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1. Some category theory

1.1. Closed symmetric monoidal categories. For a quick review of
relevant aspects of symmetric monoidal, enriched, tensored and coten-
sored categories we suggest section 1 of M. Ching’s paper “Bar con-
structions for topological operads and the Goodwillie derivatives of the
identity” [G&T, volume 9] (which you may want to look at anyway, in
preparation for the workshop). There also is plenty of material avail-
able on the internet. In particular, nLab is a good resource.

A category is closed if it has internal hom objects. For example, the
category of Abelian groups is closed, because the set of homomorphisms
between Abelian groups is again an Abelian group. The category of all
groups is not closed. The categories of simplicial sets, chain complexes,
topological spaces and spectra are closed, although in the last two cases
proving it takes a great deal of work.

A symmetric monoidal structure is a pairing on the category (X, Y ) 7→
X � Y that is associative, commutative and unital up to coherent
isomorphisms. The three most commonly used symmetric monoidal
structures are:

• Categorical sum (topological spaces and disjoint unions, pointed
spaces and wedge sums, groups and free products, etc.)
• Categorical product (topological spaces and cartesian products,

etc.)
• A left adjoint to an internal hom functor. In this case we say

that a category is closed symmetric monoidal. Examples are:
chain complexes and tensor products, topological spaces and
cartesian products, pointed topological spaces and smash prod-
uct, spectra and smash product.

In some cases, two of these structures coincide. For example, in Abelian
Groups, sums and products are the same. In Topological Spaces cate-
gorical product is also the left adjoint to internal hom (such categories
are called cartesian closed).

Exercise 1.1.1. Show that the category of chain complexes has a closed
symmetric monoidal structure. Work it out both for the category of
non-negatively graded and infinitely graded chain complexes.

1.2. Enriched, tensored and cotensored categories. Let C be a
category and D a monoidal category. We say that C is enriched over D
if C has hom-objects that are elements of D. We say that C is tensored
over D if for all objects X ∈ C and A ∈ D, we have defined a “tensor
product” object X⊗A ∈ C in a manner satisfactorily associative, unital
and functorial in both X and A. In this case, we can think of C as a
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module in Cat over the monoidal category D. Dually, we say C is
cotensored over D if we can functorially form Hom(A,X) ∈ C. Then C
is a module over Dop.

Here are some standard examples of enriched, tensored and coten-
sored categories

• Every category is enriched over Sets.
• If a category has direct sums, then taking direct sums of an

object with itself can be interpreted as a tensoring over Sets.
That is, if X is an object of your category and S is a set, then

X ⊗ S =
∐
s∈S

X.

• Similarly, if a category has products, then taking a product of
an object with itself can be interpreted as a cotensoring over
Sets.
• A category enriched over Abelian Groups is called a pre-additive

category. Examples are the category of chain complexes and the
stable homotopy category (which we will discuss below).
• The category of non-negatively graded chain complexes is en-

riched, tensored and cotensored over Simplicial Sets. This uses
the Dold-Kan correspondence.
• The category of Spectra is enriched, tensored and cotensored

over Topological Spaces.

Exercise 1.2.1. Let A be an Abelian group and let F be a finite set.
Prove that the following formula defines a natural tensoring of Abelian
Groups over the category of Finite Sets (with cartesian product for
monoidal structure)

A⊗ F := AF =
∏
f∈F

A.

Note that normally this formula defines a cotensoring over Finite Sets.
The claim is that in the case of Abelian groups it also defines a tensor-
ing.

Consider the following variant. Let R be a commutative ring with
unit and let F be a finite set. Show that the following formula defines a
tensoring of the category of commutative, unital rings over Finite Sets.

R⊗ F :=
⊗
f∈F

R.

Would any of these examples work if we dropped the requirement of
commutativity?
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Exercise 1.2.2. Show that the category of (non-negatively graded)
chain complexes has a natural tensoring over Simplicial Sets, extending
the obvious tensoring over Sets. Let C be a chain complex and let S1

be a simplicial model for the circle. Describe C ⊗ S1.

