
TALBOT TALK: EMBEDDING CALCULUS, THE LITTLE DISKS OPERAD

AND RATIONAL HOMOLOGY OF SPACES OF EMBEDDINGS

A.P.M. KUPERS

Abstract. These are the notes for a talk at the Talbot workshop on functor calculus. This talk

discusses how under pretty general conditions the embedding calculus Taylor can be written for
in terms of a derived mapping space of modules over the little disks operad. As an application we

discuss two proofs that the rational homology of the space of reduced embeddings of a manifold

M into a Euclidean space of sufficiently high dimension depends only on the rational homology
of M .

In this talk we discuss the results of [ALV07] and [AT11]. To keep these notes concise and
focused on the statements that we want to prove, we will not recall all of the background in
functor calculus and operad theory needed to understand these results. For that we refer to the
notes of the other talks at the Talbot workshop or the previously given references.

1. Introduction and overview

Embedding calculus studies a particular class of functors

F : O(M)op → D

where O(M) is the poset of open subsets of a fixed manifold M and D is a nice model category
(closed monoidal combinatorial will suffice). In these notes D will always be one of the following four
model categories: pointed spaces Top∗, spectra Sp, rational chain complexes ChQ or HQ-module
spectra SpHQ.

The class of functors we are interested in are the good isotopy functors. Here isotopy functor
means that F sends inclusions that are isotopy equivalences to homotopy equivalences and good
means that F sends filtered unions to homotopy limits.

We want to approximate such a functor by its value on open subsets homeomorphic to a disjoint
union of finite number of open balls and the relations between these under inclusions. If we fix an
integer k ≥ 0, the relations under inclusions between open subsets of M that are homeomorphic
to a disjoint union of at most k balls are encoded by the subposet Ok(M) of O(M) consisting of
such open subsets. To isolate the values of F on these we just consider the restriction F |Ok(M).
The best possible approximation of the F in terms of the value of F on elements Ok(M) is given
by the left (homotopy) Kan extension

TkF (M) = holim
U∈Ok(M)

F (U)

This is called the k’th Taylor polynomial of F . The reason for phrasing the definition of the
Taylor tower in this way, stressing the relations between the open subsets, is to remind you of
the little n-disks operad. This operad similarly encodes the relations between open balls under
inclusion.

Definition 1.1. The little n-disks operad Bn is the operad in Top with spaces

Bn(k) = sEmb(
∐
k

Dn, Dn)

where Dn is the standard disk in Rn and sEmb denotes the standard embeddings: these are on
each connected component a composition of dilation and translation.
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Figure 1. The composition of an element of D2(2) with elements in D2(1) and D2(2).

The unit is the identity map id : Dn → Dn. The composition is given by composition of
standard embeddings, which are clearly closed under composition. See figure 1 for an example.

These notes have a two-fold goal.

(1) Under the conditions that M is an open submanifold of Rm and F is a so-called context-
free functor, we make this vague relationship between the Taylor tower and the little disks
operad precise. In particular, we will get an expression of TkF in terms a space of (derived)
maps of right modules over Bm. This is theorem 2.11.

(2) We want to apply this to the example

F (−) = HQ ∧ hofib(Emb(−, V )→ Imm(−, V ))

where V is an Euclidean space. We will often denote this homotopy fiber by Emb(−, V ).
Note it requires a basepoint, i.e. an embedding α : M → V , to actually be a functor
instead of a functor up to homotopy.

The punchline, which can be reached by two related but independent methods, will be
that if dimV is sufficiently large in comparison to dimM , then HQ ∧ Emb(M,V ) only
depends on HQ ∧ M . Hence every rational homology equivalence M1 → M2 between
two manifolds induces a rational homology equivalence Emb(M2, V ) → Emb(M1, V ) for
V sufficiently large. We’ll use this to find H∗(Emb(RP 2n,Rk);Q) for sufficiently large k,
though we invite the reader to find this themselves.

Remark 1.2. There is an elegant proof of these results in the enriched setting in [BdBW12], which
we recommend as a complement to these notes.

