
RELATIVE MALCEV COMPLETION

PETER DALAKOV

Abstract. This is a somewhat Orwellian version of my talk on relative Malcev
completion and related topics: it is a combination of partially edited real-time

notes (taken by Hiro) and my own notes. In particular, these notes include

material that I never got to!

I will start with a few words about some results of Richard Hain. These are deep
technical theorems, and I must say that my understanding of some of them is a bit
nebulous so you should take things with a grain of salt.

Motivation:
We use classical Hodge theory to understand the local moduli of a complex variety
X (say, smooth and proper) as follows.

First we look for some topological invariant, like integral homology or cohomol-
ogy, Hk(X,Z). Then we complexify, look at the Hodge filtration on Hk(X,C), and
study how the filtration varies with the complex structure.

Now, Hk(X,Z) is a nice finitely generated abelian group. Its complexification
can be described by differential forms, and the filtration is “by the number of dz’s”.
To see how the filtration (on H1(X,C)) varies we look at periods.

Question:
What is the analogue of the above if we want to study a pointed variety (X,x0)?

For example X could be a moduli space of some objects (e.g., one of our Dol-
beault, de Rham or Betti moduli spaces) and x0 could an object of interest (e.g., a
variation of Hodge structures).

First we need some topological invaraint which keeps track of the point x0 ∈ X.
A natural candidate is the fundamental group, π1(X,x0). In general, it is non-
abelian, so a better attempt is to take the group ring Zπ1(X,x0). It is abelian
but not finitely generated. A natural way to fix that is to truncate it and consider
instead

Zπ1(X,x0)/Jk,
where J is the augmentation ideal.

Recall:
Let π be a discrete group, R a commutative ring with 1 and Rπ the group algebra
of π, that is, the set of all finite linear combinations

∑
g∈π rgg, rg ∈ R. Then the

augmentation ideal J is the kernel of the ring homomorphism ε : Rπ → R, g 7→ 1.
The powers Jk determine a topology on Rπ (often non-separated), and the J-adic
completion is the topological R-algebra

R̂π = lim
←
Rπ/Jk.

Fun Exercise:
In the above notation, the homomorphism

πab → J/J2, g 7→ (g − 1) mod J2
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induces an isomorphism H1(π;R) = πab ⊗Z R ' J/J2. This is H1(X,R) if π =
π1(X,x0).

So, Zπ1(X,x0) will be our substitute for the integral cohomology. Next we want
a substitute for the Hodge filtration, possibly constructed in terms of differential
forms. Notice that for composable paths α, β and a 1-form ω we have

∫
αβ
ω =∫

α
ω+

∫
β
ω =

∫
βα
ω, so usual integrals of 1-forms can see only elements of π1(X,x0)

which are visible in H1(X,C).
Chen looked at a generalisation of line integrals – the iterated line integrals –

and found the right substitute for the Hodge filtration. We heard a bit about this
in Mike’s talk. Given 1-forms ω1, . . . , ωr, and a loop γ based at x0, one looks at∫

γ

ω1, . . . ωr =
∫

∆

. . .

∫
f1(t1) . . . fr(tr)dt1 . . . dtr

where γ∗ωi = fi(ti)dti and ∆ is the time-ordered simplex 0 ≤ t1 ≤ . . . ≤ tr ≤ 1.
Sometimes this expression is called a “basic iterated integral”. For this quantity to
make sense (and have good properties) it is enough that X be a real manifold, and
that ωi be R-valued differential forms, or more generally, differential forms with
values in some associative R-algebra, e.g., C, gl(n,R) or gl(n,C). One could also
consider paths γ joining two different points a, b ∈ X.

An interated integral of length at most s is a linear combination of constants
and basic integrals with r ≤ s. We think of the iterated integral as a map from
the space of loops (based at x0) to, say, C. Of course, the value of this function
could depend on the path γ, so we restrict attention to iterated integrals which are
homotopy functionals (depend only on the homotopy calss of γ). I will denote the
iterated integrals by Ix0 and the ones that are homotopy functionals by H0(Ix).
The iterated integrals are filtered by the length s (they are not graded!) and
this induces a filtration on the homotopy functionals. If s = 1, an integral is a
homotopy functional iff dω = 0. For iterated integrals of higher length things are
more complicated. In fact, one of the ingredients of Chen’s theorem is an explicit
description of H0(Ix0) in terms of the bar construction on the de Rham complex
of X.