1.3. Functors. Perhaps unsurprisingly, functors play an important
role in the Calculus of Functors. Here we will review some basic oper-
ations on functors, such as ends and coends, Kan extensions, etc.

We will assume that you are familiar with the categorical notions of
functors, limits and colimits. We suggest that you familiarize yourself
with (or refresh your memory on) notions of enriched functors, limits
and colimits.

1.3.1. Coends. Suppose F : C −→ D and G : Cop −→ D are two func-
tors. The coend or “tensor product” of G and F is definted by means
of a co-equalizer diagram

G⊗C F ←−
∐
c∈C

G(c)⊗ F (c)⇐
∐

c1→c2∈C

G(c2)⊗ F (c1).

Informally, we think of F and G as some kind of “left” and“right
module” over C respectively. The coend is a kind of generalized tensor
product.

Exercise 1.3.1. Show that a ring can be thought of as a category with
one object, enriched over Abelian Groups. Moreover, a right and a left
module is the same thing as a contravariant and a covariant enriched
functor from this category to Abelian Groups. Show that in this case the
enriched coend of these two functors specializes to the ordinary tensor
products of a right and a left module.

1.3.2. Representable functors. Let C be a category, and let x0 be an
object. The free functor generated by x0, or the functor represented
by x0 is the functor Rx0 from C to Sets defined by the formula

Rx0(Y ) = hom(x0, y).

More generally, if C is enriched over a category D, then Rx0 can be
thought of as an enriched functor from C to D.

1.3.3. coYoneda lemma. The basic tool for computing coends is the
“coYoneda lemma”. It gives a simple formula for the coend of any
functor with a representable functor.

Lemma 1.3.1. Let G : Cop −→ Sets be a functor. Let Rx0 be a repre-
sentable functor. There is a natural isomorphism

G⊗C Rx0
∼= G(x0).
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Exercise 1.3.2. There is an enriched version of the coYoneda lemma.
Figure out what it says, or read up on it.

One usually computes the coend of two functors by presenting one of
the functors as a colimit of representable functors and using the coY-
oneda lemma, along with the fact that coend commutes with colimits
in each variable (why is that?).

Exercise 1.3.3. Let Spaces∗ be the category of pointed spaces. Let
[n] = {0, 1, . . . , n} be considered a pointed space (with discrete topology
and basepoint being 0). Consider the representable functor R[n](X) =
Xn. Let G : Topop

∗ −→ Top∗ be a Top∗-enriched functor. Consider the
enriched coend

R[n] ⊗Top∗
G.

By coYoneda Lemma, it is isomorphic to G([n]).
Now consider the functor Λ(X) = X∧n. Represent this functor as a

colimit of representable functors (hint: it is a total cofiber of a cubical
diagram), and use this to compute the coend

Λ⊗Top∗
G.

This coend is sometimes called the n-th cross-effect of G. Can you see
why?

1.3.4. Ends, or natural transformations. Now let F , G be two covariant
functors from C to D. The end of F and G, or more descriptively, the
set of natural transformations from F to G is defined by means of an
equalizer diagram

nat(F,G) −→
∏
c∈C

hom(F (c), G(c))⇒
∏

c0→c1∈C

hom(F (c0), G(c1)).

There is an enriched version of nat, where everything is enriched, ten-
sored and cotensored over a symmetric monoidal category, and then
nat(F,G) is not just a set, but an object of the background category.

This construction is formally analogous to the coend, and all general
properties of the coend have a counterpart here. In particular, there is
the Yoneda Lemma, which desribes the natural transformations from
a representable functor to an arbitrary functor.

Exercise 1.3.4. Let G : Top∗ −→ Top∗ be a Top∗-enriched functor.
Let Λ(X) = X∧n be the functor defined in Exercise 1.3.3. Use the
Yoneda lemma, along with the fact that nat converts colimits in the
source variable to limits (why?) to calculate

nat(Λ, G).
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1.4. Kan extensions. Let C0, C, D Suppose C0 is equipped with a
fixed functor C0 → C. You may think of C0 as a subcategory of C, but
this is not necessary.