Remark 1.3. There is a formally very similar theory for compactly supported embedding calculus
and the spaces Embc(Rm,Rn) of compactly supported embeddings (i.e. equal to the identity
outside a compact subset). This theory generalizes results like Sinha’s theorem about the relation
of compactly supported embedding calculus to the Vasilliev spectral sequence for Embc(R,Rk), also
known as the space of long knots, Lambrechts and Volic’s result on the collapse of this spectral
sequence if k ≥ 4 and Volic’s calculations of the E2-term in terms of the Hochschild homology of
the Poisson operad. A good start for this story is [Sin05].

2. Writing the Taylor tower for context-free functor in terms of module maps

From now on we suppose that M ⊂ Rm is an open submanifold. This gives us additional
structure on the open subsets of M , as they are also open subsets of Rm. In particular among the
open subsets homeomorphic to open balls we can find open subsets that actually are open balls.

Definition 2.1. A standard ball in M is a ball in Rm, i.e. a subset of the form {x ∈ Rm| ||x−x0|| <
r}, that is contained in M .

Hence it might be worthwhile to consider a smaller subposet of O(M)

Definition 2.2. Let Osk(M) for k = 0, 1, . . . ,∞ be the subposet of O(M) consisting of open
subsets that are a disjoint union of at most k standard balls in M .
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Note that for each k = 0, 1, . . . ,∞ there is an inclusion functor

Osk(M) ↪→ Ok(M)

where Ok(M) is the subposet of O(M) consisting of open subsets of M homeomorphic to a disjoint
union of at most k balls. In an intuitive sense the restriction of F to Osk(M) contains the same
amount of information as the restriction of F to Ok(M): every open subset homeomorphic to a
disjoint union of at most k balls is isotopic in M to k standard balls and inclusion of such subsets
can similarly be isotoped to be an inclusion of standard balls. This intuition is made precise by
the following theorem.

Theorem 2.3. The natural map of homotopy limits induced by the inclusion Osk(M) ↪→ Ok(M)

holim
U∈Ok(M)

F (U)→ holim
U∈Osk(M)

F (U)

is a weak equivalence.

Sketch of proof. Call the right hand side T skF for the moment. We use the techniques of [Wei99,
section 3] to get description of TkF and T skF as a totalization of a cosimplicial space coming with
levels encoding the value of F on exactly p balls. These levels can then be understood more easily.
Consider the following diagram, whose terms will be explained later:

holimIkOkF
' //

'
��

holimOkF = TkF

'

��

Tot(p 7→ holimIkOk(p)F )

'
��

Tot(p 7→ holimIskOsk(p)F )

'
��

holimIskOskF '
// holimOskF = T skF

Here IkOk is the double category with the same objects and horizontal morphisms as Ok(M),
but vertical morphisms only the isotopy equivalences in Ok(M). The double category IskOsk is
similar, using Osk(M) instead of Ok(M). The category IkOk(p) for p = 0, 1, . . . has as objects
functors [p] → Ok, i.e. sequences of morphisms of length p + 1, and as morphisms maps of
sequences with all arrows isotopy equivalences.

The horizontal maps are induced by the inclusion of the horizontal category Ok into IkOk (and
its standard variant). These are weak equivalences because F sends all isotopy equivalences to
weak equivalences. Of the left vertical arrows, the top and bottom ones are weak equivalences as
a consequence of the way we calculute homotopy limits over a double category.

This leaves the middle vertical arrow, which is the only part of the proof containing geometric
content. Indeed, all the other manipulations were just done to reduce to a situation where it suffices
to prove that for all p the natural map holimIkOk(p)F → holimIskOsk(p)F is a weak equivalence.
Because F takes the morphisms of these category to weak equivalences, both homotopy limits
are weakly equivalent to a space of sections associated to the quasifibration over the geometric
realisation of the indexing category. Both the fibers and the geometric realisation of the indexing
category can inductively be found, as Weiss does in [Wei99, section 3], and are then seen to be the
same up to weak equivalence. After this it is not hard to check that the natural map indeed does
what one expects and is a weak equivalence.