Aaron: Chen gives a formula for the exterior differential of an iterated integral,
it involves shuffles and such; and you can write it in terms of differentails of stuff
in the inside. This is in the original iterated integral paper.

Peter: Iterated integrals have been around for a while. For instance, they
are used in the proof of the existence and uniqueness theorem for ODE (Picard-
Lindelöf) where one uses Picard iterations to write the “evolution operator” as a
“time-ordered exponent”. This is the same object that appears in Chen’s and Hain’s
work when they discuss parallel transport on vector bundles with flat connection.

Then there are two statements in Chen’s π1 de Rham theorem.

Theorem 0.1 (Chen’s Theorem). (1) For every s ≥ 0, integration induces an
isomorphism

H0(Ix0)s ' HomZ(Zπ1/J
s+1,C)

(2) Integration induces a Hopf algebra isomorphism H0(Ix0) ' O(U), where
O(U) is the coordinate ring of the unipotent completion U of π1(X,x0).

I am going to recall all the relevant definitions in a minute.
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One of the main applications of this theorem is a direct construction of Morgan’s
MHS on O(U).

R.Hain took many of these results much further. He generalised the notion of
iterated integrals, and obtained a Hopf algebra isomorphism between the coordi-
nate ring of a certain relative Malcev completion and the Hopf algebra of “locally
constant iterated integrals” (which can be constructed algebraically using a suit-
able bar construction). However, the first big theorem of R.Hain that I want to
talk about is Theorem 13.1 from The Hodge-de Rham Theory of the relative Malcev
completion.

Theorem 0.2. Let X be smooth, complex algebraic variety, or the complement of
a divisor with normal crossings in a compact Kähler manifold, and let x0 ∈ X. Let
V be an admissible VHS on X, V0 the fiber of V at x0 and S := Aut(V0, 〈, 〉).
Suppose that the monodromy ρ : π1(X,x0)→ S is Zariski-dense.

Let ρ̃ : π1(X,x0)→ G := G(x, x0) be the completion of π1(X,x0) relative to ρ.
Then the coordinate ring O(G) of G has a canonical real MHS with non-negative

weights.
Moreover, the canonical map O(S)→ O(G), the multiplication, comultiplication

and antipode on O(G) are all morphisms of MHS. Finally, the canonical homomor-
phism G → S induces an isomorphism GrW0 O(G) ' O(S).

I will discuss now the various notions that appear in the statement of this theo-
rem.

I will not explain what an “admissible” V(M)HS is. For a V(M)HS on a punc-
tured disk (around x0) admissibility is a certain condition on the behaviour at x0

(the monodromy has to be quasi-unipotent, etc. etc.); for higher-dimensional X
admissibility can be tested on curves through x0. Consult Steenbrink-Zucker and
Kashiwara for the (very technical) definition.

The above theorem states that the coordinate ringO(G) of a certain pro-algebraic
group G carries a MHS which is compatible with the Hopf algebra structure on
O(G).

Hopf algebras
Recall that a Hopf algebra over a field k is a unital k-algebra H (so it is a

k-vector space with multiplication H ⊗ H → H and unit k → H) which has
extra structure: comultiplication ∆ : H → H ⊗ H, a counit ε : H → k, and an
antipode S : H → H. Here ∆ and ε satisfy properties which are obtained from the
properties of the multiplication and unit by reversing all arrows, and the properties
of the antipode are obtained by formalising the first example below. There are also
natural compatibility properties between the different structures. Equivalently, one
can also say that a Hopf algebra is bialgebra H (i.e., it is both an algebra and a
coalgebra in a compatible way) with an antipode.