Suppose ψ : C0 −→ D is a functor. One may ask whether it is possi-
ble to extend ψ to a functor Ψ: C −→ D. This is not always possible.
But one can always (well, not really always) find “the best possible
approximation” to such an extension. In fact, there are two such ap-
proximations: from the left and from the right. They are called the
left and the right Kan extensions respectively. We will denote them
Lψ and Rψ. For an object c of C, Lψ(C) can be defined in good cases
as the colimit of ψ(co), where c0 ranges over all objects of C0 mapping
to c. More formally

Lψ(c) = colim
c0→c∈C0↓c

ψ(c0).

Dually, the right Kan extension can be defined by the formula

Rψ(c) = lim
c→c0∈c↓C0

ψ(c0).

Exercise 1.4.1. Let [C,D] be the category of functors from C to D. The
functor C0 → C gives rise to a restriction functor [C,D] −→ [C0,D].

Prove that the left and right Kan extension are the left and right
adjoint respectively to the restriction functor.

Exercise 1.4.2. Let c be a fixed object of C. Consider the contravariant
functor from C0 to Sets given by the formula c0 7→ homC(c0, c) (for
simplicity, we assume that C0 is a subcategory of C). Prove that Lψ
can be defined as a coend

Lψ(c) = hom(−, c)⊗C0 ψ(−).

Find an analogous formula for the right Kan extension, using natural
transformations.

1.5. Derived functors. (This section ows much to the nLab page on
derived functors. Another good introduction to this material is the
survey paper of Dwyer and Spalinsky which can be downloaded from
Dwyer’s web page.) In homotopy theory one works with categories
equipped with a special class of maps, called weak equivalences, and
one often is interested in functors that take weak equivalences to weak
equivalences. Functors that have this property are called “homotopy
functors”. If a functor does not preserve weak equivalences that we
may be interested in a best possible approximation to a functor by a
homotopy functor. This can be expressed in terms of Kan extensions.

Let C be a category with weak equivalences (e.g., topological spaces,
spectra, chain complexes, etc.). The homotopy category of C, denoted
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Ho(C), is the category obtained from C by formally inverting weak
equivalences. There is a canonical functor C → Ho(C). A functor
C → D is a homotopy functor if an only if it factors through Ho(C).

Definition 1.5.1. Let F : C −→ D be a functor. The left (resp. right)
derived functor of F is the right (resp. left) Kan extension of F along
the functor C → Ho(C)

(The reversal of handedness is not a typo. Things are arranged so
that the left derived functor of F maps to F , while F maps to its right
derived functor).

Often D is itself a category with weak equivalences, and when one
says a derived functor of F one often means the derived functor of the
composite functor

C F−→ D −→ Ho(D).

In this setting, the pointwise formula for Kan extension given above
usually does not apply, because the homotopy category of D will not,
normally, have most limits and colimits. Nevertheless, the Kan exten-
sion (and therefore the derived functors of F ) exist in many cases even
when the pointwise formula is not valid. In practice, C and D will
usually have a Quillen model structure, and derived functors can often
be constructed using fibrant/cofibrant replacement.

Exercise 1.5.2. Suppose that F : C −→ D is a homotopy functor.
Show that in this case both derived functors of F are naturally isomor-
phic to F .

1.5.1. Homotopy limits and colimits. An important example of derived
functors is given by homotopy limits and colimits. Let C be a small
category. Let D be a category with weak equivalences. Let [C,D] be
the category of functors. Colimits and limits of functors from C to D
can be thought of as functors [C,D] −→ D. Limits and colimits do not,
usually, preserve weak equivalences of functors. The homotopy colimit
is the left derived functor of the colimit functor and the homotopy
limit is the right derived functor of the limit functor. Thus homotopy
limits and colimits are, in a sense, the bost possible approximations to
categorical limits and colimits by a homotopy invariant construction.