This implies that all the solid arrows are weak equivalences and hence the dotted one is, com-
pleting the proof. �

Since we can now exclusively deal with standard balls it seems more likely that we can connect to
Bm, which also deals with standard balls. Our next goal will be to relate Osk(M) to a Grothendieck
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category constructed from a right module over a category related to Bm. So let’s recall some operad
theory.

An operad is a symmetric sequence together with composition and unit maps, satisfying unit, as-
sociativity and equivariance axioms. Associated to an operad O in D, a closed symmetric monoidal
category with all coproducts, there is a category F(O) enriched over D encoding the full structure1

of O.

Definition 2.4. The category F(O) (for “O-labelled forests”) has as objects finite sets A and
morphism objects in D as follows

homF(O)(B,A) =
∐

f :B→A

(⊗
a∈A
O(f−1({a}))

)
The composition of morphisms is defined using the operad maps and the identity maps come

from the identity maps of the operad.

Examples of operads include the Bm’s as operads in Top and the commutative operad Com as
an operad Set (or essentially anything tensored over Set). The latter has as underlying symmetric
sequence Com(A) = ∗, which completely determines the composition maps.

Similarly, recall that a (weak) right module over an operad O is a symmetric sequence M in D
(or more generally anything enriched, tensored and cotensored over D) with composition maps

− ◦a − : M(A)⊗O(B)→M(A ∪a B)

where A∪aB is by definition the set (A\{a})tB. These composition maps must satisfy appropiate
unit, associativity and equivariance axioms.

As a first example we have that any operad is a right module over itself. The following example
is more relevant to these notes and slightly less trivial.

Example 2.5. Let M be an open submanifold of Rm. Then

M(A) = sEmb(A×Dn,M)

is a right module over Bm.

Let’s relate this to our category F(O).

Lemma 2.6. There is an equivalence of categories between (1) right modules over O and mor-
phisms between these, and (2) contravariant enriched functors M : F(O) → D and natural trans-
formations between these.

Proof. From module to functor: We first construct a contravariant enriched functor M
from a right module M as follows. On a finite set A we set M(A) = M(A). Because our
codomain category is closed symmetric monoidal to define M on morphisms it suffices to
produce maps

M(A)⊗
⊗
a∈A
O(f−1({a}))→M(B)

for all maps f : B → A of finite sets. To do this we use the operations − ◦a − for each of
the sets f−1({a}) ⊂ B in the tensor product. Associativity tells us that the order in which
we do this doesn’t matter. This is a functor using the unit, associativity and equivariance
axioms of M : to be precise the unit axiom gives that it has the correct value on identity
morphisms and the associativity and equivariance axioms make it functorial on collapses
of a subset to a point and bijections respectively.

From functor to module: Given a contravariant enriched functorM we construct a mod-
ule M as follows. The underlying symmetric sequence is given by M(A) = M(A). The

1It was remarked during Talbot that a similar statement is not true for operads with more than one colour
without serious modifications to the construction.
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operations − ◦a − are defined by looking at the value of M on the morphism of sets
g : A ∪a B → A give by collapsing B to a as follows:

M(A)⊗O(B)
add units−→ M(A)⊗

⊗
a′∈A

O(g−1(a′))
M(g)→ M(A ∪a B)

Functoriality implies that this M satisfies the axioms of a right module.

It is not hard to see that these constructions are mutually inverse, and furthermore that a
morphism of right modules induces a natural transformation and vice-versa, in a mutually inverse
way. �

Recall that we are interested the standard balls in M with their inclusions. Equivalently we can
consider them as standard balls in M with inclusions considered as standard balls in Rm. Such an
interweaving of two structures can be encoded by a Grothendieck construction.