Example: Functions on a group
Let G be a finite group or an affine algebraic group over k, and O(G) the ring of
regular functions on it. Then H = O(G) is a Hopf algebra. The comultiplication of
O(G) is the dual to the multiplication on G, i.e., ∆f(g, h) = f(gh). The antipode is
dual to inverting elements, i.e., S(f)(g) = f(g−1). The counit is given by evaluation
at the identity: ε(f) = f(1). This is the kind of Hopf algebra appearing in the right
hand side of statement (2) of Chen’s theorem – except that there one has the
coordinate ring O(U) of a pro-algebraic group.
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Example: Group Algebra
If G is a group and H = kG its group algebra, then H has is naturally a Hopf
algebra with ∆(g) = g ⊗ g, ε(g) = 1 and S(g) = g−1.

Example: Universal Enveloping
Let g be a Lie algebra. Then its universal enveloping algebra Ug is a Hopf algebra
with ∆x = x⊗ 1 + 1⊗ x, ε(x) = 0, S(x) = −x.

Example: H•(G)
If G is a Lie group, its cohomology ring H•(G) is a Hopf algebra with multiplication
given by cup product and comultiplication and antipode induced by the operations
on G. This was the original example studied by Hopf.

Example: Iterated Integrals
The set of iterated integrals Ix0 on a manifold X forms a Hopf algebra, where the
comultiplication is induced by path multiplication and the antipode is induced by
reversing the path. In fact, the three operations are described by the formulas∫

αβ

ω1 . . . ωr =
r∑
j=0

∫
α

ω1 . . . ωj

∫
β

ωj+1 . . . ωr,

∫
α

ω1 . . . ωr

∫
α

ωr+1 . . . ωr+s =
∑

Sh(r,s)

∫
α

ωσ(1) . . . ωσ(r+s)

∫
α−1

ω1 . . . ωr = (−1)r
∫
α

ωrωr−1 . . . ω1

Here α and β are composable paths. The basic properties of iterated integrals are
due to K.T.Chen. The Hopf-algebraic formulation is due to R.Hain. This is the
kind of Hopf algebra appearing in the left hand side of statement (2) of Chen’s
theorem.

Fun Exercise:
If G is an affine algebraic group, we can recover g = Lie G from O(G).

The Relative Malcev Completion
Let π be an abstract group and S a linear algebraic group over a field k of char

0. Let ρ : π → S be a representation with Zariski-dense image. Look at diagrams
of the form

1 // U // E // S // 1

π

ρ̃

OO

ρ

>>~~~~~~~~

where E is a linear algebraic group (over k), U is unipotent, and ρ̃ is lifting of ρ
with Z-dense image. One checks that the set of such diagrams forms an inverse
system. The completion of π relative to ρ or the relative Malcev completion of π is
the projective limit over such diagrams,

G = lim
←
E.

It comes with a canonical homomorphism ρ̂ : π → G which is sometimes called “the
S-completion of π”.

If S = {1} then G = U is the pro-unipotent (classical Malcev) completion of π.
David: Mike said U had to be the unipotent radical of E.

Carlos: Well if S itself wasn’t reductive, that definition wouldn’t work very well.



RELATIVE MALCEV COMPLETION 5

So this is a more general definition which works well for other groups.

Being a limit, the proalgebraic group G is characterised by a universal property.
Namely, if G is a pro-algebraic group with a surjection onto S with pro-unipotent
kernel

1 //U //G //S //1

and φ : π → G has a Z-dense image, then there is a unique map G → G so that the
map φ factors though it, i.e.

G

��

// S

π
φ //

??��������
G

??�������

There is an explicit construction of the classical Malcev completion (S = {1})
due to Quillen.

Look at the completion of kπ at the augmentation ideal. It has a comultiplication
∆ : k̂π → k̂π⊗̂k̂π induced by the one on kπ. Let G denote the set of group-like of
k̂π. These are the elements X which satisfy ∆(X) = X ⊗ X and ε(X) = 1. We
have natural maps π → kπ and kπ → k̂π, whose composition lands in G.

Fact:
If H1(π, k) is finite-dimensional, the natural map π → G is the Malcev completion
of π.

So this takes care of the case S = {1}.
Carlos: When S is a linear group, it acts on kn. Then there’s a map from π to

End(kn), and you could take the kernel of this map and complete with respsect to
it. That should be the relative version of the above.