If D is enriched over topological spaces (or simplicial sets), then
a concrete construction of homotopy colimits and limits is given as
follows. For an object c of C, let c ↓ C be the “under category”.
Its objects are arrows c → x in C and its morphisms are commuting
triangles. Let |c → C| be the geometric realization of this category
(or, if you prefer to work simplicially, the simplicial nerve). Then the
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assignment c 7→ |c → C| defines a contravariant functor from C to
Topological Spaces. Finally, let F : C −→ D be a functor. Then the
homotopy colimit of F is given by the following formula

hocolimF = |− → C| ⊗C F (−).

(one may also want to pre-arrange things so that F takes values in
cofibrant objects).

There is a dual description of homotopy limits, using over categories
and natural transformations (figure it out!).

Another popular concrete way to construct homotopy colimits and
limits is via simplicial and cosimplicial resolution of a diagram.

Exercise 1.5.3. Let us suppose we have a diagram

X1 ←− X0 −→ X2.

Describe the homotopy colimit of this diagram assuming it takes val-
ues in (a) Spaces, (b) Pointed spaces, (c) chain complexes. Homotopy
colimit of a diagram of this shape is called a homotopy pushout.

Exercise 1.5.4. Do the same thing with the homotopy limit of the
diagram

Y1 −→ Y0 ←− Y2.

Homotopy limits of this shape are called homotopy pullbacks.

1.6. Simplicial model categories. Many categories arising in ho-
motopy theory and algebra have the structure of a simplicial model
category. These categories are, as a matter of definition, tensored and
cotensored over simplicial sets, and they satisfy a suitably enriched
version of the model category axioms (that is, they have a good notion
of cofibration, fibration and weak equivalence). There is an analogous
notion of a topological model category, which is a model category en-
riched, tensored and cotensored over topological spaces, subject to a
compatibility condition. For an introduction into model categories we
recommend the survey article of Dwyer and Spalinski (can be down-
loaded from Bill Dwyer’s web page) as well as Quillen’s original paper
Homotopical Algebra; for a more general and systematic discussion, see
section 4.2 of Hovey’s book Model Categories.

If X ∈ C is an object of a simplicial model category and A a simplicial
set, we can give a formula for X ⊗A in terms of homotopy colimits in
C. If A is discrete, then regard it as a set; we have

X ⊗ A = X
∐

A.

More generally, recall (or convince yourself) that any simplicial set A
can be expressed as the homotopy colimit of a diagram I of discrete



BACKGROUND MATERIAL FOR TALBOT 2012 9

simplicial sets: A = hocolim I. Then

X ⊗ A = hocolimX
∐

I .

1.6.1. Derived natural transformations and derived coends. Suppose C
is a topological (or simplicial) model category. The functor

Cop × C −→ Top

given by the formula

(X, Y ) 7→ map(X, Y )

is not a homotopy functor, but it has a right derived functor. The
derived functor is given by the formula

hmap(X, Y ) := map(Xc, Y f ).

Here Xc and Y f are a cofibrant and fibrant replacement of X and
Y respectively (we are assuming that C has functorial cofibrant and
fibrant replacements). We call it the derived mapping space.

Now consider the situation when C is itself a functor category. Let
A be a small category and let D be a topological (or simplicial) model
category. Let [A,D] be the functor category. Under favorable cir-
cumstances, the functor category will be, again, a topological model
category. The most commonly used model structure on the category
of functors is the so-called projective model structure. In this model
structure, fibrations and weak equivalences are defined objectwise, and
the cofibrations are what they are forced to be.

Let F , G be two functors from A to D. We call the derived map-
ping space from F to G the space of homotopy natural tranformations,
and denote it hnat(F,G). The following are important properties of
homotopy natural transformations

• the bifunctor (F,G) 7→ hnat(F,G) preserves homotopy limits
in the second variable and converts homotopy colimits in the
first variable to homotopy limits.
• the set of path components of hnat(F,G) is the set of morphisms

from F to G in the homotopy category of [A,D].
• If F is a representable functor then the natural map

nat(F,G) −→ hnat(F,G)

is an equivalence. In particular, one can apply the Yoneda
lemma to the space of homotopy natural transformaitons.

