lemma 4.2. To construct
a homotopy section as desired, it suffices to show that the right vertical map becomes an isomorphism
after applying L. Since the localized cofiber of this map is a module over LT (n)(LT (n)S

0)tG, the proof
follows from the next theorem. �

Theorem 4.9. For all finite groups G and all n ≥ 1, LT (n)(LT (n)S
0)tG ∼ ∗.

First, Kuhn shows that the theorem follows from the case G = Z/p, using the next result.
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Proposition 4.10. Let R be a ring spectrum, E∗ a homology theory. If E ∧ RtZ/p ∼ ∗ for all primes

p, then M tG
is also E-acyclic for all M ∈ ModR and all finite groups G. The assumption holds in

particular if R∗ is uniquely p-divisible.

Idea of proof. First reduce to p-groups via the theory of Mackey functors, then use induction on the
order of the group. �

It is therefore enough to prove the following.

Theorem 4.11. LT (n)(LT (n)S
0)tZ/p ∼ ∗

Proof. The idea of the proof goes like this. To start with, present StZ/p as a limit of Thom spectra
models. In order to show that the localized Tate spectrum LT (n)(LT (n)S

0)tZ/p vanishes, Kuhn proves
that its unit factors through the limit of certain connecting maps associated with the localized Goodwillie
tower of Σ∞Ω∞. This limit can then be seen to be null in virtue of the next lemma, which uses the
Bousfield-Kuhn functors. �
Lemma 4.12. The natural map holimkΣkLT (n)Pp(Σ−kX) → LT (n)X has a section (up to homotopy).

Sketch of proof. Use Corollary 3.9; explicitly, holimkΣk(LT (n)ep(Σ
−kX)◦ηn(Σ−kX)) provides a section.

�
We finish this section with a couple of applications and a remark.

Remark 4.13. Theorem 4.9 is equivalent to T (n)tG ∼ ∗ versions of which have been appeared in the
literature before Kuhn’s work. In particular, Greenlees and Sadofsky proved the K(n)-analogue in 1996.

The theorem has the following interesting consequences.

Corollary 4.14. The natural sequence YhG → Y hG → Y tG
splits for all naive G-spectra Y .

Corollary 4.15. LT (n)Σ
∞
+ BG is self-dual in the T (n)-local category.

5. Periodic homology of infinite loop spaces

The above splitting theorem 4.3 comes with a slight flaw: In general, one cannot expect the localized
tower to converge, see Remark 4.4. Our goal in this section is to study the localized tower of the functor
Σ∞Ω∞ in more detail.

5.1. Motivating sample theorem. As a prototypical example for the results to come, we first consider
the functor Q = Ω∞Σ∞ and its stable splitting. Recall that for any spectrum X, Σ∞

+ Ω∞X is an

augmented commutative algebra; in fact, there is an adjunction (up to homotopy) Σ∞
+ Ω∞ : Sp≥0 �

Alg : gl1. By the universal property of the free algebra functor on a spectrum, Sym =
�

d Dd, for any
space Z, we obtain a morphism

s(Z) : Sym(Σ∞Z) → Σ∞
+ Ω∞Σ∞Z

induced by the unit of the adjunction Σ∞ � Ω∞.2

We claim that s(Z) induces an equivalence for any connected space Z and also is an E∗-equivalence
for any homology theory E∗. In order to reinterpret this statement in terms of the calculus of functors,
we need to consider the Goodwillie tower of the identity on Alg; recall the following facts about it.

Theorem 5.1. For any A ∈ Alg, the Taylor tower of the identity functor

.

.

.

��

P2(A)

p2

��

D2(A)��

P1(A)

p1

��

D1(A)��

A e0
��

e1

��

e2

��

P0A

2We need to be slightly careful about basepoints here; the map is really induced by Σ∞Z
Σ∞(Z)−−−−−→ Σ∞QZ

∼←− I(Σ∞
+ QZ).
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has the following properties.

(i) e0 is the natural augmentation map A → R, and I(e1) can be identified with the canonical map

I(A) → TAQ(A), where I denotes the augmentation ideal functor.

(ii) More generally, for any r ≥ 1, Dr(A) � Dr(TAQ(A)) = TAQ(A)∧r
hΣr

(iii) If I(A) is 0-connected, then er is r-connected. In particular, in this case A
∼−→ Â, where the

latter object is the (homotopy) limit of the tower.

By climbing up the tower, we thus obtain:

Corollary 5.2. If f : A → B is a map of R-algebras such that TAQ(f) is an equivalence, then so is

Pr(f). In particular, this implies that f̂ is an equivalence, and that there exists a commutative diagram

A
can ��

f
��

Â

B
(f̂−1)◦can

��

In the cases we are interested in, we can be more explicit.