So these were the main ingredients in Hain’s theorem. . .
Carlos: Maybe something to sterss is that this MHS depends on choice of base-

point. It gives you a variation of mixed hodge structure over X. As the basepoint
moves around, this O(G) considered as a mixed hodge structure forms a VMHS
over X. It’s the universal VMHS whose reductive pieces will look like ρ.

Peter: Hain and Pulte actually proved various Torelli-type results. For instance,
if we have two curves, X and Y , with marked points p and q, and if there is a ring
isomorphism Zπ1(X, p)/J3

p → Zπ1(Y, q)/J3
q which is compatible with the Hodge

structure, then, with the possible exception of two points, there is a biholomorphism
from X to Y which maps p to q.

Carlos: The point is, we need an invaraint which distinguishes the point — an
invaraint of the pointed variety, not just of the variety.

Carlos: Now instead of taking the Maclev completion, you could take the inverse
map of reps to all groups (this is what you get by Tannaka duality). This breaks
down into the Malcev completions of all kinds of different groups; these are the
local splits.

Carlos: At each piece, the proalgebaric completion of π1 will have this Malcev
completion sitting there.

Sam: Now if X is compact, is this a pure Hodge structure?
Carlos: No. These homotopy gusy are never pure.
Peter: In fact, the theorem includes a statement about the weight zero piece of

O(G): it is isomorphic to O(S), which is definitely not the whole thing.
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Carlos: There’s MHS on the rational homotopy groups in the simply connected
case; if π3 maps to H3, the kernel is something having to do with H2 ⊗ H2, and
that’s already mixed. That’s going to give you the weight filtration.

Carlos: And the filtration of the Zπ1 by the augmentation ideal is almost never
going to be trivial.

There are “fancier” versions of the previous theorem. For a, b,∈ X, let π(X, a, b)
be the set of paths between a and b up to homotopy. We define the fundamental
groupoid of X to be the category π(X) with objects the points of X and morphisms
paths up to homotopy. We can think of this as a torsor over X ×X, whose fibre
over (a, b) is π(X, a, b). Since π1(X ×X, (a, a)) = π1(X,x)× π1(X,x), one can
Check:
The torsor π(X) corresponds to the representation π1(X×X, (a, a))→ Aut π1(X, a),
(γ, µ) 7→ {g 7→ γ−1gµ}.

Next, suppose that ρ : π(X,x0)→ S be a representation with Z-dense image, and
let π1(X,x0) → G be the completion relative to ρ. We can then extend the above
representation to a representation π1(X ×X, (a, a))→ Aut G, and get a torsor, G,
over X × X. Its fibres Ga,b come with “multiplication maps” Ga,b × Gb,c → Ga,c.
Then R. Hain proved:

Theorem 0.3 (Theorem 13.3). Keep the notation from Theorem 0.2 and let a, b ∈
X. Then O(Ga,b) carries a canonical MHS with non-negative weights. If a, b, c ∈ X
are three points, the map O(Ga,c)→ O(Ga,b)⊗O(Gb,c) induced by path multiplication
is a morphism of MHS.

Theorem 0.4 (Theorem 13.10, Corollary 13.11). If X is a compact Kähler mani-
fold, the local system on X×X with fibre O(Ga,b) underlies an admissible variation
of MHS on X ×X.

It is expected that these VMHS are related to the ones discussed in Simpson-
Eyssidieux. There the authors consider a complex VHS of weight zero on a compact
Kähler manifold X, and consider its monodromy representation ρ : π1(X,x0) →
GLN (C) as a point in the representation variety R(π1(X,x0), GLN (C)). Using
Goldman-Millson techniques, one can identify Spf(Ôρ) with Ω̂ρ × T , where T is
the (formal germ at the origin of the) quadratic cone given by the obstruction
map, and Ω̂ρ is the germ at ρ of the GLN (C)-orbit of ρ. The natural map T →
Spf(Ôρ) induces representations ρn : π1(X,x0) → GLN (ÔT /mn). The powers of
the maximal ideal induce a decreasing filtration on the corresponding local system,
and Simpson-Eyssidieux show that the corresponding increasing filtration is a C
VMHS on X.