One can use these properties to calculate hnat(F,G) by writing F as
a homotopy colimit of representable functors.
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Dually, if F is a contravariant functor from A to D and G is a
covariant functor from A to D then one can define the derived coend
of F and G to be the coend of cofibrant replacements of F and G. We
leave it to you to figure out the basic properties of this construction.

Exercise 1.6.1. Let Λ(X) = X∧n, as before. Describe the space of
homotopy natural transformations hnat(Λ, G), when G is a covariant
functor and the derived coend of Λ and G when G is a contravariant
functor.

2. Square diagrams of spaces

Homotopy pushout and pullbacks play an important role in the cal-
culus of functors. Let us review some generalities about them. Suppose
we have a diagram of spaces (more generally, the discussion could be
held in any category where you can make sense of homotopy limits and
colimits)

(1) X0

��

// X1

��
X2

// X12

Let O be the homotopy pushout of the diagram

X1 ←− X0 −→ X1.

Let B be the homotopy pullback of the diagram

X1 −→ X12 ←− X1.

The square diagram gives rise to canonical maps O −→ X12 and X0 →
B.

Definition 2.0.2. We say that the diagram (1) is a homotopy pushout
(or “homotopy cocartesian”, or just “cocartesian”) square if the map
O −→ X12 is a weak homotopy equivalence. We say that the diagram
is a homotopy pullback (or “homotopy cartesian”, or just “cartesian”)
square if the map X0 −→ B is a weak homotopy equivalence.

More generally, we say that the square is k-cocartesian (resp. k-
cartesian) if the map O −→ X12 (resp. the map X0 −→ B) is k-
connected. Thus (co)cartesian = ∞-(co)cartesian.

Exercise 2.0.3. Suppose that in diagram (1) X1 = X2 = ∗.
(a) supposing that the square is cocartesian, describe X12 in terms of
X0.
(b) supposing that the square is cartesian, describe X0 in terms of X12.
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It is worth noting that if the square (1) is cocartesian, then the
homology groups of the four spaces fit into a long exact sequence
(the Meyer-Vietoris sequence) (more generally, there will be a Meyer-
Vietoris sequence for any generalized homology theory). On the other
hand if the square is cartesian then the homotopy groups of the spaces
fit into an analogous exact sequence.

Exercise 2.0.4. What can you say about the homology (resp. homo-
topy) groups of the four spaces if the diagram is k-cocartesian (resp.
k-cartesian)?

The purpose of the following exercise is to illustrate another impor-
tant point.

Exercise 2.0.5. Find a square diagram of spaces that is both cocarte-
sian and cartesian.

Having done this exercise you know that in the category of spaces
a diagram is almost never both cartesian and cocartesian. This comes
down to the fact that in the category of spaces, colimit (union) is a
very different construction from limit (cartesian product). This should
be contrasted with the situation in the category of Abelian groups,
where sums and products are isomorphic, or more pertinently to us,
the category of Spectra, where the two are homotopy equivalent (see
section on spectra below).

Nevertheless, there is an important theorem (the Blakers-Massey
theorem) that says that if a diagram is homotopy cocartesian then it
is homotopy cartesian in a certain range (and vice versa).

Theorem 2.0.6. Suppose that the square diagram is cocartesian. Sup-
pose also that the maps X0 −→ Xi are ki connected, for i = 1, 2. Then
the square is k1 + k2 − 1-cartesian.

Dually, if the square is cartesian and the maps Xi −→ X12 are li-
connected, for i = 1, 2, then the square is l1 + l2 + 1-cartesian.

Exercise 2.0.7. Suppose that in square diagram (1) X1 = X2 = ∗
and X0 is k-connected. Assume that the diagram is co-cartesian. Use
Blakers-Massey theorem to conclude that the natural map

X0 −→ ΩΣX0

is 2k + 1-connected. This is the Freudenthal suspension theorem.

Exercise 2.0.8. Suppose that the diagram (1) is a homotopy cocarte-
sian diagram of pointed spaces. Consider the diagram obtained by ap-
plying the functor Sn ∧ − (a.k.a n-fold suspension) to (1). Prove that
the resulting square is 2n− 1-cartesian.