Example 5.3. (1) Evaluating the tower on Sym(X), the map I(e1) : I(Sym(X)) → TAQ(Sym(X))

can be identified with
�∞

r=1 DrX → D1X = X, and Sym(X) → �Sym(X) is
�∞

r=0 DrX →�∞
r=0 DrX. Note that the last map is an E∗-isomorphism for any homology theory E∗.

(2) Similarly, for Σ∞
+ Ω∞X, I(e1) is just the counit � : Σ∞Ω∞X → X�−1�.

Theorem 5.4. There exists a commutative diagram

Sym(Σ∞Z)
can ��

s(Z)
��

�Sym(Σ∞Z)

Σ∞
+ QZ

t(Z)

��

with the following properties:

(i) s(Z) is an equivalence if Z is connected

(ii) E∗s(Z) is monic for any homology theory E∗.

Proof. By Corollary 5.2, we are reduced to showing that TAQ(s(Z)) is an equivalence. But using the
above computations, we see that we have the following diagram,

Σ∞Z

∼
��

Σ∞Z

∼
��

TAQ(SymΣ∞Z)
TAQ(s(Z))

�� TAQ(Σ∞
+ QZ)

the commutativity of which is checked easily. �
Remark 5.5. Compare with classical stable splittings, see [Kuh01].

5.2. The localized splitting. Let’s write L for Bousfield localization at T (n). Corollary 3.9 gives rise
to a map of commutative LS0-algebra for any X ∈ Sp

sn(X) : LSym(X) → LΣ∞
+ Ω∞X

which induces an equivalence on D1 by an argument similar to the one in Section 1. In fact, Kuhn shows:

Theorem 5.6. For any spectrum X, the map sn(X) induces an equivalence on (localized) completions

and thus fits into a commutative diagram

LT (n)Sym(X)
can ��

sn(X)
��

L̂T (n)SymX =
�∞

r=0 LT (n)DrX

LT (n)Σ
∞
+ Ω∞X

t(X)

��

Furthermore, it has the following properties:

(1) If CT (n) ⊂ CE, then E∗sn(X) : E∗(SymX) → E∗(Ω∞X) is monic
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(2) If X is suitably connected
3
and X ∈ CT (i) for 1 ≤ i ≤ n − 1, then sn(X) is an equivalence. In

this case, X ∈ CK(i) for all 1 ≤ i ≤ n− 1.
(3) sn is universal among natural transformations from functors F : Sp → Sp invariant under

T (n)-equivalence to LT (n)Σ
∞
+ Ω∞

:

F (X) ��

∃!

��

LT (n)Σ
∞
+ Ω∞

LSym(X)

sn(X)

��

Sketch of proof. The proof is, by virtue of the next proposition, completely analogous to the motivating
example above, using the natural transformation ηn coming from the Bousfield-Kuhn functor. �
Proposition 5.7. If f : LEA → LEB is a map in LEAlg such that TAQ(f) is an equivalence, then

ĝ : L̂EA → L̂EB is an equivalence; therefore, the following diagram commutes:

LEA
can ��

g
��

L̂EA

LEB

��

where the unlabeled arrow is ĝ−1 ◦ can.

Remark 5.8. Note that, in general, L̂EA �= LEÂ, due to the same convergence problem.

As an important instance of the above theorem, we can take E = K(n); using work of Hopkins,
Ravenel and Wilson, who show that Morava K-theory doesn’t see k-invariants in Postnikov towers of
double loop spaces, Kuhn then proves:

Corollary 5.9. If X ∈ CT (i) for 1 ≤ i ≤ n− 1, then there exists a short exact sequence of Hopf algebras

over K(n)∗:

K(n)∗ → K(n)∗SymX → K(n)∗Ω
∞X →

n+1�

j=0

K(n)∗K(πjX, j) → K(n)∗

Note that, in some sense, this corollary measures to what extend the localized tower fails to converge.
Other applications: Calculate E∗

n(Ω
∞X), telescope conjecture, and speculations of Arone-Ching.

Remark 5.10. Kuhn moreover shows that the conclusion of the corollary implies that X ∈ CK(m) for
0 < m < n. Following ideas of May, this could be used to find counterexamples to the telescope
conjecture. If Z is a connected space, then the above sequence can be rewritten as

K(n)∗SymΣ∞Z → K(n)∗SymΣ∞Z →
n+1�

j=0

K(n)∗K(πjΣ
∞Z, j)

So if Z is K(n − 1)-acyclic but this sequence does not split, then by the corollary there must exist an
m < n such that Z /∈ CT (m), thereby violating the telescope conjecture.
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