Definition 2.7. If C is a category and F : Cop → Set is an enriched functor, then C n F is the
category with objects

Ob(Cn F ) =
∐

c∈Ob(C)

F (c)

and morphisms

Mor(Cn F ) =
∐

c,c′∈Ob(C)

MapC(c, c′)× F (c′)

This has an obvious generalization to topologically enriched category C and enriched functors
F . However we will only need the discrete case, essentially because O(M) is discrete. We can

now define the Grothendieck construction associated sEmbδ(−,M) : F(Bδm)op → Set, where a
superscript δ means that we are consider the underlying sets. In other words δ stands for “discrete”.
We define a functor

evδ : F(Bδm) n sEmbδ(−,M)→ Os∞(M)

For concreteness we describe this functor on objects and morphisms. An object in F(Bδm) n
sEmbδ(−,M) is a pair (A,α) of a finite set A and a standard embedding α : A×Dm →M . This
is sent to im(α) by evδ. A morphism is a sequence (A,B, f, η, α) of finite sets A,B, a map of
sets f : A → B, a corresponding element η ∈

∏
b∈B Bm(f−1({b})) (i.e. an standard embedding

of some balls into a ball labelled by b) and an embedding α : B ×Dm ↪→ M . The target of this
morphism is (B,α), while the source is (A,α ◦ η) where α ◦ η is given by A×Dm → B×Dm →M
using η on the first component in the first map. This morphism is mapped by evδ to the inclusion
im(α ◦ η) ⊂ im(α).

Given our previous description as the standard open balls in M as standard open balls in M
with inclusions as standard open balls Rm the following lemma should not be surprising.

Lemma 2.8. The functor evδ is an equivalence of categories.

Proof. We give an inverse functor (up to natural isomorphism)

I : Os∞(M)→ F(Bδm) n sEmbδ(−,M)

We define I on objects by setting I(U) to be the pair (π0(U), υ), where υ is the unique standard
embedding π0(U) × Dn ↪→ M with image U that is the identity on π0. It is not hard to extend
the definition to morphisms, but a bit cumbersome to write down.

We have that evδ ◦ I is the identity functor on Os∞(M) and there is a natural isomorphism

between the identity functor on F(Bδm) n sEmbδ(−,M) and I ◦ evδ. It is given on an object
(A,α) by the morphism (A, π0(im(f)), A ∼= π0(im(f)), id, α̂), where α̂ : π0(im(f)) × Dm → M is
embedding obtained from α by relabelling. It is not hard to see that this is an isomorphism in
F(Bδm) n sEmbδ(−,M) and natural. �
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By restricting to the full subcategory on sets of cardinality less than or equal to k, we similarly
get equivalences of categories

evδ : F(Bδm)≤k n sEmbδ(−,M)→ Osk(M)

Since an equivalence of indexing categories J → I induces a weak equivalence on homotopy
limits, we can equivalently calculate TkF as follows:

TkF (M) = holim
(A,α)∈F(Bδm)≤knsEmbδ(−,M)

F (im(α))

A general functor F depends on both components in the Grothendieck construction. A context-
free functor is one where the sEmbδ(−,M)-component doesn’t matter. Recall that there is a
projection functor

π : Cn F → C

sending (c, x) ∈ Ob(Cn F ) to c ∈ Ob(C).

Definition 2.9. A functor F : Os∞(M)op → D is called context-free if there exists a functor F ′

such that the following diagram commutes up to natural weak equivalence

(F(Bδm) n sEmbδ(−,M))op
evδ //

π ,,

(Os∞(M))op
F // D

(F(Bδm))op
F ′

88

We will often not distinguish between F and F ′.

Suppose from now that our F is context-free and consider the homotopy limit giving us the
k’th Taylor approximation. For concreteness let’s think about the simpler case limCnF G◦π where
F,G : Cop → Set are both ordinary functors.

(Cn F )op
G◦πC //

π
((

Set

Cop
G

CC

Lemma 2.10. We have a natural isomorphism (in F and G)

lim
CnF

G ◦ π = Nat
C

(F,G)

Sketch of proof. An element of the limit is given by choice of y ∈ G(c) for all c ∈ Ob(C) and
x ∈ F (c). We define a natural transformation η by η(x) = y. The compatibility conditions in the
limit exactly are exactly those of a natural transformation. �

The homotopy version is now not hard to believe. Say we are given functors F,G : Cop → Top,
then

holim
CnF

G ◦ π = hNat
C

(F,G)

where hNat is defined as enriched natural transformations from a cofibrant replacement of F to a
fibrant replacement of G in the category of Cop-diagrams.