12 BACKGROUND MATERIAL FOR TALBOT 2012

Now apply the functor Ωn(Sn ∧ −) to (1). Prove that the resulting
diagram is n− 1-cartesian.

Let
QX = Ω∞Σ∞X = colim

n→∞
Ωn(Sn ∧X).

Conclude that if you apply the functor Q to any homotopy pushout
square you get a homotopy pullback square. You have proved that Q
is a linear functor in the sense of Goodwillie calculus. This is closely
related to the assertion that stable homotopy is a generalized homology
theory.

3. Spectra

3.1. The fundamental property. Here an important theme is that
in Spectra, the distinction between homotopy limits and colimits gets
blurred to a considerable extent. For example, in spectra a finite sum
of objects is equivalent to a finite product (from this perspective, it is
natural to see infinite loop spaces as generalizations of Abelian groups).
This is a special case of the following fundamental fact.

Theorem 3.1.1. In spectra, a square diagram is a homotopy pushout
if and only it is a homotopy pullback.

This is related to the fact that in spectra, homotopy groups behave
just like homology groups (indeed in spectra “homotopy groups” are
an example of a “generalized homology theory”).

Exercise 3.1.2. Use this to prove that if X is a spectrum then the
following natural maps are weak homotopy equivalences

ΣΩX −→ X −→ ΩΣX.

3.2. The definitions. Here is the näıve, old-fashioned definition of a
spectrum.

Definition 3.2.1. A spectrum Y is a sequence of pointed spaces Y0, Y2, Y2, . . .,
equipped with maps Yi → ΩYi+1. We say that Y is an Ω-spectrum if
the structure maps Yi → ΩYi+1 are weak homotopy equivalences.

Exercise 3.2.2. Let Y be a spectrum. Define a new sequence of spaces
Y ′i by the formula

Y ′i := hocolim
j≥0

ΩjX(i+ j)

Show that this sequence forms an Ω-spectrum (you need the fact that Ω
preserves sequential homotopy colimits since S1 is a compact object.)

The homotopy groups of a spectrum Y are defined by the formula

πkY := colimi≥0 πk+iYi.
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Exercise 3.2.3. Show that the natural map Y → Y ′ induces an iso-
morphism on the homotopy groups.

Roughly speaking, Y ′ is a fibrant replacement of Y .
There is a self-evident notion of functions between spectra and of

what it means for two functions to be homotopic. The stable homotopy
category is the category whose objects are spectra, and where the set
of maps from X to Y , denoted [X, Y ], is the set of homotopy classes
of functions from X to the Ω-spectrum associated to Y . To be more
precise, one also needs to replace X with a cofibrant approximation.
Roughly speaking, this means that we need to arrange that the spaces
Xk are SW -complexes, and the maps ΣXk → Xk+1, adjoint to the
structure maps, are inclusions of subcomplexes.

Example 3.2.1. Let X be a pointed topological space. The suspension
spectrum of X, denoted Σ∞X, is defined by the sequence X,ΣX,Σ2X, . . ..
In particular, the spectrum Σ∞S0 is called the sphere spectrum.

Exercise 3.2.4. Let X0 be a pointed CW-complex. Let Y be a spectum.
Show that the set of maps in the stable homotopy category [Σ∞X0, Y ] is
the same as the set of homotopy classes of maps from X0 to Y ′0 , where
Y ′0 is the zero-th space of the Ω-spectrum associated with Y .

(Roughly speaking, this exercise says that the zero-th space functor is
right adjoint to the functor Σ∞, and the adjunction passes to homotopy
categories.)

Example 3.2.2. Let A be an Abelian group. The sequence of Eilenberg
- Mac Lane spaces K(A, 0), K(A, 1), . . . forms an Ω-spectrum. This is
the Eilenberg - Mac Lane spectrum KA.

One of the reasons that spectra are so important in homotopy theory
is that they represent generalized homology and cohomology theories.
Let E be a spectrum, X a pointed space. E ∧ X is the spectrum
obtained by taking termwise smash product of the spaces that make
up E with X. Define

E∗(X) = π∗(E ∧X).

E∗(X) = [Σ∞X,E].