As a corollary we get that for context-free functors F we have a natural weak equivalence for
k = 0, 1, . . . ,∞:

TkF (M) ' hNat
F(Bδm)≤k

(sEmbδ(−,M), F (−))

Note that we implicitly identified F ′ as in the definition of context-free with F here. Rewriting
this using the correspondence between right modules and contravariant functors out of F(Bm)δ we
achieve our first goal in the form of the following theorem.
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Theorem 2.11. Let F be context-free, then we have a natural equivalence

TkF (M) ' hRmod≤k
Bδm

(sEmbδ(−,M), F (−))

for k = 0, 1, . . . ,∞. In the case k = ∞ we get actual (derived) right module maps. In the case of
finite k we only have truncated right module maps.

3. The rational homology of the space of reduced embeddings

Recall that given a manifold M and a Euclidean space V we can define a space Imm(M,V ) of
immersions as the smooth functions having injective derivative everywhere. This has a subspace
Emb(M,V ) of embeddings, coonsisting of smooth functions that are additionally a homeomorphism
onto their image.

Emb(M,V ) ↪→ Imm(M,V )

If we pick a basepoint in Emb(M,V ) we automatically get a basepoint in Imm(M,V ) and then
we can define the reduced embeddings as the homotopy fiber of the inclusion of embeddings into
immersions:

Emb(M,V ) = hofib(Emb(M,V ) ↪→ Imm(M,V ))

More geometrically, these are embeddings with an isotopy through immersions to a fixed em-
bedding (since our basepoint was actually an embedding).

Example 3.1. Let’s take M =
∐
kD

n and V = Rn. Then we have

Emb(M,V ) '

(∏
k

GL(n)

)
× C(k, V ) Imm(M,V ) =

(∏
k

GL(n)

)
× V k

where C(k, V ) is the configuration of k points in V . Both maps are given by sending an embedding
or immersion to the images of the center of each disk and the derivative there. This tells us that the
map between Emb(M,V ) and Imm(M,V ) is induced by the inclusion C(k, V ) ↪→ V n and hence
we conclude that

Emb(M,V ) ' C(k, V )

In other words, we have subtracted of the irritating and easy to understand “tangential” part
of the embedding.

Why are we interested in reduced embeddings?

(1) We know Imm already, it is easy and thus uninteresting. To be precise, being T1Emb it
is linear and hence homotopy equivalent to the space of sections of the bundle of injective
linear maps TM → V .

(2) We need to get T0 ' ∗, T1 ' ∗ to get HQ ∧ Emb(M,V ) to converge. More concretely
these conditions on the first two Taylor approximations go into Weiss’ theorem getting
convergence result for J ∧F where J is any 0-connected spectrum from convergence results
for F .

(3) The functor Emb(−, V ) is context-free. This also holds for Emb(−, V ) in the circumstances
given later (M open subset of Rm), but it is still good to know.

Let us get the remarks made in (2) out of the way. A hard result in embedding theory is the
Goodwillie-Klein theorem on convergence of Emb(−, N).

Theorem 3.2. The functor Emb(−, N) is (n − 2)-analytic with excess 3 − n. In particular, if
dimM < n− 2 then the embedding calculus tower for Emb(−, N) converges.

It is not hard to see that this implies that Emb(−, V ) is also (n− 2)-analytic with excess 3−n.
We want to get convergence of HQ ∧ Emb(−, V ) from this. To do this we use Weiss’ theorem
[Wei04].

Theorem 3.3. Suppose that F is ρ-analytic with excess c and J is a 0-connected spectrum, then
for J ∧ F we have the following convergence results.

• If c ≥ 0, then J ∧ F is ρ-analytic with excess 0.
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• If c < 0 and TkF ' ∗ for k ≤ r, then J ∧ F is (ρ+ c
r )-analytic with excess 0.

The following is easy algebra now.

Corollary 3.4. We have that Emb(−, V ) is n−1
2 -analytic with excess 0.

This gives our first restriction on n = dimV . It must be sufficiently large in the sense that m <
n−1
2 or equivalently 2m+1 < n, to make the Taylor tower of HQ∧Emb(−, V ) converge. Under this

restriction we can study the Taylor approximations TkHQ∧Emb(−, V ) to learn something about
the homology of reduced embedding spaces, and since the immersion part is easy, of embedding
spaces in general.

The slogan is now the following

embedding tower + Kontsevich formality

⇓
“collapse” of tower into pieces depending on H∗(M ;Q) only

Kontsevich formality tells us that the little m-disks operad is (real) stably formal as an operad.
This means that its real homology is a model for its real chains via a zig-zag of quasi-isomorphims
compatible with the operad structure. We will actually a slightly more advanced statement known
as relative Kontsevich formality, proven in [LV11].

Theorem 3.5 (Relative Kontsevich formality). Let 2m+ 1 < n, then there exist zig-zags of quasi-
isomorphisms of operads in chain complexes over R

C∗(Bm;R)

��

Dm
'oo ' //

��

H∗(Bm;R)

��
C∗(Bn;R) Dn'

oo
'

// H∗(Bn;R)

where the left and right vertical maps are induced by the inclusion Rm ↪→ Rn.

Remark 3.6. The proof of this very interesting, originally given in [Kon99] and having widespread
applications, most importantly in deformation quantization [Kon03]. We recommend [LV11],
though the notes on Kontsevich formality accompanying these notes might be useful as well.

There are two closely related but essentially distinct methods we can put our slogan in practice
for M ⊂ Rm open and dimV = n > 2m+ 1.

Operadic approach: The first approach rewrites our expression of theorem 2.11 for HQ ∧
Emb(M,V ) in terms of module maps to

TkHQ ∧ Emb(M,V ) ' hRmod≤k
Com

(C∗(M
−;Q), H∗(Bn;Q))

Here we have used the Quillen equivalence between rational chain complexes and HQ-
module spectra to freely move between these two categories depending on which notation
is more convenient.

The main reason we can move to Com and simplify the domain of the module maps is
that Kontsevich formality allowed us replace chains by homology in the codomain. The
conclusion that HQ ∧ Emb(M,V ) only depends on HQ ∧M now follows from the con-
vergence and the fact that M only appears in the guise of C∗(M

−;Q), which is weakly
equivalent to a tensor product of copies of C∗(M ;Q). This approach is found in [AT11].

Collapse of the orthogonal tower: The second approach is to use the expression as mod-
ule maps (or at least something equivalent to it) to prove collapse of the orthogonal calculus
tower. This type of functor calculus applies if we fix M (or an open subset of it) and con-
sider HQ∧Emb(M,V ⊕−) as a continuous functor J → Sp, where J is the topologically
enriched category with objects finite dimensional subspaces of R∞ with inner product and
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morphism spaces the linear maps preserving the inner product. If we denote the layers of
orthogonal calculus by Di, then one can prove a weak equivalence

TkHQ ∧ Emb(M,V ) '
∏
i≥0

DiTkHQ ∧ Emb(M,V )

and by convergence hence weak equivalences

HQ ∧ Emb(M,V ) '
∏
i≥0

DiHQ ∧ Emb(M,V )

where by work of Arone the layers DiHQ∧Emb(M,V ) of the orthogonal tower only depend
on HQ ∧M . This approach can be found in [ALV07].

Since the first part of the notes were concerned with the operadic approach, we will describe
only the first of these approaches in more detail. To do this we first check that Emb(−, V ) is
indeed context-free.

Lemma 3.7. The functor2 Emb(−, V ) : (Os∞(M))op → Top∗ is context free.