It is not too hard to show (once you have established the basic proper-
ties of the stable homotopy category) that E∗ and E∗ define a general-
ized homology and cohomology theory respectively. Morever, Brown’s
representability theorem says that every generalized (co)homology the-
ory is represented in this way by some spectrum E. For example the
Eilenberg - Mac Lane spectrum KA represents the “ordinary” singular
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(co)homology with coefficients in A. At the other extreme, the sphere
spectrum represents stable homotopy theory.

3.3. Highly structured spectra. The old fashioned definition of spec-
tra is adequate for many purposes, but for modern applications one of-
ten needs to work with a more sophisticated notion. For example, one
would like there to be a well-behaved notion of smash product of spec-
tra and one can not have it with the old-fashioned definition. At some
points during the workshop (specifically in lectures 7 and 8) we will have
to use the category of spectra constructed by Elmendorf-Kriz-Mandell-
May (popularly known as EKMM). Therefore it would be good to famil-
iarize yourself with the basic properties of “highly structured spectra”.
For another perspective on modern foundations of stable homotopy
theory you may want to check out Stefan Schwede’s unfinished book on
symmetric spectra (http://www.math.uni-bonn.de/ schwede/SymSpec.pdf).

4. Operads

For a quick introduction to operads that focuses on topics that are
relevant to us we suggest, again, the paper of Ching “Bar constructions
for topological operads and the Goodwillie derivatives of the identity”.
Note however that this paper only deals with operads without zero
term.

Let (C,⊗, 1) be a symmetric monoidal category. We may also want
to assume that C is a pointed category. I.e., that it has an object that
is both initial and final. We denote this object by 0.

A symmetric sequence in C is a sequence of objects of C, C0, C1, . . . , Cn, ..
togher with an action, for each n, of the symmetric group Σn on Cn.

An operad in C is a symmetric sequence in C together with structure
maps

1 −→ C1.

Ci ⊗ Cn1 ⊗ · · · ⊗ Cni
−→ Cn1+···+ni

that satisfy some axioms that say that the structure maps are asso-
ciative, symmetric and unital.

Remark 4.0.1. Quite often we will want to consider operads without
a zero term... the name should be self-explanatory enough. An operad
without a zero term is essentially the same thing as an operad whose
zero term is the zero object.
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One can define an associative composition product on the category
of symmetric sequences so that operads are precisely monoids with
respect to the composition product. From this point of view we see a
natural way to define right and left modules over an operad.

Definition 4.0.2. Let O be an operad, M a symmetric sequence. We
say that M is a right module over O if there is a map of symmetric
sequences M ◦ O −→ M that is associative and unital in the evident
sense. Similarly, we say that M is a left module if there is an associa-
tive and unital map O ◦M −→M .

Example 4.0.1. The commutative operad is the operad that has the
unit object 1 in every degree. It is self-evident what the structure maps
are (indeed, every structure map is the identity map on 1). Similarly
one may define the commutative operad without zero term, a.k.a the
non-unital commutative operad.

Exercise 4.0.3. Show that a right module over the commutative operad
in C is the same thing as a contravariant functor from the category of
finite sets to C.

Show that a right module over the non-unital commutative operad is
the same thing as a contravariant functor from the category of finite
sets and surjective functions between them to C.

Perhaps more widely familiar than right and left modules are the
notions of an algebra and a coalgebra over an operad.

Definition 4.0.4. Let O be an operad and let X be an object of C
(more generally, X can be in any category tensored over C). An O-
algebra structure on X consists of maps

X⊗n ⊗On −→ X

that are symmetric, associative and unital.
Dually, an O-coalgebra structure on X consists of maps

X ⊗On −→ X⊗n

that are, again, symmetric associative and unital.

Exercise 4.0.5. Suppose that X is a coalgebra over O. Show that
the sequence 1, X,X⊗2, . . . , X⊗n, . . . has a natural structure of a right
O-module.

Exercise 4.0.6. Show that a coalgebra over the commutative operad
is the same thing as a contravariant symmetric monoidal functor from
the category of finite sets to C.