Proof. We are concerned with the diagram

(F(Bδm) n sEmbδ(−,M))op

π ,,

evδ //
(Os∞(M))op

I
oo Emb(−,V ) // Top∗

(F(Bδm))op
sEmb(−×Dn,V )

66

and we will prove that sEmb(−×Dn, V ) : (F(Bδm))op → Top∗ makes the diagram commute up to
natural weak equivalence. Since we have the inverse I to evδ, it suffices to prove

Emb(
∐
k

Dm, V ) ' sEmb(
∐
k

Dm, V )

naturally in k and V . This is not hard. Generalizing our previous examples we get

Emb(
∐
k

Dm, V ) ' (Inj(Rm,Rn))k × C(k, V ) Imm(
∐
k

Dm, V ) ' (Inj(Rm,Rn))k × V k

so that Emb(
∐
kD

m, V ) ' C(k, V ) with map given by sending a reduced embedding to the images
of the centers of the disks. It is not hard to see that sEmb(

∐
kD

m, V ) is homotopy equiva-
lent to C(k, V ) as well, with map C(k, V ) → sEmb(

∐
kD

m, V ) given by sending a configuration
(x1, . . . , xk) to the embedding that sends the i’th disk to the one in V with center xi and radius
1
2 min({||xi−xj || | i 6= j}) using the unique standard embedding doing this. The composite of these
two homotopy equivalences induces a homotopy equivalence

Emb(
∐
k

Dm, V ) ' sEmb(
∐
k

Dm, V )

and it is easy to see from our description of the maps involved that this is natural. �

So indeed our previous result applies and we can write

TkHQ ∧ Emb(M,V ) ' hRmod
Bδm

(sEmbδ(−,M), HQ ∧ sEmb(−, V ))

The next couple of steps concluding the proof will involve simplifying this expression more and
more.

2The functor is based because we fix a basepoint embedding M ↪→ V , which provides a base point for the entire
functor.
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(1) Note that as functors F(Bδm)op → ChQ the chain complexes C∗(sEmb(−, V );Q) and
C∗(Bn(−);Q) are clearly equivalent. Here Bn is seen as right module over Bm by the
inclusion Rm ↪→ Rn on the first m coordinates. The idea for this is that the only difference
is that for sEmb we are allowed to embed into the entire Euclidean space V , while in Bn
we only embed into the unit disk.

As a consequence we get that

TkHQ ∧ Emb(M,V ) ' hRmod
Bδm

(sEmbδ(−,M), C∗(Bn(−);Q))

(2) By linear extension and the fact that we have discretized our operad and right module in
the module, we can equivalently write this as

TkHQ ∧ Emb(M,V ) ' hRmod
C∗(Bδm;Q)

(C∗(sEmbδ(−,M);Q), C∗(Bn(−);Q))

By Kontsevich formality, the C∗(Bδm;R)-diagram C∗(Bn(−);R) is formal, i.e. by a zig-
zag weakly equivalent to H∗(Bn(−);R). Since both C∗(Bδm;R) and H∗(Bn(−);R) are of
finite type, the same is true over Q. Using this in our expression for the Taylor tower we
obtain

TkHQ ∧ Emb(M,V ) ' hRmod
C∗(Bδm;Q)

(C∗(sEmbδ(−,M);Q), H∗(Bn(−);Q))

(3) The next important step is to note that the all the elements of Bm(k) act in the same
way on H∗(Bn;Q). Thus as the module structure on H∗(Bn;Q) factors (considering its
right module as a contravariant functor) as F(C∗(Bm;Q))op → F(C∗(Com;Q))op → ChQ.
Equivalently H∗(Bn;Q) is the restriction of a module over the commutative operad (using
the functor resC∗(Com;Q)↓C∗(Bδm;Q) : RMod(C∗(Com;Q)) → RMod(C∗(Bδm;Q)), shortened

to res) and hence we can write

TkHQ ∧ Emb(M,V ) ' hRmod
C∗(Bδm;Q)

(C∗(sEmbδ(−,M);Q), resH∗(Bn(−);Q))

(4) But restricting has a right adjoint in the form of induction (given by the homotopy induc-

tion functor hindC∗(Com;Q)↑C∗(Bδm;Q), shortened to hind). This is given by a homotopy left
Kan extension

F(C∗(Bm;Q))op

��

C∗(sEmbδ(−,M);Q) // ChQ

F(C∗(Com;Q))op
hind(C∗(sEmbδ(−,M);Q))

77

and the properties of adjoints exactly tell us that we can rewrite the Taylor polynomials
as

TkHQ ∧ Emb(M,V ) ' hRmod
C∗(Com;Q)

(hindC∗(sEmbδ(−,M);Q), H∗(Bn(−);Q))

(5) So to achieve our final result it suffices to calculute the left Kan extension used in the
explicit construction of the induction functor. Note that C∗(Com;Q)-modules and Com-
modules are the same thing by linear extension. Assuming the next proposition we are
done.

Proposition 3.8. We have a weak equivalence of Com-modules

hindC∗(sEmbδ(−,M);Q) = C∗(M
−;Q)

We delay the proof of this proposition for the moment in order to draw two important corollaries.
As a first corollary we achieve our final expression for the Taylor polynomials.

Corollary 3.9. We have that, under the standing assumption that n > 2m + 1, there is a weak
equivalence

TkHQ ∧ Emb(M,V ) ' hRmod
Com

(C∗(M
−;Q), H∗(Bn(−);Q))
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Since C∗(M
−;Q) is naturally weakly equivalent to C∗(M ;Q)⊗− as a right Com-module, we

have that our expression for the Taylor tower depends only on C∗(M ;Q) or equivalently HQ∧M .

Remark 3.10. We assumed that M was an open subset of Rm. This is not necessary, we only
need that M embeds into Rm. For then we can replace it with a tubular neighborhood M̃ . We
claim that

Emb(M,V ) ' Emb(M̃, V )

To see this note that Emb(M̃, V ) is homotopy equivalent to a bundle over Emb(M,V ) with
fiber over an embedding ι the sections of the bundle of injective maps of vector bundles νι → V .
Similarly Imm(M̃, V ) is homotopy equivalent to a bundle over Imm(M,V ) with the same fiber.

Taking the homotopy fiber of Emb(M̃, V )→ Imm(M,V ) kills off the fiber direction.

Corollary 3.11. Let f : M1 → M2 be a map of manifolds of dimension n inducing a ratio-
nal homology equivalence. If n > 2m + 1 then we have an isomorphism H∗(Emb(M1, V );Q) ∼=
H∗(Emb(M2, V );Q).

Proof. By the previous corollary the Taylor polynomials are weakly equivalent for both sides.
This is induced by f in a way compatible with the structure maps of the Taylor tower (given by
truncating the morphism of right modules). Hence the homotopy limits of the Taylor towers are
weakly equivalent. Finally our restrictions on the dimensions imply that the Taylor towers both
converge, so these homotopy limits coincide with HQ ∧ Emb(Mi, V ). �

Example 3.12. We will find H∗(Emb(RP 2n,Rk);Q). For sufficiently large k our results apply.
To be precise k must be bigger than 2m + 1, where m is large enough such that RP 2n embeds
in Rm. We have that RP 2n and D2n have the same rational homology and hence their reduced
mapping spaces have the same rational homology. But for D2n we have that Emb(D2n,Rk) ' ∗, so
this homology is trivial. We conclude that H∗(Emb(RP 2n,Rk);Q) is Q in degree zero and trivial
in all positive degrees.

Let’s conclude with the proof of proposition 3.8.

Proof of 3.8. Since C∗ commutes with homotopy colimits and a homotopy left Kan extension is
constructed using homotopy colimits, it suffice to calculute hind sEmbδ(−,M) where the induction
is from Bδm- to Com-modules. If M = U is an object of F(Bδm), then we get out (π0U)− ' U−.

In general we have that hocolimU∈Os∞(M)sEmbδ(−, U) is sEmbδ(−,M). Since homotopy left
Kan extension commutes with homotopy colimits, we get that

hind sEmbδ(−,M) ' hocolimU∈Os∞(M)hind sEmbδ(−, U) = hocolimU∈Os∞(M)U
− 'M−

�
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